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Course setup

Welcome to our course on Convex Optimization, with a focus on
its ties to Machine Learning and Statistics!

Basic adminstrative details:

• Instructor: Ryan Tibshirani

• Teaching assistants: Kartik Gupta, Biswajit Paria, Pratik
Patil, Akash Umakantha, Po-Wei Wang, Wayne Zhao

• Course website:
http://www.stat.cmu.edu/~ryantibs/convexopt/

• We will use Piazza for announcements and discussions

• We will Canvas just as a gradebook

2

http://www.stat.cmu.edu/~ryantibs/convexopt/


Prerequisites: no formal ones, but class will be fairly fast paced

Assume working knowledge of/proficiency with:

• Real analysis, calculus, linear algebra

• Core problems in Machine Learning & Statistics

• Programming (R, Python, Matlab, your choice ...)

• Data structures, computational complexity

• Formal mathematical thinking

If you fall short on any one of these things, it’s certainly possible to
catch up; but don’t hesitate to talk to us
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Evaluation:

• 5 homeworks

• 2 little tests

• 1 project

• Many easy quizzes

Project: something useful/interesting with optimization. Groups of
2 or 3, milestones throughout the semester, details to come

Quizzes: due at midnight the day of each lecture. Should be very
easy if you’ve attended lecture ...
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Scribing: sign up to scribe one lecture per semester, on the course
website (multiple scribes per lecture). Can bump up your grade in
boundary cases

Lecture videos: see links on course website. These are supposed to
be helpful supplements, not replacements! Best to attend lectures

Auditors: welcome, please audit rather than just sitting in

Heads up: class will not be easy, but should be well worth it ... !
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Optimization in Machine Learning and Statistics

Optimization problems underlie nearly everything we do in Machine
Learning and Statistics. In many courses, you learn how to:

translate into P : min
x∈D

f(x)

Conceptual idea Optimization problem

Examples of this? Examples of the contrary?

This course: how to solve P , and why this is a good skill to have
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Presumably, other people have already figured out how to solve

P : min
x∈D

f(x)

So why bother? Many reasons. Here’s three:

1. Different algorithms can perform better or worse for different
problems P (sometimes drastically so)

2. Studying P through an optimization lens can actually give you
a deeper understanding of the statistical procedure

3. Knowledge of optimization can actually help you create a new
P that is even more interesting/useful

Optimization moves quickly as a field. But there is still much room
for progress, especially its intersection with ML and Stats
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Example: algorithms for the 2d fused lasso

The 2d fused lasso or 2d total variation denoising problem:

min
θ

1

2

n∑
i=1

(yi − θi)2 + λ
∑

(i,j)∈E

|θi − θj |

This fits a piecewise constant function over an image, given data
yi, i = 1, . . . , n at pixels. Here λ ≥ 0 is a tuning parameter

3
4

5
6

7

True image Data Solution
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Our problem: min
θ

1

2

n∑
i=1

(yi − θi)2 + λ
∑

(i,j)∈E

|θi − θj |

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)
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What’s the message here?

So what’s the right conclusion here?

Is the alternating direction method of multipliers (ADMM) method
simply a better method than proximal gradient descent, coordinate
descent? ... No

In fact, different algorithms will perform better or worse in different
situations. We’ll learn details throughout the course

In the 2d fused lasso problem:

• Special ADMM: fast (structured subproblems)

• Proximal gradient: slow (poor conditioning)

• Coordinate descent: slow (large active set)
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Example: sparse linear modeling

Given y ∈ Rn and a matrix X ∈ Rn×p, with p� n. Suppose that
we know that

y ≈ Xβ∗

for some unknown coefficient vector β∗ ∈ Rp. Can we generically
solve for β∗? ... No!

But if β∗ is known to be sparse (i.e., have many zero entries), then
it’s a whole different story

≈
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There are many different approaches for estimating β∗. A popular
approach is to solve the lasso problem:

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1

Here λ ≥ 0 is a tuning parameter, and ‖β‖1 =
∑p

i=1 |βi| denotes
the `1 norm of β

There are numerous algorithms for computing a lasso solution (in
fact, it can be cast as a quadratic program)

Furthermore, some key statistical insights can be derived from the
Karush-Kuhn-Tucker (KKT) optimality conditions for the lasso
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Lasso support recovery

The KKT conditions for the lasso problem are

XT (y −Xβ) = λs

sj ∈


{+1} βj > 0

{−1} βj < 0

[−1, 1] βj = 0

, for j = 1, . . . , p

We call s a subgradient of the `1 norm at β, denoted s ∈ ∂‖β‖1

Under favorable conditions (low correlations in X, large nonzeros
in β∗), can show that lasso solution has same support as β∗

Proof idea: plug in (shrunken version of) β∗ into KKT conditions,
and show that they are satisfied with high probability (primal-dual
witness method of Wainwright 2009)
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Widsom from Friedman (1985)

From Jerry Friedman’s discussion of Peter Huber’s 1985 projection
pursuit paper, in Annals of Statistics:

Arguably, less true today due to the advent of disciplined convex
programming? Maybe, but it still rings true in large part ...
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Central concept: convexity

Historically, linear programs were the focus in optimization

Initially, it was thought that the important distinction was between
linear and nonlinear optimization problems. But some nonlinear
problems turned out to be much harder than others ...

Now it is widely recognized that the right distinction is between
convex and nonconvex problems

Your supplementary textbooks for the course:

Boyd and Vandenberghe
(2004)

,
Rockafellar

(1970)
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Convex sets and functions

Convex set: C ⊆ Rn such that

x, y ∈ C =⇒ tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 124 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Convex function: f : Rn → R such that dom(f) ⊆ Rn convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all 0 ≤ t ≤ 1

and all x, y ∈ dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph. 16



Convex optimization problems

Optimization problem:

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

hj(x) = 0, j = 1, . . . r

Here D = dom(f) ∩⋂m
i=1 dom(gi) ∩

⋂p
j=1 dom(hj), common

domain of all the functions

This is a convex optimization problem provided the functions f
and gi, i = 1, . . .m are convex, and hj , j = 1, . . . p are affine:

hj(x) = aTj x+ bj , j = 1, . . . p
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Local minima are global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible—x ∈ D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(x) ≤ f(y) for all feasible y, ‖x− y‖2 ≤ ρ,
then

f(x) ≤ f(y) for all feasible y

This is a very useful
fact and will save us
a lot of trouble!
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Convex Nonconvex
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