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Abstract

We develop a general framework for distribution-free predictive inference in regres-
sion, using conformal inference. The proposed methodology allows for the construction
of a prediction band for the response variable using any estimator of the regression
function. The resulting prediction band preserves the consistency properties of the orig-
inal estimator under standard assumptions, while guaranteeing finite-sample marginal
coverage even when these assumptions do not hold. We analyze and compare, both
empirically and theoretically, the two major variants of our conformal framework: full
conformal inference and split conformal inference, along with a related jackknife method.
These methods offer different tradeoffs between statistical accuracy (length of resulting
prediction intervals) and computational efficiency. As extensions, we develop a method
for constructing valid in-sample prediction intervals called rank-one-out conformal
inference, which has essentially the same computational efficiency as split conformal in-
ference. We also describe an extension of our procedures for producing prediction bands
with locally varying length, in order to adapt to heteroskedascity in the data. Finally,
we propose a model-free notion of variable importance, called leave-one-covariate-out or
LOCO inference. Accompanying this paper is an R package conformalInference that
implements all of the proposals we have introduced. In the spirit of reproducibility, all
of our empirical results can also be easily (re)generated using this package.
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1 Introduction

Consider i.i.d. regression data
Z1, . . . , Zn ∼ P,

where each Zi = (Xi, Yi) is a random variable in Rd×R, comprised of a response variable Yi
and a d-dimensional vector of features (or predictors, or covariates) Xi = (Xi(1), . . . , Xi(d)).
The feature dimension d may be large relative to the sample size n (in an asymptotic model,
d is allowed to increase with n). Let

µ(x) = E(Y |X = x), x ∈ Rd

denote the regression function. We are interested in predicting a new response Yn+1 from
a new feature value Xn+1, with no assumptions on µ and P . Formally, given a nominal
miscoverage level α ∈ (0, 1), we seek to constructing a prediction band C ⊆ Rd × R based
on Z1, . . . , Zn with the property that

P
(
Yn+1 ∈ C(Xn+1)

)
≥ 1− α, (1)

where the probability is taken over the n + 1 i.i.d. draws Z1, . . . , Zn, Zn+1 ∼ P , and for
a point x ∈ Rd we denote C(x) = {y ∈ R : (x, y) ∈ C}. The main goal of this paper is
to construct prediction bands as in (1) that have finite-sample (nonasymptotic) validity,
without assumptions on P . A second goal is to construct model-free inferential statements
about the importance of each covariate in the prediction model for Yn+1 given Xn+1.

Our leading example is high-dimensional regression, where d � n and a linear function
is used to approximate µ (but the linear model is not necessarily assumed to be correct).
Common approaches in this setting include greedy methods like forward stepwise regression,
and `1-based methods like the lasso. There is an enormous amount of work dedicated to
studying various properties of these methods, but to our knowledge, there is very little
work on prediction sets. Our framework provides proper prediction sets for these methods,
and for essentially any high-dimensional regression method. It also covers classical linear
regression and nonparametric regression techniques. The basis of our framework is conformal
prediction, a method invented by Vovk et al. (2005).

1.1 Related Work

Conformal inference. The conformal prediction framework was originally proposed as a
sequential approach for forming prediction intervals, by Vovk et al. (2005, 2009). The basic
idea is simple. Keeping the regression setting introduced above and given a new independent
draw (Xn+1, Yn+1) from P , in order to decide if a value y is to be included in C(Xn+1),
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we consider testing the null hypothesis that Yn+1 = y and construct a valid p-value based
on the empirical quantiles of the augmented sample (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1)
with Yn+1 = y (see Section 2 below for details). The data augmentation step makes the
procedure immune to overfitting, so that the resulting prediction band always has valid
average coverage as in (1). Conformal inference has also been studied as a batch (rather than
sequential) method, in various settings. For example, Burnaev & Vovk (2014) considered
low-dimensional least squares and ridge regression models. Lei et al. (2013) used conformal
prediction to construct statistically near-optimal tolerance regions. Lei & Wasserman (2014)
extended this result to low-dimensional nonparametric regression. Other extensions, such
as classification and clustering, are explored in Lei (2014); Lei et al. (2015).

There is very little work on prediction sets in high-dimensional regression. Hebiri (2010)
described an approximation of the conformalized lasso estimator. This approximation leads
to a big speedup over the original conformal prediction method build on top of the lasso, but
loses the key appeal of conformal inference in the first place—it fails to offer finite-sample
coverage. Recently Steinberger & Leeb (2016) analyzed a jackknife prediction method in
the high-dimensional setting, extending results in low-dimensional regression due to Butler
& Rothman (1980). However, this jackknife approach is only guaranteed to have asymptotic
validity when the base estimator (of the regression parameters) satisfies strong asymptotic
mean squared error and stability properties. This is further discussed in Section 2.4. In our
view, a simple, computationally efficient, and yet powerful method that seems to have been
overlooked is split conformal inference (see Lei et al. (2015); Papadopoulos et al. (2002),
or Section 2.2). When combined with, for example, the lasso estimator, the total cost of
forming split conformal prediction intervals is dominated by the cost of fitting the lasso, and
the method always provides finite-sample coverage, in any setting—regardless of whether or
not the lasso estimator is consistent.

High-dimensional inference. A very recent and exciting research thread in the field
of high-dimensional inference is concerned with the construction of confidence intervals
for (fixed) population-based targets, or (random) post-selection targets. In the first class,
population-based approaches, the linear model is assumed to be true and the focus is on
providing confidence intervals for the coefficients in this model (see, e.g., Belloni et al.
(2012); Buhlmann (2013); Zhang & Zhang (2014); van de Geer et al. (2014); Javanmard &
Montanari (2014)). In the second class, post-selection approaches, the focus is on covering
coefficients in the best linear approximation to µ given a subset of selected covariates (see,
e.g., Berk et al. (2013); Lee et al. (2016); Tibshirani et al. (2016); Fithian et al. (2014);
Tian & Taylor (2015a,b)). These inferential approaches are all interesting, and they serve
different purposes (i.e., the purposes behind the two classes are different). One common
thread, however, is that all of these methods rely on nontrivial assumptions—even if the
linear model need not be assumed true, conditions are typically placed (to a varying degree)
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on the quality of the regression estimator under consideration, the error distribution, the
knowledge or estimability of error variance, the homoskedasticity of errors, etc. In contrast,
we describe two prediction-based methods for variable importance in Section 6, which do
not rely on such conditions at all.

