
Gradient Descent

Ryan Tibshirani
Convex Optimization 10-725



Last time: canonical convex programs

• Linear program (LP): takes the form

min
x

cTx

subject to Dx ≤ d
Ax = b

• Quadratic program (QP): like LP, but with quadratic criterion

• Semidefinite program (SDP): like LP, but with matrices

• Conic program: the most general form of all

2



Gradient descent

Consider unconstrained, smooth convex optimization

min
x

f(x)

That is, f is convex and differentiable with dom(f) = Rn. Denote
optimal criterion value by f? = minx f(x), and a solution by x?

Gradient descent: choose initial point x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Stop at some point

3



●

●

●

●

●

4



●

●

●

●

●

5



Gradient descent interpretation

At each iteration, consider the expansion

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22

Quadratic approximation, replacing usual Hessian ∇2f(x) by 1
t I

f(x) +∇f(x)T (y − x) linear approximation to f

1
2t‖y − x‖22 proximity term to x, with weight 1/(2t)

Choose next point y = x+ to minimize quadratic approximation:

x+ = x− t∇f(x)

6



●

●

Blue point is x, red point is

x+ = argmin
y

f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22

7



Outline

Today:

• How to choose step sizes

• Convergence analysis

• Nonconvex functions

• Gradient boosting

8



Fixed step size

Simply take tk = t for all k = 1, 2, 3, . . ., can diverge if t is too big.
Consider f(x) = (10x21 + x22)/2, gradient descent after 8 steps:

−20 −10 0 10 20

−
20

−
10

0
10

20 ●

●

●

*

9



Can be slow if t is too small. Same example, gradient descent after
100 steps:

−20 −10 0 10 20

−
20

−
10

0
10

20 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

*

10



Converges nicely when t is “just right”. Same example, 40 steps:

−20 −10 0 10 20

−
20

−
10

0
10

20 ●

●

●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●*

Convergence analysis later will give us a precise idea of “just right”

11



Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

• First fix parameters 0 < β < 1 and 0 < α ≤ 1/2

• At each iteration, start with t = tinit, and while

f(x− t∇f(x)) > f(x)− αt‖∇f(x)‖22

shrink t = βt. Else perform gradient descent update

x+ = x− t∇f(x)

Simple and tends to work well in practice (further simplification:
just take α = 1/2)

12



Backtracking interpretation9.2 Descent methods 465

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T ∆xf(x) + t∇f(x)T ∆x

Figure 9.1 Backtracking line search. The curve shows f , restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f , and the upper dashed line has a slope a factor of α smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 ≤
t ≤ t0.

The line search is called backtracking because it starts with unit step size and
then reduces it by the factor β until the stopping condition f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds. Since ∆x is a descent direction, we have ∇f(x)T ∆x < 0, so
for small enough t we have

f(x + t∆x) ≈ f(x) + t∇f(x)T ∆x < f(x) + αt∇f(x)T ∆x,

which shows that the backtracking line search eventually terminates. The constant
α can be interpreted as the fraction of the decrease in f predicted by linear extrap-
olation that we will accept. (The reason for requiring α to be smaller than 0.5 will
become clear later.)

The backtracking condition is illustrated in figure 9.1. This figure suggests,
and it can be shown, that the backtracking exit inequality f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds for t ≥ 0 in an interval (0, t0]. It follows that the backtracking
line search stops with a step length t that satisfies

t = 1, or t ∈ (βt0, t0].

The first case occurs when the step length t = 1 satisfies the backtracking condition,
i.e., 1 ≤ t0. In particular, we can say that the step length obtained by backtracking
line search satisfies

t ≥ min{1, βt0}.

