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Last time: quasi-Newton methods

Consider the problem
min f(x)

with f convex, twice differentiable, dom(f) = R™. Generic form of
quasi-Newton method: start with (?) € R, and repeat:

¥ = k=) _p o= (k=1)  p 7 93

where C=1 =~ (V2 f(2*=1D))~1, an approximation to the inverse
Hessian at 2(*~1). Step sizes chosen by backtracking. Key: C'(© is
easily computed, and Ck-1) s easily updated from C(k_Q), k>2

e SR1: rank 1 update for Hessian, use SM for inverse Hessian

e DFP: rank 2 update for inverse Hessian, use SM for Hessian

e BFGS: reverse roles of Hessian and inverse Hessian in DFP

e LBFGS: limited memory version of BFGS, very popular
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Reminder: proximal gradient descent

Recall that proximal gradient descent operates on a problem
min g(x) + h(x)
where g is convex, smooth and h is convex, “simple”. We repeat
) = prox;, (.CE(kil) — thg(x(kfl))), k=1,2,3,...

where prox,(-) is the proximal operator associated with h,
1 2
prox,(z) = argmin 2—tHx —z||I3 + h(2)
z

e Difficulty of iterations is in applying prox, which depends only
on h (assuming that Vg is computable)

e Proximal gradient descent enjoys same convergence rate as its
fully smooth version, and is hence useful when prox is efficient



Recall motivation for prox gradient: iteratively minimize quadratic
expansion in g, plus original h

1
o = argmin 2—t||:c —tVg(x) — 2|3 + h(2)
4
. T 1 2
= argmin Vg(z)' (z —z) + 27”z — |5+ h(2)
z

Quadratic approximation uses %I (spherical curvature), as in pure
gradient descent when h =0

A fundamental difference between gradient descent and Newton's
method: latter also iteratively minimizes quadratic approximations,
but these use the local Hessian of the function in question

So what happens if we replace %I in the above with V2g(z)?



Proximal Newton method

This leads us to proximal Newton method: we repeat

1
v®) = argmin Vg(z* N7y + E’UTH(]C_I)U + Wz 4 o)
28 = g e=1) 4 g ()
Here H* =1 = v2g(2x(*~1)) is the Hessian at z(*~) and t; is a
step size. Equivalent formulation:

2 = argmin {Vg(:):(k_l))T(z — gDy 4

o= 2T O (o 0D) h(z)}



Scaled proximal map

Given H >~ 0, define
.1 9
proxy(x) = argmin 5”3: — 2|7 + h(2)
z

where ||z||% = 2T Hz. This is called a scaled proximal map

With H = 11, we get back usual (unscaled) definition. In general,
the scaled prox shares retains many of the nice properties of usual
prox (e.g., uniqueness, nonexpansiveness)

Now consider

2t = arg;nin Vy(z)(z — x) + %(z —2)TH(z — z) + h(2)

1
= argmin §||$ — H 'WVg(x) — 2|3 + h(2)
4



Thus another equivalent form for proximal Newton update:

Z(k) o prOXH(kfl) (x(kfl) _ (H(k*l))*lvg(x(kfl)))
) = p(k=1) tk(z(k) o x(k—l))

Notes:

e When h(z) =0, we get back the usual Newton update
e If we replaced H*-1) by il, and set t;, = 1, we get proximal
gradient update, with step size

e Difficulty of prox depends strongly on h. However, now it also
depends on the structure of the Hessian of g

e E.g., having a diagonal or banded Hessian generally makes a
big difference compared to a dense Hessian



Backtracking line search

As with Newton's method in fully smooth problems, pure step sizes
ty, =1, k=1,2,3,... need not converge. We apply backtracking
line search: fix 0 < @ <1/2,0< B <1, and let

v = proxy (z — H_IVg(:U)) —x

be the proximal Newton direction at a given iteration. Start with
t =1, and while

flz+tv) > f(z) + atVg(x) v + a(h(z + tv) — h(z))
we shrink ¢t = St. (Here f =g+ h)

Note: this scheme is actually of a different spirit than the one we
studied for proximal gradient descent, as it avoids recomputing the
prox at each inner backtracking iteration



When would we use proximal Newton?

High-level picture, for problem: min g(z) + h(x)
€T

Proximal gradient Proximal Newton
e [teratively minimize o [teratively minimize
16— z||3 + h(x) b'x + 27 Az + h(z)

e Often closed-form prox e Almost never closed-form

prox

Iterations are cheap

e Convergence of gradient o lterations are very very
descent expensive

e Convergence of Newton's
method

So we use proximal Newton when we have an fast inner optimizer
for scaled prox (quadratic plus h), expect few iterations

10



Convergence analysis

Following Lee et al. (2012), assume that f = g + h, where g, h are
convex and g is twice smooth. Assume further:

e mI < V2g < LI, and V2g Lipschitz with parameter M

e proxy(-) is exactly evaluable

Theorem: Proximal Newton method with backtracking line
search converges globally. Furthermore, for all k > kg,

M .
2 — a*lla < o [l2 D — 2|3

Recall that this is called local quadratic convergence. After k > ko,
to get within f(z(*)) — f* < ¢, we need O(loglog(1/€)) iterations.
Note: each iteration uses scaled prox evaluation!
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Proof sketch

To prove global convergence, can show that at any step, the
backtracking exit condition will be satisfied by

2
t < Inin{l, Tm(l - a)}

Use this to show that the update direction converges to zero,
which can only happen at the global minimum

