1. Consider Newton’s method on a convex function, under lower and upper bounds on the eigenvalues of the Hessian, and a Lipschitz Hessian. In its region of quadratic convergence, backtracking will always select pure step sizes (equal to 1).
 □ True
 □ False

2. Which of the following statements comparing Newton’s method and gradient descent is not accurate (for convex problems)?
 □ a. One Newton iteration is typically more computationally costly than one gradient descent iteration.
 □ b. Newton’s method has faster local rate of convergence under suitable assumptions.
 □ c. Each Newton step can be viewed as an exact minimization of a suitable quadratic approximation, whereas that is not the case for gradient descent.
 □ d. In both Newton’s method and gradient descent, we can use backtracking to ensure global convergence.

3. Generally speaking, Newton’s method can be used for: a. finding the roots of a nonlinear equation, b. minimizing a function. These ideas are completely separate (they don’t have any relationship).
 □ True
 □ False

4. Compared to gradient descent, Newton’s method, roughly speaking:
 □ a. uses more accurate quadratic approximations, admits more expensive iterations, but requires fewer iterations to converge to high accuracy;
 □ b. uses less accurate quadratic approximations, and cheaper iterations, so it requires more iterations to converge to high accuracy;
 □ c. uses cubic approximations, and its iterations and convergence are not really comparable to gradient descent;
 □ d. only approximates the smooth part of the criterion by a quadratic, and thus applies to a broader class of nonsmooth optimization problems.

5. If we run Newton’s method on \(f(x) \) starting at \(x_0 \) for \(k \) iterations, and for the same sequence of step sizes, run Newton’s method on \(g(y) = f(Ay) \) starting at \(y_0 = A^{-1}x_0 \) for \(k \) iterations, then the achieved sequence of criterion values is the same in both cases.
 □ True
 □ False

6. Pure Newton’s method (with step sizes equal to 1) will always converge on a convex function.
 □ True
 □ False
7. Newton’s method on a convex function, under lower and upper bounds on the eigenvalues of the Hessian, and a Lipschitz Hessian, converges (with suitable step sizes) at the rate:
 □ a. \(O(\log \log(1/\epsilon))\);
 □ b. \(O(\log \log(1/\epsilon))\), locally;
 □ c. it depends on whether the function is self-concordant;
 □ d. none of the above.

8. Let \(f^*\) denote the optimal criterion value of the convex problem

 \[
 \min_x f(x) \text{ subject to } h_j(x) \leq 0, \ j = 1, \ldots, m,
 \]
 and \(x^*(t)\) denote the solution in the barrier problem

 \[
 \min_x tf(x) + \phi(x).
 \]

 Then \(f(x^*(t)) - f^* \leq m/t\).
 □ True
 □ False

9. Each main iteration of the barrier method performs just one one Newton update.
 □ True
 □ False

10. The main idea behind the barrier method is add terms to the criterion that:
 □ a. smoothly approximate indicator functions of the constraints;
 □ b. make the new criterion strongly convex;
 □ c. make the new criterion smooth;
 □ d. get rid of equality constraints.

11. The barrier method solves the problem:

 \[
 \min_x f(x) \text{ subject to } h_j(x) \leq 0, \ j = 1, \ldots, m,
 \]

 by solving a:
 □ a. single problem of the form \(\min_x (tf(x) + \phi(x))\), where \(\phi(x) = -\sum_{j=1}^m \log(-h_j(x))\) and \(t > 0\);
 □ b. sequence of problems of the form \(\min_x (t_k f(x) + \phi(x))\), where \(\phi(x) = -\sum_{j=1}^m \log(-h_j(x))\) and \(t_k \to \infty\);
 □ c. sequence of problems of the form \(\min_x (t_k f(x) + \phi(x))\), where \(\phi(x) = -\sum_{j=1}^m \log(-h_j(x))\) and \(t_k \to 0\);
 □ d. sequence of problems of the form \(\min_x (t_k f(x) + \phi(x))\), where \(\phi(x) = \sum_{j=1}^m \log(-h_j(x))\) and \(t_k \to \infty\);
 □ e. sequence of problems of the form \(\min_x (t_k f(x) + \phi(x))\), where \(\phi(x) = \sum_{j=1}^m \log(-h_j(x))\) and \(t_k \to 0\).

12. For constrained convex minimization, barrier methods approach the solution from the outside of the constraint set.
 □ True
 □ False

13. Which of the following statements about the barrier method and the primal-dual interior-point method is not true (for convex problems)?
 □ a. Both barrier method and primal-dual interior-point method can be interpreted as solving a perturbed version of the KKT conditions.
 □ b. Both methods have local \(O(\log(1/\epsilon))\) rate of convergence.
 □ c. Primal-dual interior-point method is more commonly used in practice because it tends to be more efficient.
 □ d. Both methods perform just one Newton update before taking a step along the central path (adjusting the barrier parameter \(t\)).
14. The iterates of the primal-dual interior-point method are always primal and dual feasible.
 □ True
 □ False

15. Each main iteration of a primal-dual interior-point method performs just one Newton update.
 □ True
 □ False

16. Which of the following statements about the barrier method and the primal-dual interior-point method is not true (for convex problems)?
 □ a. Both barrier method and primal-dual interior-point method can be interpreted as solving a perturbed version of the KKT conditions.
 □ b. Both require solving a linear system at the lowest level of iteration.
 □ c. Both methods have local $O(\log(1/\epsilon))$ rate of convergence.
 □ d. Both yield feasible primal and dual iterates at every step.

17. Consider the convex problem:
 \[
 \min_x f(x) \text{ subject to } Ax = b, \ h(x) \leq 0.
 \]
 Which one of the following is not a consideration, when choosing the step size in each main iteration of a primal-dual interior-point algorithm applied to this problem?
 □ a. Take a full Newton step (step size equal to 1) if possible.
 □ b. Take a step size that ensures $h(x) < 0$.
 □ c. Take a step size that ensures $u > 0$.
 □ d. Take a step size that ensures $Ax = b$.

18. DFP and BFGS differ in that only one of them satisfies the secant equation.
 □ True
 □ False

19. DFP and BFGS differ in that only one of them preserves positive definiteness (of the approximated Hessian, from one iteration to the next).
 □ True
 □ False

20. In the DFP and BFGS updates, each update on the approximation to the Hessian matrix and its inverse are:
 □ a. symmetric rank-one updates for both the Hessian and its inverse;
 □ b. symmetric rank-two updates for both the Hessian and its inverse;
 □ c. a symmetric rank-one update for the Hessian and a rank-two update for its inverse;
 □ d. a symmetric rank-two update for the Hessian and a rank-one update for its inverse.