3.1 Optimization terminology

The following defines a convex optimization problem/program:

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \leq 0, \ i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

(3.1)

where \(f \) and \(g_i, i = 1, \ldots, m \) are all convex, and the optimization domain is \(D = \text{dom}(f) \cap \bigcap_{i=1}^{m} \text{dom}(g_i) \).

Some related terminology:

- \(f \) is called criterion or objective function
- \(g_i \) is called inequality constraint function
- If \(x \in D, g_i(x) \leq 0, i = 1, \ldots, m, \) and \(Ax = b \) then \(x \) is called a feasible point
- The minimum of \(f(x) \) over all feasible points \(x \in D \) is called the optimal value, written \(f^* \)
- If \(x \) is feasible and \(f(x) = f^* \), then \(x \) os called optimal, solution or minimizer
- If \(x \) is feasible and \(f(x) \leq f^* + \epsilon \), then \(x \) is called \(\epsilon \)-suboptimal
- If \(x \) is feasible and \(g_i(x) = 0 \), then we say \(g_i \) is active at \(x \)
- Convex minimization can be reposed as concave maximization. (3.1) is equivalent to

\[
\begin{align*}
\text{maximize} & \quad -f(x) \\
\text{subject to} & \quad g_i(x) \leq 0, \ i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

We call both convex optimization problems.
3.1.1 Solution Set

Let \(X_{\text{opt}} \) be the set of all solutions of a given convex problems, written

\[
X_{\text{opt}} = \arg\min_{x \in D} f(x)
\]

subject to \(g_i(x) \leq 0, \ i = 1, \ldots, m \)

\(Ax = b \)

Lemma 3.1 \(X_{\text{opt}} \) is a convex set

Proof: Using definitions. If \(x, y \in X_{\text{opt}} \), then for \(0 \leq t \leq 1 \),

- \(g_i(tx + (1-t)y) \leq tg_i(x) + (1-t)g_i(y) \leq 0 \)
- \(A(tx + (1-t)y) = tAx + (1-t)Ay = b \)
- \(f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) = f^* \)

It follows that \(tx + (1-t)y \) is also a solution. \(\blacksquare \)

Lemma 3.2 If \(f \) is strictly convex, then the solution is unique, i.e., \(X_{\text{opt}} \) contains only one element.

3.1.2 Example: lasso

Given \(y \in \mathbb{R}^n, X \in \mathbb{R}^{n \times p} \), consider the lasso problem:

\[
\min_{\beta \in \mathbb{R}^p} \| y - X\beta \|_2^2
\]

subject to \(\|\beta\|_1 \leq s \)

Is this convex? What is the criterion function? The inequality and equality constraints? Feasible set? Is the solution unique, when:

- \(n \geq p \) and \(X \) has full column rank?
- \(n \leq p \) (high-dimensional case)?

How do our answers change if we changed criterion to Huber loss:

\[
\sum_{i=1}^n \rho(y_i - x_i^T\beta), \quad \rho \begin{cases} \frac{1}{2}z^2, & |z| \leq \delta \\ \delta |z| - \frac{1}{2}\delta^2, & \text{otherwise} \end{cases}
\]

3.1.3 Example: support vector machines

Given \(y \in \{-1, 1\}^n, X \in \mathbb{R}^{n \times p} \) with rows \(x_1, \ldots, x_n \), consider the support vector machine or SVM problem:

\[
\min_{\beta,\beta_0,\xi} \frac{1}{2}\|\beta\|_2^2 + C \sum_{i=0}^n \xi_i
\]

subject to \(\xi_i \geq 0, \ i = 1, \ldots, n \)

\(y_i(x_i^T\beta + \beta_0) \geq 1 - \xi_i, \ i = 1, \ldots, n \)
Is this convex? What is the criterion, constraints, feasible set? Is the solution \((\beta, \beta_0, \xi)\) unique? What if we changed the criterion to
\[
\frac{1}{2} \|\beta\|_2^2 + \frac{1}{2} \beta_0^2 + C \sum_{i=0}^{n} \xi_i^{1.01}
\]
For original criterion, what about \(\beta\) component, at the solution?

3.1.4 Local Minima are Global Minima

It turns out that for convex optimization problems, any local solution is also globally optimal. Formally, we are saying that whenever \(f\) is a convex function, if there exists an \(R > 0\) such that \(f(x) \leq f(y)\) whenever \(||x - y||_2 \leq R\) then \(f(x) \leq f(y)\) for all \(y\).