1.2 Summary and Outline

In this paper, we make several methodological and theoretical contributions to conformal
inference in regression.

• We provide a general introduction to conformal inference (Section 2), a generic tool
to construct distribution-free, finite-sample prediction sets. We specifically consider
the context of high-dimensional regression, arguably the scenario where conformal
inference is most useful, due to the strong assumptions required by existing inference
methods.

• We provide new theoretical insights for conformal inference: accuracy guarantees
for its finite-sample coverage (Theorems 2.1, 2.2), and distribution-free asymptotic,
in-sample coverage guarantees (Theorems 2.3, 5.1).

• We also show that versions of conformal inference approximate certain oracle methods
(Section 3). In doing so, we provide near-optimal bounds on the length of the prediction
interval under standard assumptions. Specifically, we show the following.

1. If the base estimator is stable under resampling and small perturbations, then
the conformal prediction bands are close to an oracle band that depends on the
estimator (Theorems 3.2, 3.3).

2. If the base estimator is consistent, then the conformal prediction bands are close
to a super oracle band which has the shortest length among all valid prediction
bands (Theorems 3.4, 3.5).

• We conduct extensive simulation studies (Section 4) to assess the two major variants
of conformal inference: the full and split conformal methods, along with a related
jackknife method. These simulations can be reproduced using our accompanying R
package conformalInference (https://github.com/ryantibs/conformal), which
provides an implementation of all the methods studied in this paper (including the
extensions and variable importance measures described below).

• We develop two extensions of conformal inference (Section 5), allowing for more
informative and flexible inference: prediction intervals with in-sample coverage, and
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prediction intervals with varying local length.

• We propose two new, model-free, prediction-based approaches for inferring variable
importance based on leave-one-covariate-out or LOCO inference (Section 6).

2 Conformal Inference

The basic idea behind the theory of conformal prediction is related to a simple result about
sample quantiles. Let U1, . . . , Un be i.i.d. samples of a scalar random variable (in fact, the
arguments that follow hold with the i.i.d. assumption replaced by the weaker assumption of
exchangeability). For a given miscoverage level α ∈ (0, 1), and another i.i.d. sample Un+1,
note that

P(Un+1 ≤ q̂1−α) ≥ 1− α, (2)

where we define the sample quantile q̂1−α based on U1, . . . , Un by

q̂1−α =

{
U(d(n+1)(1−α)e) if d(n+ 1)(1− α)e ≤ n
∞ otherwise,

and U(1) ≤ . . . ≤ U(n) denote the order statistics of U1, . . . , Un. The finite-sample coverage
property in (2) is easy to verify: by exchangeability, the rank of Un+1 among U1, . . . , Un, Un+1

is uniformly distributed over the set {1, . . . , n+ 1}.

In our regression problem, where we observe i.i.d. samples Zi = (Xi, Yi) ∈ Rd × R ∼ P ,
i = 1, . . . , n, we might consider the following naive method for constructing a prediction
interval for Yn+1 at the new feature value Xn+1, where (Xn+1, Yn+1) is an independent draw
from P . Following the idea described above, we can form the prediction interval defined
by

Cnaive(Xn+1) =
[
µ̂(Xn+1)− F̂−1

n (1− α), µ̂(Xn+1) + F̂−1
n (1− α)

]
, (3)

where µ̂ is an estimator of the underlying regression function and F̂n the empirical distribu-
tion of the fitted residuals |Yi − µ̂(Xi)|, i = 1, . . . , n, and F̂−1

n (1− α) the (1− α)-quantile
of F̂n. This is approximately valid for large samples, provided that the estimated regression
function µ̂ is accurate (i.e., enough for the estimated (1−α)-quantile F̂−1

n (1− α) of the fitted
residual distribution to be close the (1−α)-quantile of the population residuals |Yi−µ(Xi)|,
i = 1, . . . , n). Guaranteeing such an accuracy for µ̂ generally requires appropriate regularity
conditions, both on the underlying data distribution P , and on the estimator µ̂ itself, such
as a correctly specified model and/or an appropriate choice of tuning parameter.
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2.1 Conformal Prediction Sets

In general, the naive method (3) can grossly undercover since the fitted residual distribution
can often be biased downwards. Conformal prediction intervals (Vovk et al., 2005, 2009; Lei
et al., 2013; Lei & Wasserman, 2014) overcome the deficiencies of the naive intervals, and,
somewhat remarkably, are guaranteed to deliver proper finite-sample coverage without any
assumptions on P or µ̂ (except that µ̂ act a symmetric function of the data points).

Consider the following strategy: for each value y ∈ R, we construct an augmented regression
estimator µ̂y, which is trained on the augmented data set Z1, . . . , Zn, (Xn+1, y). Now we
define

Ry,i = |Yi − µ̂y(Xi)|, i = 1, . . . , n and Ry,n+1 = |y − µ̂y(Xn+1)|, (4)

and we rank Ry,n+1 among the remaining fitted residuals Ry,1, . . . , Ry,n, computing

π(y) =
1

n+ 1

n+1∑
i=1

1{Ry,i ≤ Ry,n+1} =
1

n+ 1
+

1

n+ 1

n∑
i=1

1{Ry,i ≤ Ry,n+1}, (5)

the proportion of points in the augmented sample whose fitted residual is smaller than
the last one, Ry,n+1. Here 1{·} is the indicator function. By exchangeability of the data
points and the symmetry of µ̂, when evaluated at y = Yn+1, we see that the constructed
statistic π(Yn+1) is uniformly distributed over the set {1/(n+ 1), 2/(n+ 1), . . . , 1}, which
implies

P
(

(n+ 1)π(Yn+1) ≤ d(1− α)(n+ 1)e
)
≥ 1− α. (6)

We may interpret the above display as saying that 1−π(Yn+1) provides a valid (conservative)
p-value for testing the null hypothesis that H0 : Yn+1 = y.