When dom f is not all of Rn, the condition f(x+ t∆x) ≤ f(x)+αt∇f(x)T ∆x
in the backtracking line search must be interpreted carefully. By our convention
that f is infinite outside its domain, the inequality implies that x + t∆x ∈ dom f .
In a practical implementation, we first multiply t by β until x + t∆x ∈ dom f ;

For us ∆x = −∇f(x)

13



Setting α = β = 0.5, backtracking picks up roughly the right step
size (12 outer steps, 40 steps total),

−20 −10 0 10 20

−
20

−
10

0
10

20 ●

●

●●
●

●●●

●●●
●

*

14



Exact line search

We could also choose step to do the best we can along direction of
negative gradient, called exact line search:

t = argmin
s≥0

f(x− s∇f(x))

Usually not possible to do this minimization exactly

Approximations to exact line search are typically not as efficient as
backtracking, and it’s typically not worth it

15



Convergence analysis

Assume that f convex and differentiable, with dom(f) = Rn, and
additionally that ∇f is Lipschitz continuous with constant L > 0,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 for any x, y

(Or when twice differentiable: ∇2f(x) � LI)

Theorem: Gradient descent with fixed step size t ≤ 1/L satisfies

f(x(k))− f? ≤ ‖x
(0) − x?‖22

2tk

and same result holds for backtracking, with t replaced by β/L

We say gradient descent has convergence rate O(1/k). That is, it
finds ε-suboptimal point in O(1/ε) iterations

16



Analysis for strong convexity

Reminder: strong convexity of f means f(x)− m
2 ‖x‖22 is convex

for some m > 0 (when twice differentiable: ∇2f(x) � mI)

Assuming Lipschitz gradient as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t ≤ 2/(m+ L)
or with backtracking line search search satisfies

f(x(k))− f? ≤ γkL
2
‖x(0) − x?‖22

where 0 < γ < 1

Rate under strong convexity is O(γk), exponentially fast! That is,
it finds ε-suboptimal point in O(log(1/ε)) iterations

17



Called linear convergence

Objective versus iteration
curve looks linear on semi-
log plot

9.3 Gradient descent method 473

k

f
(x

(k
)
)
−

p
⋆

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

Figure 9.6 Error f(x(k))−p⋆ versus iteration k for the gradient method with
backtracking and exact line search, for a problem in R100.

These experiments suggest that the effect of the backtracking parameters on the
convergence is not large, no more than a factor of two or so.

Gradient method and condition number

Our last experiment will illustrate the importance of the condition number of
∇2f(x) (or the sublevel sets) on the rate of convergence of the gradient method.
We start with the function given by (9.21), but replace the variable x by x = T x̄,
where

T = diag((1, γ1/n, γ2/n, . . . , γ(n−1)/n)),

i.e., we minimize

f̄(x̄) = cT T x̄ −
m∑

i=1

log(bi − aT
i T x̄). (9.22)

This gives us a family of optimization problems, indexed by γ, which affects the
problem condition number.

Figure 9.7 shows the number of iterations required to achieve f̄(x̄(k))−p̄⋆ < 10−5

as a function of γ, using a backtracking line search with α = 0.3 and β = 0.7. This
plot shows that for diagonal scaling as small as 10 : 1 (i.e., γ = 10), the number of
iterations grows to more than a thousand; for a diagonal scaling of 20 or more, the
gradient method slows to essentially useless.

The condition number of the Hessian ∇2f̄(x̄⋆) at the optimum is shown in
figure 9.8. For large and small γ, the condition number increases roughly as
max{γ2, 1/γ2}, in a very similar way as the number of iterations depends on γ.
This shows again that the relation between conditioning and convergence speed is
a real phenomenon, and not just an artifact of our analysis.

(From B & V page 487)

Important note: γ = O(1−m/L). Thus we can write convergence
rate as

O

(
L

m
log(1/ε)

)

Higher condition number L/m ⇒ slower rate. This is not only true
of in theory ... very apparent in practice too

18



A look at the conditions

A look at the conditions for a simple problem, f(β) = 1
2‖y−Xβ‖22

Lipschitz continuity of ∇f :

• Recall this means ∇2f(x) � LI
• As ∇2f(β) = XTX, we have L = λmax(X

TX)

Strong convexity of f :

• Recall this means ∇2f(x) � mI
• As ∇2f(β) = XTX, we have m = λmin(XTX)

• If X is wide (X is n× p with p > n), then λmin(XTX) = 0,
and f can’t be strongly convex

• Even if σmin(X) > 0, can have a very large condition number
L/m = λmax(X

TX)/λmin(XTX)

19



Practicalities

Stopping rule: stop when ‖∇f(x)‖2 is small

• Recall ∇f(x?) = 0 at solution x?

