Gradient Descent

Lecturer: Ryan Tibshirani
Convex Optimization 10-725/36-725
Last time: canonical convex programs

- Linear program (LP): takes the form

 $$\min_x c^T x$$

 subject to
 $$Dx \leq d$$
 $$Ax = b$$

- Quadratic program (QP): like an LP, but with a quadratic criterion
- Semidefinite program (SDP): like an LP, but with matrices
- Conic program: the most general form of all
Gradient descent

Consider unconstrained, smooth convex optimization

\[
\min_x f(x)
\]

i.e., \(f \) is convex and differentiable with \(\text{dom}(f) = \mathbb{R}^n \). Denote the optimal criterion value by \(f^* = \min_x f(x) \), and a solution by \(x^* \)

Gradient descent: choose initial point \(x^{(0)} \in \mathbb{R}^n \), repeat:

\[
x^{(k)} = x^{(k-1)} - t_k \cdot \nabla f(x^{(k-1)}), \quad k = 1, 2, 3, \ldots
\]

Stop at some point
Gradient descent interpretation

At each iteration, consider the expansion

\[f(y) \approx f(x) + \nabla f(x)^T (y - x) + \frac{1}{2t} \| y - x \|^2 \]

Quadratic approximation, replacing usual Hessian \(\nabla^2 f(x) \) by \(\frac{1}{t} I \)

\[f(x) + \nabla f(x)^T (y - x) \]

linear approximation to \(f \)

\[\frac{1}{2t} \| y - x \|^2 \]

proximity term to \(x \), with weight \(1/(2t) \)

Choose next point \(y = x^+ \) to minimize quadratic approximation:

\[x^+ = x - t \nabla f(x) \]
Blue point is x, red point is

$$x^+ = \arg\min_y f(x) + \nabla f(x)^T (y - x) + \frac{1}{2t} \|y - x\|^2_2$$
Outline

Today:

• How to choose step sizes
• Convergence analysis
• Gradient boosting
• Stochastic gradient descent
Fixed step size

Simply take $t_k = t$ for all $k = 1, 2, 3, \ldots$, can diverge if t is too big. Consider $f(x) = (10x_1^2 + x_2^2)/2$, gradient descent after 8 steps:
Can be slow if t is too small. Same example, gradient descent after 100 steps:
Converges nicely when t is “just right”. Same example, gradient descent after 40 steps:

Convergence analysis later will give us a precise idea of “just right”
Backtracking line search

One way to adaptively choose the step size is to use backtracking line search:

- First fix parameters $0 < \beta < 1$ and $0 < \alpha \leq 1/2$
- At each iteration, start with $t = t_{\text{init}}$, and while

$$f(x - t\nabla f(x)) > f(x) - \alpha t\|\nabla f(x)\|_2^2$$

shrink $t = \beta t$. Else perform gradient descent update

$$x^+ = x - t\nabla f(x)$$

Simple and tends to work well in practice (further simplification: just take $\alpha = 1/2$)
Backtracking interpretation

For us $\Delta x = -\nabla f(x)$
Backtracking picks up roughly the right step size (12 outer steps, 40 steps total):

Here $\alpha = \beta = 0.5$
Could also choose step to do the best we can along direction of negative gradient, called **exact line search**:

\[
t = \arg\min_{s \geq 0} f(x - s\nabla f(x))
\]

Usually not possible to do this minimization exactly

Approximations to exact line search are often not as efficient as backtracking, and it’s usually not worth it
Convergence analysis

Assume that f convex and differentiable, with $\text{dom}(f) = \mathbb{R}^n$, and additionally

$$\|\nabla f(x) - \nabla f(y)\|_2 \leq L\|x - y\|_2 \quad \text{for any } x, y$$

i.e., ∇f is Lipschitz continuous with constant $L > 0$

Theorem: Gradient descent with fixed step size $t \leq 1/L$ satisfies

$$f(x^{(k)}) - f^* \leq \frac{\|x^{(0)} - x^*\|_2^2}{2tk}$$

We say gradient descent has convergence rate $O(1/k)$

i.e., to get $f(x^{(k)}) - f^* \leq \epsilon$, we need $O(1/\epsilon)$ iterations
Proof

Key steps:

• ∇f Lipschitz with constant $L \Rightarrow$

$$f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} \| y - x \|^2$$ all x, y