By inverting such a test over all possibly values of y ∈ R, the property (6) immediately
leads to our conformal prediction interval at Xn+1, namely

Cconf(Xn+1) =
{
y ∈ R : (n+ 1)π(y) ≤ d(1− α)(n+ 1)e

}
. (7)

The steps in (4), (5), (7) must be repeated each time we want to produce a prediction
interval (at a new feature value). In practice, we must also restrict our attention in (7) to a
discrete grid of trial values y. For completeness, this is summarized in Algorithm 1.

By construction, the conformal prediction interval in (7) has valid finite-sample coverage;
this interval is also accurate, meaning that it does not substantially over-cover. These are
summarized in the following theorem, whose proof is in Appendix A.1.

Theorem 2.1. If (Xi, Yi), i = 1, . . . , n are i.i.d., then for an new i.i.d. pair (Xn+1, Yn+1),

P
(
Yn+1 ∈ Cconf(Xn+1)

)
≥ 1− α,
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Algorithm 1 Conformal Prediction

Input: Data (Xi, Yi), i = 1, . . . , n, miscoverage level α ∈ (0, 1), regression algorithm A,
points Xnew = {Xn+1, Xn+2, . . .} at which to construct prediction intervals, and values
Ytrial = {y1, y2, . . .} to act as trial values
Output: Predictions intervals, at each element of Xnew

for x ∈ Xnew do
for y ∈ Ytrial do

µ̂y = A
(
{(X1, Y1), . . . , (Xn, Yn), (x, y)}

)
Ry,i = |Yi − µ̂y(Xi)|, i = 1, . . . , n, and Ry,n+1 = |y − µ̂y(x)|
π(y) = (1 +

∑n
i=1 1{Ry,i ≤ Ry,n+1)}/(n+ 1)

end for
Cconf(x) = {y ∈ Ytrial : (n+ 1)π(y) ≤ d(1− α)(n+ 1)e}

end for
Return Cconf(x), for each x ∈ Xnew

for the conformal prediction band Cconf constructed in (7) (i.e., Algorithm 1). If we assume
additionally that for all y ∈ R, the fitted absolute residuals Ry,i = |Yi − µ̂y(Xi)|, i = 1, . . . , n
have a continuous joint distribution, then it also holds that

P
(
Yn+1 ∈ Cconf(Xn+1)

)
≤ 1− α+

1

n+ 1
.

Remark 2.1. The first part of the theorem, on the finite-sample validity of conformal
intervals in regression, is a standard property of all conformal inference procedures and is
due to Vovk. The second part—on the anti-conservativeness of conformal intervals—is new.
For the second part only, we require that the residuals have a continuous distribution, which
is quite a weak assumption, and is used to avoid ties when ranking the (absolute) residuals.
By using a random tie-breaking rule, this assumption could be avoided entirely. In practice,
the coverage of conformal intervals is highly concentrated around 1− α, as confirmed by the
experiments in Section 4. Other than the continuity assumption, no assumptions are needed
in Theorem 2.1 about the the regression estimator µ̂ or the data generating distributions
P . This is a somewhat remarkable and unique property of conformal inference, and is not
true for the jackknife method, as discussed in Section 2.4 (or, say, for the methods used to
produce confidence intervals for the coefficients in high-dimensional linear model).

Remark 2.2. Generally speaking, as we improve our estimator µ̂ of the underlying regres-
sion function µ, the resulting conformal prediction interval decreases in length. Intuitively,
this happens because a more accurate µ̂ leads to smaller residuals, and conformal intervals
are essentially defined by the quantiles of the (augmented) residual distribution. Section 4
gives empirical examples that support this intuition.

Remark 2.3. The probability statements in Theorem 2.1 are taken over the i.i.d. samples

8



(Xi, Yi), i = 1, . . . , n, n+ 1, and thus they assert average (or marginal) coverage guarantees.
This should not be confused with P(Yn+1 ∈ C(x) |Xn+1 = x) ≥ 1− α for all x ∈ Rd, i.e.,
conditional coverage, which is a much stronger property and cannot be achieved by finite-
length prediction intervals without regularity and consistency assumptions on the model and
the estimator (Lei & Wasserman, 2014). Conditional coverage does hold asymptotically
under certain conditions; see Theorem 3.5 in Section 3.

Remark 2.4. Theorem 2.1 still holds if we replace each Ry,i by

f
(
(X1, Y1), . . . , (Xi−1, Yi−1), (Xi+1, Yi+1), . . . , (Xn+1, y); (Xi, Yi)

)
, (8)

where f is any function that is symmetric in its first n arguments. Such a function f is
called the conformity score, in the context of conformal inference. For example, the value in
(8) can be an estimated joint density function evaluated at (Xi, Yi), or conditional density
function at (Xi, Yi) (the latter is equivalent to the absolute residual Ry,i when Y − E(Y |X)
is independent of X, and has a symmetric distribution with decreasing density on [0,∞).)
We will discuss a special locally-weighted conformity score in Section 5.2.

Remark 2.5. We generally use the term “distribution-free” to refer to the finite-sample
coverage property, assuming only i.i.d. data. Although conformal prediction provides valid
coverage for all distributions and all symmetric estimators under only the i.i.d. assumption,
the length of the conformal interval depends on the quality of the initial estimator, and in
Section 3 we provide theoretical insights on this relationship.

2.2 Split Conformal Prediction Sets

The original conformal prediction method studied in the last subsection is computationally
intensive. For any Xn+1 and y, in order to tell if y is to be included in Cconf(Xn+1), we
retrain the model on the augmented data set (which includes the new point (Xn+1, y)),
and recompute and reorder the absolute residuals. In some applications, where Xn+1

is not necessarily observed, prediction intervals are build by evaluating 1{y ∈ Cconf(x)}
over all pairs of (x, y) on a fine grid, as in Algorithm 1. In the special cases of kernel
density estimation and kernel regression, simple and accurate approximations to the full
conformal prediction sets are described in Lei et al. (2013); Lei & Wasserman (2014). In
low-dimensional linear regression, the Sherman-Morrison updating scheme can be used to
reduce the complexity of the full conformal method, by saving on the cost of solving a
full linear system each time the query point (x, y) is changed. But in high-dimensional
regression, where we might use relatively sophisticated (nonlinear) estimators such as the
lasso, performing efficient full conformal inference is still an open problem.