3.1.5 Rewriting Constraints

There are multiple ways to write down an optimization problem. Previously we wrote them as
\[
\begin{array}{ll}
\text{minimize} & f(x) \\
\text{subject to} & g_i(x) \leq 0, \ i = 1, \ldots, m \\
& Ax = b
\end{array}
\] (3.2)
however this is equivalent to writing
\[
\min_x f(x) \text{ subject to } x \in C
\] (3.3)
where \(C = \{x : g_i(x) \leq 0, \ i = 1, \ldots, m, Ax = b\}\) is the feasible set. Another way of writing the same problem is
\[
\min_x f(x) + I_C(x)
\] (3.4)
where \(I_C\) is the indicator of \(C\).

3.1.6 Partial Optimization

We have previously seen that if a function \(f(x, y)\) is convex in both arguments and if \(C\) is a convex set, then the function \(g(x) = \min_{y \in C} f(x, y)\) is also convex in \(x\). This allows us to partially optimize a convex problem and still retain convexity guarantees. For example
\[
\begin{array}{ll}
\text{minimize} & f(x_1, x_2) \\
\text{subject to} & g_1(x_1) \leq 0 \\
& g_2(x_2) \leq 0
\end{array}
\] (3.5)
is equivalent to
\[
\begin{array}{ll}
\text{minimize} & \hat{f}(x_1) \\
\text{subject to} & g_1(x_1) \leq 0
\end{array}
\] (3.6)
where \(\hat{f}(x_1) = \min\{f(x_1, x_2) : g(x_2) \leq 0\}\).
3.1.7 Hierarchy of Convex Programs

It turns out that there are a bunch of interesting sub-classes of convex problems. Some of these include linear programs, quadratic programs, semidefinite programs and cone programs. These programs can be related as follows: Linear Programs \subset Quadratic Programs \subset Semidefinite Programs \subset Conic Programs \subset Convex Programs.

3.1.8 Linear Programs

A linear program is a special type of convex program. Any program that can be formulated as

$$\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Dx \leq d \\
& \quad Ax = b
\end{align*}$$

(3.7)

is a linear program. Some methods for solving linear programs are the simplex algorithm and interior point methods.

3.1.9 Geometric Programming

A monomial is a function $f : \mathbb{R}_+^n \to \mathbb{R}$ of the form:

$$f(x) = \gamma x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$

for $\gamma > 0$, $a_1, a_2, \ldots, a_n \in \mathbb{R}$.

A posynomial is a sum of monomials,

$$f(x) = \sum_{k=1}^{p} \gamma_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$$

A geometric program is of the form:

$$\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \leq 1, i = 1, \ldots, m \\
& \quad h_j(x) = 1, j = 1, \ldots, r
\end{align*}$$

(3.8)

where $f, g_i, i = 1, \ldots, m$ are posynomials and $h_j, j = 1, \ldots, r$ are monomials. This is non-convex.

Given $f(x) = \gamma x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$, let $y_i = \log x_i$ and rewrite this as:

$$\gamma (e^{y_1})^{a_1} (e^{y_2})^{a_2} \cdots (e^{y_n})^{a_n} = e^{a^T y + b}$$

for $b = \log \gamma$.

Also, a posynomial can be written as $\sum_{k=1}^{p} e^{a_k^T y + b_k}$. With this variable substitution, and after taking logs, a
geometric program is equivalent to:

\[
\begin{align*}
\text{minimize} & \quad \log \left(\sum_{k=1}^{p_0} e^{a_{0_k}^T y + b_{0_k}} \right) \\
\text{subject to} & \quad \log \left(\sum_{k=1}^{p_1} e^{a_{i_k}^T y + b_{i_k}} \right) \leq 0, i = 1, \ldots, m \\
& \quad c_j^T y + d_j = 0, j = 1, \ldots, r
\end{align*}
\] (3.9)

This is convex (recalling the convexity of softmax functions).

3.1.10 Eliminating Equality Constraints

Important special case of change of variables: eliminating equality constraints. Given the problem:

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \leq 0, i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\] (3.10)

we can always express any feasible point as \(x = My + x_0 \), where \(Ax_0 = b \) and \(\text{col}(M) = \text{null}(A) \). Hence the above is equivalent to:

\[
\begin{align*}
\text{minimize} & \quad f(My + x_0) \\
\text{subject to} & \quad g_i(My + x_0) \leq 0, i = 1, \ldots, m
\end{align*}
\] (3.11)

3.1.11 Introducing Slack Variables

Essentially opposite to eliminating equality constraints: introducing slack variables. Given the problem:

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \leq 0, i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\] (3.12)

we can transform the inequality constraints via:

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad s_i \geq 0, i = 1, \ldots, m \\
& \quad g_i(x) + s_i = 0, i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\] (3.13)