• Plugging in $y = x^+ = x - t\nabla f(x)$,

$$f(x^+) \leq f(x) - \left(1 - \frac{Lt}{2}\right)t \| \nabla f(x) \|^2$$

• Taking $0 < t \leq 1/L$, and using convexity of f,

$$f(x^+) \leq f^* + \nabla f(x)^T (x - x^*) - \frac{t}{2} \| \nabla f(x) \|^2$$

$$= f^* + \frac{1}{2t} \left(\| x - x^* \|^2 - \| x^+ - x^* \|^2 \right)$$
• Summing over iterations:

\[
\sum_{i=1}^{k} (f(x^{(i)}) - f^*) \leq \frac{1}{2t} (\|x^{(0)} - x^*\|^2 - \|x^{(k)} - x^*\|^2) \\
\leq \frac{1}{2t} \|x^{(0)} - x^*\|^2
\]

• Since \(f(x^{(k)})\) is nonincreasing,

\[
f(x^{(k)}) - f^* \leq \frac{1}{k} \sum_{i=1}^{k} (f(x^{(i)}) - f^*) \leq \frac{\|x^{(0)} - x^*\|^2}{2tk}
\]
Convergence analysis for backtracking

Same assumptions, f is convex and differentiable, $\text{dom}(f) = \mathbb{R}^n$, and ∇f is Lipschitz continuous with constant $L > 0$

Same rate for a step size chosen by backtracking search

Theorem: Gradient descent with backtracking line search satisfies

$$f(x^{(k)}) - f^* \leq \frac{\|x^{(0)} - x^*\|_2^2}{2t_{\text{min}} k}$$

where $t_{\text{min}} = \min\{1, \beta/L\}$

If β is not too small, then we don’t lose much compared to fixed step size (β/L vs $1/L$)
Convergence analysis under strong convexity

Reminder: **strong convexity** of \(f \) means \(f(x) - \frac{\mu}{2} \| x \|_2^2 \) is convex for some \(\mu > 0 \). If \(f \) is twice differentiable, then this is equivalent to

\[
f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} \| y - x \|_2^2 \quad \text{all } x, y
\]

Under Lipschitz assumption as before, and also strong convexity:

Theorem: Gradient descent with fixed step size \(t \leq 2/(\mu + L) \)
or with backtracking line search search satisfies

\[
f(x^{(k)}) - f^* \leq c^k \frac{L}{2} \| x^{(0)} - x^* \|_2^2
\]

where \(0 < c < 1 \)
l.e., rate with strong convexity is $O(c^k)$, exponentially fast!

l.e., to get $f(x^{(k)}) - f^* \leq \epsilon$, need $O(\log(1/\epsilon))$ iterations

Called linear convergence, because looks linear on a semi-log plot

(From B & V page 487)

Constant c depends adversely on condition number L/m (higher condition number \Rightarrow slower rate)
A look at the conditions

A look at the conditions for a simple problem, \(f(\beta) = \frac{1}{2} \|y - X\beta\|_2^2 \)

Lipschitz continuity of \(\nabla f \):
- This means \(\nabla^2 f(x) \preceq LI \)
- As \(\nabla^2 f(\beta) = X^T X \), we have \(L = \sigma_{\text{max}}^2(X) \)

Strong convexity of \(f \):
- This means \(\nabla^2 f(x) \succeq mI \)
- As \(\nabla^2 f(\beta) = X^T X \), we have \(m = \sigma_{\text{min}}^2(X) \)
- If \(X \) is wide—i.e., \(X \) is \(n \times p \) with \(p > n \)—then \(\sigma_{\text{min}}(X) = 0 \), and \(f \) can’t be strongly convex
- Even if \(\sigma_{\text{min}}(X) > 0 \), can have a very large condition number \(L/m = \sigma_{\text{max}}^2(X)/\sigma_{\text{min}}^2(X) \)
A function f having Lipschitz gradient and being strongly convex satisfies:

$$mI \preceq \nabla^2 f(x) \preceq LI \quad \text{for all } x \in \mathbb{R}^n,$$

for constants $L > m > 0$

Think of f being sandwiched between two quadratics

May seem like a strong condition to hold globally (for all $x \in \mathbb{R}^n$). But a careful look at the proofs shows that we only need Lipschitz gradients/strong convexity over the sublevel set

$$S = \{ x : f(x) \leq f(x^{(0)}) \}$$

This is less restrictive (especially if S is compact)
Practicalities

Stopping rule: stop when $\|\nabla f(x)\|_2$ is small

- Recall $\nabla f(x^*) = 0$ at solution x^*
- If f is strongly convex with parameter m, then

$$\|\nabla f(x)\|_2 \leq \sqrt{2m\epsilon} \implies f(x) - f^* \leq \epsilon$$

Pros and cons of gradient descent:

- Pro: simple idea, and each iteration is cheap (usually)
- Pro: fast for well-conditioned, strongly convex problems
- Con: can often be slow, because many interesting problems aren’t strongly convex or well-conditioned
- Con: can’t handle nondifferentiable functions
Can we do better?