Fortunately, there is an alternative approach, which we call split conformal prediction, that
is completely general, and whose computational cost is a small fraction of the full conformal
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Algorithm 2 Split Conformal Prediction

Input: Data (Xi, Yi), i = 1, . . . , n, miscoverage level α ∈ (0, 1), regression algorithm A
Output: Prediction band, over x ∈ Rd
Randomly split {1, . . . , n} into two equal-sized subsets I1, I2

µ̂ = A
(
{(Xi, Yi) : i ∈ I1}

)
Ri = |Yi − µ̂(Xi)|, i ∈ I2

d = the kth smallest value in {Ri : i ∈ I2}, where k = d(n/2 + 1)(1− α)e
Return Csplit(x) = [µ̂(x)− d, µ̂(x) + d], for all x ∈ Rd

method. The split conformal method separates the fitting and ranking steps using sample
splitting, and its computational cost is simply that of the fitting step. Similar ideas have
appeared in the online prediction literature known under the name inductive conformal
inference (Papadopoulos et al., 2002; Vovk et al., 2005). The split conformal algorithm
summarized in Algorithm 2 is adapted from Lei et al. (2015). Its key coverage properties
are given in Theorem 2.2, proved in Appendix A.1. (Here, and henceforth when discussing
split conformal inference, we assume that the sample size n is even, for simplicity, as only
very minor changes are needed when n is odd.)

Theorem 2.2. If (Xi, Yi), i = 1, . . . , n are i.i.d., then for an new i.i.d. draw (Xn+1, Yn+1),

P
(
Yn+1 ∈ Csplit(Xn+1)

)
≥ 1− α,

for the split conformal prediction band Csplit constructed in Algorithm 2. Moreover, if we
assume additionally that the residuals Ri, i ∈ I2 have a continuous joint distribution, then

P
(
Yn+1 ∈ Csplit(Xn+1)

)
≤ 1− α+

2

n+ 2
.

In addition to being extremely efficient compared to the original conformal method, split
conformal inference can also hold an advantage in terms of memory requirements. For
example, if the regression procedure A (in the notation of Algorithm 2) involves variable
selection, like the lasso or forward stepwise regression, then we only need to store the
selected variables when we evaluate the fit at new points Xi, i ∈ I2, and compute residuals,
for the ranking step. This can be a big savings in memory when the original variable set is
very large, and the selected set is much smaller.

Split conformal prediction intervals also provide an approximate in-sample coverage guar-
antee, making them easier to illustrate and interpret using the given sample (Xi, Yi),
i = 1, . . . , n, without need to obtain future draws. This is described next.

Theorem 2.3. Under the conditions of Theorem 2.2, there is an absolute constant c > 0
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such that, for any ε > 0,

P

(∣∣∣∣ 2n∑
i∈I2

1{Yi ∈ Csplit(Xi)} − (1− α)

∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− cn2(ε− 4/n)2

+

)
.

Remark 2.6. Theorem 2.3 implies “half sample” in-sample coverage. It is straightforward
to extend this result to the whole sample, by constructing another split conformal prediction
band, but with the roles of I1, I2 reversed. This idea is further explored and extended in
Section 5.1, where we derive Theorem 2.3 as a corollary of a more general result. Also, for
a related result, see Corollary 1 of Vovk (2013).

Remark 2.7. Split conformal inference can also be implemented using an unbalanced split,
with |I1| = ρn and |I2| = (1− ρ)n for some ρ ∈ (0, 1) (modulo rounding issues). In some
situations, e.g., when the regression procedure is complex, it may be beneficial to choose
ρ > 0.5 so that the trained estimator µ̂ is more accurate. In this paper, we focus on ρ = 0.5
for simplicity, and do not pursue issues surrounding the choice of ρ.

2.3 Multiple Splits

Splitting improves dramatically on the speed of conformal inference, but introduces extra
randomness into the procedure. One way to reduce this extra randomness is to combine
inferences from several splits. Suppose that we split the training data N times, yielding
split conformal prediction intervals Csplit,1, . . . , Csplit,N where each interval is constructed
at level 1− α/N . Then, we define

C
(N)
split(x) =

N⋂
j=1

Csplit,j(x), over x ∈ Rd. (9)

It follows, using a simple Bonferroni-type argument, that the prediction band C
(N)
split has

marginal coverage level at least 1− α.

Multi-splitting as described above decreases the variability from splitting. But this may
come at a price: it is possible that the length of C

(N)
split grows with N , though this is not

immediately obvious. Replacing α by α/N certainly makes the individual split conformal
intervals larger. However, taking an intersection reduces the size of the final interval. Thus
there is a “Bonferroni-intersection tradeoff.”

The next result shows that, under rather general conditions as detailed in Section 3, the
Bonferroni effect dominates and we hence get larger intervals as N increases. Therefore, we
suggest using a single split. The proof is given in Appendix A.2.
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Theorem 2.4. Under Assumptions A0, A1, and A2 with ρn = o(n−1) (these are described
precisely in Section 3), if |Y − µ̃(X)| has continuous distribution, then with probability
tending to 1 as n→∞, C

(N)
split(X) is wider than Csplit(X).

Remark 2.8. Multiple splits have also been considered by other authors, e.g., Meinshausen
& Buhlmann (2010). However, the situation there is rather different, where the linear model
is assumed correct and inference is performed on the coefficients in this linear model.

2.4 Jackknife Prediction Intervals

Lying between the computational complexities of the full and split conformal methods is
jackknife prediction. This method uses the quantiles of leave-one-out residuals to define
prediction intervals, and is summarized in Algorithm 3.

An advantage of the jackknife method over the split conformal method is that it utilizes
more of the training data when constructing the absolute residuals, and subsequently,
the quantiles. This means that it can often produce intervals of shorter length. A clear
disadvantage, however, is that its prediction intervals are not guaranteed to have valid
coverage in finite samples. In fact, even asymptotically, its coverage properties do not hold
without requiring nontrivial conditions on the base estimator. We note that, by symmetry,
the jackknife method has the finite-sample in-sample coverage property

P
(
Yi ∈ Cjack(Xi)

)
≥ 1− α, for all i = 1, . . . , n.