• If f is strongly convex with parameter m, then

‖∇f(x)‖2 ≤
√

2mε =⇒ f(x)− f? ≤ ε

Pros and cons of gradient descent:

• Pro: simple idea, and each iteration is cheap (usually)

• Pro: fast for well-conditioned, strongly convex problems

• Con: can often be slow, because many interesting problems
aren’t strongly convex or well-conditioned

• Con: can’t handle nondifferentiable functions

20



Can we do better?

Gradient descent has O(1/ε) convergence rate over problem class
of convex, differentiable functions with Lipschitz gradients

First-order method: iterative method, which updates x(k) in

x(0) + span{∇f(x(0)),∇f(x(1)), . . .∇f(x(k−1))}

Theorem (Nesterov): For any k ≤ (n− 1)/2 and any starting
point x(0), there is a function f in the problem class such that
any first-order method satisfies

f(x(k))− f? ≥ 3L‖x(0) − x?‖22
32(k + 1)2

Can attain rate O(1/k2), or O(1/
√
ε)? Answer: yes (we’ll see)!

21



Analysis for nonconvex case

Assume f is differentiable with Lipschitz gradient, now nonconvex.
Asking for optimality is too much. Let’s settle for a ε-substationary
point x, which means ‖∇f(x)‖2 ≤ ε

Theorem: Gradient descent with fixed step size t ≤ 1/L satisfies

min
i=0,...,k

‖∇f(x(i))‖2 ≤
√

2(f(x(0))− f?)
t(k + 1)

Thus gradient descent has rate O(1/
√
k), or O(1/ε2), even in the

nonconvex case for finding stationary points

This rate cannot be improved (over class of differentiable functions
with Lipschitz gradients) by any deterministic algorithm1

1Carmon et al. (2017), “Lower bounds for finding stationary points I”
22



Gradient boosting

23



Given responses yi ∈ R and features xi ∈ Rp, i = 1, . . . , n

Want to construct a flexible (nonlinear) model for response based
on features. Weighted sum of trees:

ui =

m∑

j=1

βj · Tj(xi), i = 1, . . . , n

Each tree Tj inputs xi, outputs predicted response. Typically trees
are pretty short

...

24



Pick a loss function L to reflect setting. For continuous responses,
e.g., could take L(yi, ui) = (yi − ui)2

Want to solve

min
β

n∑

i=1

L
(
yi,

M∑

j=1

βj · Tj(xi)
)

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge.
Space is simply too big to optimize

Gradient boosting: basically a version of gradient descent that is
forced to work with trees

First think of optimization as minu f(u), over predicted values u,
subject to u coming from trees

25



Start with initial model, a single tree u(0) = T0. Repeat:

• Compute negative gradient d at latest prediction u(k−1),

di = −
[
∂L(yi, ui)

∂ui

] ∣∣∣∣
ui=u

(k−1)
i

, i = 1, . . . , n

• Find a tree Tk that is close to a, i.e., according to

min
trees T

n∑

i=1

(di − T (xi))
2

Not hard to (approximately) solve for a single tree

• Compute step size αk, and update our prediction:

u(k) = u(k−1) + αk · Tk

Note: predictions are weighted sums of trees, as desired

26



References and further reading

• S. Boyd and L. Vandenberghe (2004), “Convex optimization”,
Chapter 9

• T. Hastie, R. Tibshirani and J. Friedman (2009), “The
elements of statistical learning”, Chapters 10 and 16

• Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 2

• L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

27