Gradient descent has $O(1/\epsilon)$ convergence rate over problem class of convex, differentiable functions with Lipschitz gradients

First-order method: iterative method, updates $x^{(k)}$ in

$$x^{(0)} + \text{span}\{\nabla f(x^{(0)}), \nabla f(x^{(1)}), \ldots \nabla f(x^{(k-1)})\}$$

Theorem (Nesterov): For any $k \leq (n - 1)/2$ and any starting point $x^{(0)}$, there is a function f in the problem class such that any first-order method satisfies

$$f(x^{(k)}) - f^* \geq \frac{3L\|x^{(0)} - x^*\|_2^2}{32(k + 1)^2}$$

Can attain rate $O(1/k^2)$, or $O(1/\sqrt{\epsilon})$? Answer: yes (we’ll see)!
Gradient boosting

Given observations $y = (y_1, \ldots y_n) \in \mathbb{R}^n$, predictor measurements $x_i \in \mathbb{R}^p$, $i = 1, \ldots n$

Want to construct a flexible (nonlinear) model for outcome based on predictors. Weighted sum of trees:

$$u_i = \sum_{j=1}^{m} \beta_j \cdot T_j(x_i), \quad i = 1, \ldots n$$

Each tree T_j inputs predictor measurements x_i, outputs prediction. Trees are grown typically pretty short
Pick a loss function L that reflects setting; e.g., for continuous y, could take $L(y_i, u_i) = (y_i - u_i)^2$

Want to solve

$$\min_{\beta} \sum_{i=1}^{n} L\left(y_i, \sum_{j=1}^{M} \beta_j \cdot T_j(x_i)\right)$$

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge

Space is simply too big to optimize

Gradient boosting: basically a version of gradient descent that is forced to work with trees

First think of optimization as $\min_{u} f(u)$, over predicted values u, subject to u coming from trees
Start with initial model, e.g., fit a single tree $u^{(0)} = T_0$. Repeat:

- Compute negative gradient d at latest prediction $u^{(k-1)}$,

$$
 d_i = - \left[\frac{\partial L(y_i, u_i)}{\partial u_i} \right] \bigg|_{u_i = u^{(k-1)}_i}, \quad i = 1, \ldots, n
$$

- Find a tree T_k that is close to a, i.e., according to

$$
 \min_{\text{trees}} \sum_{i=1}^{n} (d_i - T(x_i))^2
$$

Not hard to (approximately) solve for a single tree

- Compute step size α_k, and update our prediction:

$$
 u^{(k)} = u^{(k-1)} + \alpha_k \cdot T_k
$$

Note: predictions are weighted sums of trees, as desired
Stochastic gradient descent

Consider minimizing a sum of functions

$$\min_x \sum_{i=1}^m f_i(x)$$

As $\nabla \sum_{i=1}^m f_i(x) = \sum_{i=1}^m \nabla f_i(x)$, gradient descent would repeat:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \sum_{i=1}^m \nabla f_i(x^{(k-1)}), \quad k = 1, 2, 3, \ldots$$

In comparison, stochastic gradient descent or SGD (or incremental gradient descent) repeats:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \nabla f_{i_k}(x^{(k-1)}), \quad k = 1, 2, 3, \ldots$$

where $i_k \in \{1, \ldots m\}$ is some chosen index at iteration k
Two rules for choosing index i_k at iteration k:

- **Cyclic rule**: choose $i_k = 1, 2, \ldots m, 1, 2, \ldots m, \ldots$
- **Randomized rule**: choose $i_k \in \{1, \ldots m\}$ uniformly at random

Randomized rule is more common in practice

What’s the difference between stochastic and usual (called batch) methods? Computationally, m stochastic steps \approx one batch step. But what about progress?

- **Cyclic rule, m steps**: $x^{(k+m)} = x^{(k)} - t \sum_{i=1}^{m} \nabla f_i(x^{(k+i-1)})$
- **Batch method, one step**: $x^{(k+1)} = x^{(k)} - t \sum_{i=1}^{m} \nabla f_i(x^{(k)})$
- **Difference in direction** is $\sum_{i=1}^{m} [\nabla f_i(x^{(k+i-1)}) - \nabla f_i(x^{(k)})]$

So SGD should converge if each $\nabla f_i(x)$ doesn’t vary wildly with x

Rule of thumb: SGD thrives far from optimum, struggles close to optimum ... (we’ll revisit in just a few lectures)
References and further reading

• T. Hastie, R. Tibshirani and J. Friedman (2009), “The elements of statistical learning”, Chapters 10 and 16
• Y. Nesterov (1998), “Introductory lectures on convex optimization: a basic course”, Chapter 2
• L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring 2011-2012