But in terms of out-of-sample coverage (true predictive inference), its properties are much
more fragile. Butler & Rothman (1980) show that in a low-dimensional linear regression
setting, the jackknife method produces asymptotic valid intervals under regularity conditions
strong enough that they also imply consistency of the linear regression estimator. More
recently, Steinberger & Leeb (2016) establish asymptotic validity of the jackknife intervals in
a high-dimensional regression setting; they do not require consistency of the base estimator
µ̂ per say, but they do require a uniform asymptotic mean squared error bound (and an
asymptotic stability condition) on µ̂. The conformal method requires no such conditions.
Moreover, the analyses in Butler & Rothman (1980); Steinberger & Leeb (2016) assume a
standard linear model setup, where the regression function is itself a linear function of the
features, the features are independent of the errors, and the errors are homoskedastic; none
of these conditions are needed in order for the split conformal method (and full conformal
method) to have finite simple validity.
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Algorithm 3 Jackknife Prediction Band

Input: Data (Xi, Yi), i = 1, . . . , n, miscoverage level α ∈ (0, 1), regression algorithm A
Output: Prediction band, over x ∈ Rd
for i ∈ {1, . . . , n} do

µ̂(−i) = A
(
{(X`, Y`) : ` 6= i}

)
Ri = |Yi − µ̂(−i)(Xi)|

end for
d = the kth smallest value in {Ri : i ∈ {1, . . . , n}}, where k = dn(1− α)e
Return Cjack(x) = [µ̂(x)− d, µ̂(x) + d], for all x ∈ Rd

3 Statistical Accuracy

Conformal inference offers reliable coverage under no assumptions other than i.i.d. data.
In this section, we investigate the statistical accuracy of conformal prediction intervals
by bounding the length of the resulting intervals C(X). Unlike coverage guarantee, such
statistical accuracy must be established under appropriate regularity conditions on both
the model and the fitting method. Our analysis starts from a very mild set of conditions,
and moves toward the standard assumptions typically made in high-dimensional regression,
where we show that conformal methods achieve near-optimal statistical efficiency.

We first collect some common assumptions and notation that will be used throughout this
section. Further assumptions will be stated when they are needed.

Assumption A0 (i.i.d. data). We observe i.i.d. data (Xi, Yi), i = 1, . . . , n from a
common distribution P on Rd × R, with mean function µ(x) = E(Y |X = x), x ∈ Rd.

Assumption A0 is our most basic assumption used throughout the paper.

Assumption A1 (Independent and symmetric noise). For (X,Y ) ∼ P , the noise
variable ε = Y −µ(X) is independent of X, and the density function of ε is symmetric
about 0 and nonincreasing on [0,∞).

Assumption A1 is weaker than the assumptions usually made in the regression literature.
In particular, we do not even require ε to have a finite first moment. The symmetry and
monotonicity conditions are for convenience, and can be dropped by considering appropriate
quantiles or density level sets of ε. The continuity of the distribution of ε also ensures that
with probability 1 the fitted residuals will all be distinct, making inversion of empirical
distribution function easily tractable. We should note that, our other assumptions, such
as the stability or consistency of the base estimator (given below), may implicitly impose
some further moment conditions on ε; thus when these further assumptions are in place,
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our above assumption on ε may be comparable to the standard ones.

Two oracle bands. To quantify the accuracy of the prediction bands constructed with
the full and split conformal methods, we will compare their lengths to the length of the
idealized prediction bands obtained by two oracles: the “super oracle” and a regular oracle.
The super oracle has complete knowledge of the regression function µ(x) and the error
distribution, while a regular oracle has knowledge only of the residual distribution, i.e., of
the distribution of Y − µ̂n(X), where (X,Y ) ∼ P is independent of the given data (Xi, Yi),
i = 1, . . . , n used to compute the regression estimator µ̂n (and our notation for the estimator
and related quantities in this section emphasizes the sample size n).

Assumptions A0 and A1 imply that the super oracle prediction band is

C∗s (x) = [µ(x)− qα, µ(x) + qα], where qα is the α upper quantile of L(|ε|).

The band C∗s (x) is optimal in the following sense: (i) it is has valid conditional coverage:
P(Y ∈ C(x) |X = x) ≥ 1−α, (ii) it has the shortest length among all bands with conditional
coverage, and (iii) it has the shortest average length among all bands with marginal coverage
(Lei & Wasserman, 2014).

With a base fitting algorithm An and a sample of size n, we can mimic the super oracle by
substituting µ with µ̂n. In order to have valid prediction, the band needs to accommodate
randomness of µ̂n and the new independent sample (X,Y ). Thus it is natural to consider
the oracle

C∗o (x) = [µ̂n(x)−qn,α, µ̂n(x)+qn,α], where qn,α is the α upper quantile of L(|Y − µ̂n(X)|).

We note that the definition of qn,α is unconditional, so the randomness is regarding the
(n+ 1) pairs (X1, Y1), . . . , (Xn, Yn), (X,Y ). The band C∗o (x) is still impractical because the
distribution of |Y − µ̂n(X)| is unknown but its quantiles can be estimated. Unlike the super
oracle band, in general the oracle band only offers marginal coverage: P(Y ∈ C∗o (X)) ≥ 1−α,
over the randomness of the (n+ 1) pairs.

Our main theoretical results in this section can be summarized as follows.

1. If the base estimator is consistent, then the two oracle bands have similar lengths
(Section 3.1).

2. If the base estimator is stable under resampling and small perturbations, then the
conformal prediction bands are close to the oracle band (Section 3.2).

3. If the base estimator is consistent, then the conformal prediction bands are close to
the super oracle (Section 3.3).

14



The proofs for these results are deferred to Appendix A.2.

3.1 Comparing the Oracles

Intuitively, if µ̂n is close to µ, then the two oracle bands should be close. Denote by

∆n(x) = µ̂n(x)− µ(x)

the estimation error. We now have the following result.