To prove local quadratic convergence, can show that for large
enough k, the pure step t = 1 eventually satisfies backtracking
exit condition. Therefore

1 M
+ * + * * 112
" —x < —|lxT —x —|lx —x
lo* —a*l: < =t -l < o -fle—al3
lowest eigenvalue nonexpansiveness,
bound Lipschitzness,

largest eigenvalue
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Glmnet and QUIC

Two notable examples of proximal Newton methods:

e glmnet (Friedman et al., 2009): prox Newton for ¢; penalized
generalized linear models, inner probs solved using coordinate
descent

e QUIC (Hsiesh et al., 2011): prox Newton for graphical lasso
problem, uses factorization tricks, inner probs use coordinate
descent

Both of these implementations are very widely used for their own
purposes. At the proper scale, these are ~ state-of-the-art

General note: proximal Newton method will use far less evaluations
of (gradient of) g than proximal gradient. When these evaluations
are expensive, proximal Newton can win
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Example: lasso logistic regression

Example from Lee et al. (2012): ¢; regularized logistic regression,
FISTA (accelerated prox grad) versus spaRSA (spectral projected
gradient method) versus PN (proximal Newton)

Problem with n = 5000, p = 6000, and a dense feature matrix X
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Here cost is dominated by expensive g, Vg (exp,log) evaluations
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Problem with n = 542,000, p = 47,000, and sparse matrix X
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Now evaluating g, Vg make up less of total cost, since X is sparse



Inexact prox evaluations

An important point: with proximal Newton, we essentially always
perform inexact prox evaluations (not so with proximal gradient)

Example from Lee et al. (2012): graphical lasso estimation, three
stopping rules for inner optimizations. Here n = 72 and p = 1255
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Conclusion is that 10 inner iterations is not enough to ensure fast
(quadratic) convergence, but their adaptive stopping rule is
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For usual (smooth) Newton method, inner problem is to minimize
Gr_1 quadratic approximation to g about z(*~1). Stop when

Vg1 (z®)]l2 < mel|Vg (D)2
for a specifically chosen “forcing” sequence mx, k =1,2,3,...

For proximal Newton, Lee et al. (2012) advocate the analogy that
uses generalized gradients in place of gradients

where fi_1 = Gx_1 + h, and recall that m < V2¢g < M. Setting

| {m HGfk_Q/M@c(’“—”)—Gf/M<x<'f-1>>ua}
Nk = min q —,
2 1G ¢ /ar(2F=2) |2

they prove that inexact proximal Newton has local superlinear rate
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Proximal quasi-Newton methods

For large problems, computing the Hessian is prohibitive. Proximal
quasi-Newton avoids forming H*~1) = V2g(z(*~1) at each step

e Lee et al. (2012) propose BFGS-type updating rules. These
work very well empirically, local superlinear convergence

e Tseng and Yun (2009) consider smooth plus block separable
problems, propose approximating the Hessian in a blockwise
fashion. Helpful because only small Hessians are ever needed.
Their method has linear convergence

Quasi-Newton can be helpful not only when Hessian is burdensome
computationally, but also when it is ill-conditioned: singular or near
singular
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What's wrong with projected Newton?

When h = I¢(x), indicator function of convex set C, our problem:
min g(x) subject to xz € C
x

Proximal gradient descent in this case reduces to projected gradient
descent. What about proximal Newton? Updates are based on

+

1
2" = argmin §||w — H 'Vg(x) - 2|%

zeC

1

= argmin Vg(z)T(z —2)+ =(z —2)TH(z — x)
zeC 2

Note when H = I this a projection of z — Vg(x) onto C, but not a

projection in general! In fact, it is much more complicated. Hence,

projected Newton does not generally follow from proximal Newton
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Projected Newton for box constraints
Projected Newton method can be made to work for box constraints
(Bertsekas, 1982; Kim et al., 2010; Schmidt et al., 2011). Given

min g(x) subject to [ <z <wu
X

the projected Newton method specifies an initial point 2 small
constant € > 0, and repeats the following steps for £k =1,2,3, ...

e Define the binding set

Bi_1={i: xl(k_l) <l; +¢ and Vig(x(kfl)) >0} U
{i: £k > u; —€ and Vig(az(k_l)) < 0}

1

These are the variables that are at (close to) boundary, and
moving them inward would increase the criterion
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Define the free set F,_1 = {1,...n}\ Bip_1

Define the inverse of the principal submatrix of the Hessian
along the free variables

S = [(Fgta )y, )

Take a Newton step along the free variables only, then project:

(k—1) v (k—1)
(k) _ h=1) _, | S 0 Fo_, 9(x"77)
X P[l,u} (-T tk,‘ |: 0 I :| |: kailg(ZE(k_l))

where Py, is the projection onto [l,u] = [l1,u1] X ... [y, uy]

Note that the update leaves binding set effectively untouched
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Convergence properties

Convergence:

o Bertsekas (1982) shows that, under appropriate assumptions,
projected Newton identifies the proper binding constraints in a
finite number of iterations. Then it is just the usual Newton's
method on the free variables

o Bertsekas (1982) also proves superlinear convergence

e Kim et al. (2010), Schmidt et al. (2011) describe a projected
quasi-Newton method, using BFGS-style updates

What kinds of problems have box constraints? Lots, it turns out!

e Nonnegative least squares
e Support vector machine dual
e Graphical lasso dual

e Fused lasso (TV denoising) dual
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Example from Kim et al. (2010): image deblurring performed with
nonnegative KL divergence minimization

o0

Original image Blurred image PQN-LBFGS LBFGS-B
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