Theorem 3.1 (Comparing the oracle bands). Under Assumptions A0, A1, let F, f be the
distribution and density functions of |ε|. Assume further that f has continuous derivative
that is uniformly bounded by M > 0. Let Fn, fn be the distribution and density functions of
|Y − µ̂n(X)|. Then we have

sup
t>0
|Fn(t)− F (t)| ≤ (M/2)E∆2

n(X), (10)

where the expectation is taken over the randomness of µ̂n and X.

Moreover, if f is lower bounded by r > 0 on (qα − η, qα + η) for some η > (M/2r)E∆2
n(X),

then
|qn,α − qα| ≤ (M/2r)E∆2

n(X). (11)

In the definition of the oracle bands, the width (i.e., the length, we will use these two terms
interchangeably) is 2qα for the super oracle and 2qn,α for the oracle. Theorem 3.1 indicates
that the oracle bands have similar width, with a difference proportional to E∆2

n(X). It is
worth mentioning that we do not even require the estimate µ̂n to be consistent. Instead,
Theorem 3.1 applies whenever E∆2

n(X) is smaller than some constant, as specified by the
triplet (M, r, η) in the theorem. Moreover, it is also worth noting that the estimation error
∆n(X) has only a second-order impact on the oracle prediction band. This is due to the
assumption that ε has symmetric density.

3.2 Oracle Approximation Under Stability Assumptions

Now we provide sufficient conditions under which the split conformal and full conformal
intervals approximate the regular oracle.

Case I: Split conformal. For the split conformal analysis, our added assumption is on
sampling stability.
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Assumption A2 (Sampling stability). For large enough n,

P(‖µ̂n − µ̃‖∞ ≥ ηn) ≤ ρn,

for some sequences satisfying ηn = o(1), ρn = o(1) as n→∞, and some function µ̃.

We do not need to assume that µ̃ is close to the true regression function µ. We only need
the estimator µ̂n to concentrate around µ̃. This is just a stability assumption rather than
consistency assumption. For example, this is satisfied in nonparametric regression under
over-smoothing. When µ̃ = µ, this becomes a sup-norm consistency assumption, and is
satisfied, for example, by lasso-type estimators under standard assumptions, fixed-dimension
ordinary least squares with bounded predictors, and standard nonparametric regression
estimators on a compact domain. Usually ηn has the form of c(log n/n)−r, and ρn is of
order n−c, for some fixed c > 0 (the choice of the constant c is arbitrary and will only
impact the constant term in front of ηn).

When the sampling stability fails to hold, conditioning on µ̂n, the residual Y − µ̂n(X) may
have a substantially different distribution than Fn, and the split conformal interval can be
substantially different from the oracle interval.

Remark 3.1. The sup-norm bound required in Assumption A2 can be weakened to an `p,X
norm bound with p > 0 where `p,X(g) = (EX |g(X)|p)1/p for any function g. The idea is
that when `p,X norm bound holds, by Markov’s inequality the `∞ norm bound holds (with
another vanishing sequence ηn) except on a small set whose probability is vanishing. Such a
small set will have negligible impact on the quantiles. An example of this argument is given
in the proof of Theorem 3.4.

Theorem 3.2 (Split conformal approximation of oracle). Fix α ∈ (0, 1), and let Cn,split

and νn,split denote the split conformal interval and its width. Under Assumptions A0, A1,
A2, assume further that f̃ , the density of |Y − µ̃(X)|, is lower bounded away from zero in
an open neighborhood of its α upper quantile. Then

νn,split − 2qn,α = OP(ρn + ηn + n−1/2).

Case II: Full conformal. Like the split conformal analysis, our analysis for the full con-
formal band to approximate the oracle also will require sampling stability as in Assumption
A2. But it will also require a perturb-one sensitivity condition.

Recall that for any candidate value y, we will fit the regression function with augmented
data, where the (n+ 1)st data point is (X, y). We denote this fitted regression function by
µ̂n,(X,y). Due to the arbitrariness of y, we must limit the range of y under consideration.
Here we restrict our attention to y ∈ Y; we can think of a typical case for Y as a compact
interval of fixed length.
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Assumption A3 (Perturb-one sensitivity). For large enough n,

P

(
sup
y∈Y
‖µ̂n − µ̂n,(X,y)‖∞ ≥ ηn

)
≤ ρn,

for some sequences satisfying ηn = o(1), ρn = o(1) as n→∞.

The perturb-one sensitivity condition requires that the fitted regression function does not
change much if we only perturb the y value of the last data entry. It is satisfied, for example,
by kernel and local polynomial regression with a large enough bandwidth, least squares
regression with a well-conditioned design, ridge regression, and even the lasso under certain
conditions (Thakurta & Smith, 2013).

For a similar reason as in Remark 3.1, we can weaken the `∞ norm requirement to an `p,X
norm bound for any p > 0.

Theorem 3.3 (Full conformal approximation of oracle). Under the same assumptions as
in Theorem 3.2, assume in addition that Y is supported on Y such that Assumption A3
holds. Fix α ∈ (0, 1), and let Cn,conf(X) and νn,conf(X) be the conformal prediction interval
and its width at X. Then

νn,conf(X)− 2qn,α = OP(ηn + ρn + n−1/2).

3.3 Super Oracle Approximation Under Consistency Assumptions

Combining the results in Sections 3.1 and 3.2, we immediately get νn,split − 2qα = oP(1) and
νn,conf − 2qα = oP(1) when E∆2

n(X) = o(1). In fact, when the estimator µ̂n is consistent,
we can further establish conditional coverage results for conformal prediction bands. That
is, they have not only near-optimal length, but also near-optimal location.

The only additional assumption we need here is consistency of µ̂n. A natural condition
would be E∆2

n(X) = o(1). Our analysis uses an even weaker assumption.

Assumption A4 (Consistency of base estimator). For n large enough,

P
(
EX
[
(µ̂n(X)− µ(X))2 | µ̂n

]
≥ ηn

)
≤ ρn,

for some sequences satisfying ηn = o(1), ρn = o(1) as n→∞.

It is easy to verify that Assumption A4 is implied by the condition E∆2
n(X) = o(1), using

Markov’s inequality. Many consistent estimators in the literature have this property, such
as the lasso under a sparse eigenvalue condition for the design (along with appropriate tail
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bounds on the distribution of X), and kernel and local polynomial regression on a compact
domain.

We will show that conformal bands are close to the super oracle, and hence have approxi-
mately correct asymptotic conditional coverage, which we formally define as follows.

Definition (Asymptotic conditional coverage). We say that a sequence Cn of (possibly)
random prediction bands has asymptotic conditional coverage at the level (1− α) if there
exists a sequence of (possibly) random sets Λn ⊆ Rd such that P(X ∈ Λn |Λn) = 1− oP(1)
and

inf
x∈Λn

∣∣∣P(Y ∈ Cn(x) |X = x)− (1− α)
∣∣∣ = oP(1).

Now we state our result for split conformal.

Theorem 3.4 (Split conformal approximation of super oracle). Under Assumptions A0,
A1, A4, assuming in addition that |Y − µ(X)| has density bounded away from zero in an
open neighborhood of its α upper quantile, the split conformal interval satisfies

L(Cn,split(X)4C∗s (X)) = oP(1),

where L(A) denotes the Lebesgue measure of a set A, and A4B the symmetric difference
between sets A,B. Thus, Cn,split has asymptotic conditional coverage at the level 1− α.

Remark 3.2. The proof of Theorem 3.4 can be modified to account fro the case when ηn
does not vanish; in this case we do not have consistency but the error will contain a term
involving ηn.

The super oracle approximation for the full conformal prediction band is similar, provided
that the perturb-one sensitivity condition holds.

Theorem 3.5 (Full conformal approximation of super oracle). Under the same conditions
as in Theorem 3.4, and in addition Assumption A3, we have

L(Cn,conf(X)4C∗s ) = oP(1),

and thus Cn,conf has asymptotic conditional coverage at the level 1− α.

3.4 A High-dimensional Sparse Regression Example

We consider a high-dimensional linear regression setting, to illustrate the general theory on
the width of conformal prediction bands under stability and consistency of the base estimator.
The focus will be finding conditions that imply (an appropriate subset of) Assumptions A1
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through A4. The width of the conformal prediction band for low-dimensional nonparametric
regression has already been studied in Lei & Wasserman (2014).

We assume that the data are i.i.d. replicates from the model Y = XTβ + ε, with ε being
independent of X with mean 0 and variance σ2. For convenience we will assume that the
supports of X and ε are [−1, 1]p and [−R,R], respectively, for a constant R > 0. Such a
boundedness condition is used for simplicity, and is only required for the strong versions of
the sampling stability condition (Assumption A2) and perturb-one sensitivity condition
(Assumption A4), which are stated under the sup-norm. Boundedness can be relaxed by
using appropriate tail conditions on X and ε, together with the weakened `p norm versions
of Assumptions A2 and A4.

Here β ∈ Rd is assumed to be a sparse vector with s� min{n, d} nonzero entries. We are
mainly interested in the high-dimensional setting where both n and d are large, but log d/n
is small. When we say “with high probability”, we mean with probability tending to 1 as
min{n, d} → ∞ and log d/n→ 0.

Let Σ be the covariance matrix of X. For J, J ′ ⊆ {1, . . . , d}, let ΣJJ ′ denote the submatrix
of Σ with corresponding rows in J and columns in J ′, and βJ denotes the subvector of θ
corresponding to components in J .

The base estimator we consider here is the lasso (Tibshirani, 1996), defined by

β̂n,lasso = argmin
β∈Rd

1

2n

n∑
i=1

(Yi −XT
i β)2 + λ‖β‖1,

where λ ≥ 0 is a tuning parameter.

Case I: Split conformal. For the split conformal method, sup-norm prediction consis-
tency has been widely studied in the literature. Here we follow the arguments in Bickel
et al. (2009) (see also Bunea et al. (2007)) and make the following assumptions:

• The support J of β has cardinality s < min{n, d}, and

• The covariance matrix Σ of X satisfies the restricted eigenvalue condition, for κ > 0:

min
v : ‖vJ‖2=1, ‖vJc‖1≤3‖vJ‖1

vTΣv ≥ κ2.
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Applying Theorem 7.2 of Bickel et al. (2009)1, for any constant c > 0, if λ = Cσ
√

log d/n
for some constant C > 0 large enough depending on c, we have, with probability at least
1− d−c and another constant C ′ > 0,

‖β̂n,lasso − β‖1 ≤ C ′κ2Rs
√

log d/n.

As a consequence, Assumptions A2 and A4 hold with µ̃(x) = xTβ, ηn = C ′κ2Rs
√

log d/n,
and ρn = d−c.

Case II: Full conformal. For the full conformal method, we also need to establish the
much stronger perturb-one sensitivity bound (Assumption A3). Let β̂n,lasso(X, y) denote
the lasso solution obtained using the augmented data (X1, Y1), . . . , (Xn, Yn), (X, y). To
this end, we invoke the model selection stability result in Thakurta & Smith (2013), and
specifically, we assume the following (which we note is enough to ensure support recovery
by the lasso estimator):

• There is a constant Φ ∈ (0, 1/2) such that the absolute values of all nonzero entries of
β are in [Φ, 1−Φ]. (The lower bound is necessary for support recovery and the upper
bound can be relaxed to any constant by scaling.)

• There is a constant δ ∈ (0, 1/4) such that ‖ΣJcJΣ−1
JJ sign(βJ)‖∞ ≤ 1/4− δ, where we

denote by sign(βJ) the vector of signs of each coordinate of βJ . (This is the strong
irrepresentability condition, again necessary for support recovery.)

• The active block of the covariance matrix ΣJJ has minimum eigenvalue Ψ > 0.

To further facilitate the presentation, we assume s, σ,R,Ψ,Φ are constants not changing
with n, d.

Under our boundedness assumptions on X and ε, note we can choose Y = [−s−R, s+R].
Using a standard union bound argument, we can verify that, with high probability, the
data (Xi, Yi), i = 1, . . . , n satisfy the conditions required in Theorem 8 of Thakurta &
Smith (2013). Thus for n, d large enough, with high probability, the supports of β̂n,lasso

and β̂n,lasso(X, y) both equal J . Denote by β̂J,LS the (oracle) least squares estimator on
the subset J of predictor variables, and by β̂J,ols(X, y) this least squares estimator but
using the augmented data. Standard arguments show that ‖β̂J,ols − βJ‖∞ = oP(

√
log d/n),

and ‖β̂J,ols − β̂J,ols(X, y)‖∞ = OP(s/n). Then both β̂J,ols and β̂J,ols(X, y) are close to βJ ,
with `∞ distance oP(

√
log d/n). Combining this with the lower bound condition on the

magnitude of the entries of βJ , and the KKT conditions for the lasso problem, we have

1The exact conditions there are slightly different. For example, the noise is assumed to be Gaussian and
the columns of the design matrix are normalized. But the proof essentially goes through in our present
setting, under small modifications.
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‖β̂J,lasso(X, y)− β̂J,ols(X, y)‖∞ ≤ OP(n1/2) +OP(λ) = OP(
√

log d/n). Therefore, Assump-
tions A3 and A4 hold for any ηn such that ηn

√
n/ log d→∞, and ρn = o(1).

4 Empirical Study

Now we examine empirical properties of the conformal prediction intervals under three
simulated data settings. Our empirical findings can be summarized as follows.

1. Conformal prediction bands have nearly exact (marginal) coverage, even when the
model is completely misspecified.

2. In high-dimensional problems, conformal inference often yields much smaller bands
than conventional methods.

3. The accuracy (length) of the conformal prediction band is closely related to the quality
of initial estimator, which in turn depends on the model and the tuning parameter.

In each setting, the samples (Xi, Yi), i = 1, . . . , n are generated in an i.i.d. fashion, by first
specifying µ(x) = E(Yi |Xi = x), then specifying a distribution for Xi = (Xi(1), . . . , Xi(d)),
and lastly specifying a distribution for εi = Yi − µ(Xi) (from which we can form Yi =
µ(Xi) + εi). These specifications are described below. We write N(µ, σ2) for the normal
distribution with mean µ and variance σ2, SN(µ, σ2, α) for the skewed normal with skewness
parameter α, t(k) for the t-distribution with k degrees of freedom, and Bern(p) for the
Bernoulli distribution with success probability p.

Throughout, we will consider the following three experimental setups.

Setting A (linear, classical): the mean µ(x) is linear in x; the features Xi(1), . . . , Xi(d)
are i.i.d. N(0, 1); and the error εi is N(0, 1), independent of the features.

Setting B (nonlinear, heavy-tailed): like Setting A, but where µ(x) is nonlinear in x, an
additive function of B-splines of x(1), . . . , x(d); and the error εi is t(2) (thus, without a
finite variance), independent of the features.

Setting C (linear, heteroskedastic, heavy-tailed, correlated features): the mean µ(x) is
linear in x; the features Xi(1), . . . , Xi(d) are first independently drawn from a mixture
distribution, with equal probability on the components N(0, 1), SN(0, 1, 5), Bern(0.5),
and then given autocorrelation by redefining in a sequential fashion each Xi(j) to be a
convex combination of its current value and Xi(j−1), . . . , Xi((j−3)∧1), for j = 1, . . . , d;
the error εi is t(2), with standard deviation 1 + 2|µ(Xi)|3/E(|µ(X)|3) (hence, clearly not
independent of the features).
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Setting A is a simple setup where classical methods are expected to perform well. Setting
B explores the performance when the mean is nonlinear and the errors are heavy-tailed.
Setting C provides a particularly difficult linear setting for estimation, with heavy-tailed,
heteroskedastic errors and highly correlated features. All simulation results in the following
subsections are averages over 50 repetitions. Additionally, all intervals are computed at the
90% nominal coverage level. The results that follow can be directly reproduced using the
code provided at https://github.com/ryantibs/conformal.

4.1 Comparisons to Parametric Intervals from Linear Regression

Here we compare the conformal prediction intervals based on the ordinary linear regression
estimator to the classical parametric prediction intervals for linear models. The classical
intervals are valid when the true mean is linear and the errors are both normal and
homoskedastic, or are asymptotically valid if the errors have finite variance. Recall that
the full and split conformal intervals are valid under essentially no assumptions, whereas
the jackknife method requires at least a uniform mean squared error bound on the linear
regression estimator in order to achieve asymptotic validity (Butler & Rothman, 1980;
Steinberger & Leeb, 2016). We empirically compare the classical and conformal intervals
across Settings A-C, in both low-dimensional (n = 100, d = 10) and high-dimensional
(n = 500, d = 490) problems.

In Settings A and C (where the mean is linear), the mean function was defined by choosing
s = 10 regression coefficients to be nonzero, assigning them values ±1 with equal probability,
and mulitplying them against the standardized predictors. In Setting B (where the mean is
nonlinear), it is defined by multiplying these coefficients against B-splines transforms of the
standardized predictors. Note that d < n in the present high-dimensional case, so that the
linear regression estimator and the corresponding intervals are well-defined.

In the low-dimensional problem, with a linear mean function and normal, homoskedastic
errors (Setting A, Table 1), all four methods give reasonable coverage. The parametric
intervals are shorter than the conformal intervals, as the parametric assumptions are satisfied
and d is small enough for the model to be estimated well. The full conformal interval is
shorter than the split conformal interval, but comes at a higher computational cost.

In the other two low-dimensional problems (Settings B and C, Table 1), the assumptions
supporting the classical prediction intervals break down. This drives the parametric intervals
to over-cover, thus yielding much wider intervals than those from the conformal methods.
Somewhat surprisingly (as the linear regression estimator in Settings B and C is far from
accurate), the jackknife intervals maintain reasonable coverage at a reasonable length. The
full conformal intervals continue to be somewhat shorter than the split conformal intervals,
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again at a computational cost. Note that the conformal intervals are also using a linear
regression estimate here, yet their coverage is still right around the nominal 90% level; the
coverage provided by the conformal approach is robust to the model misspecification.

In the high-dimensional problems (Table 2), the full conformal interval outperforms the
parametric interval in terms of both length and coverage across all settings, even in Setting
A where the true model is linear. This is due to poor accuracy of linear regression estimation
when d is large. The jackknife interval also struggles, again because the linear regression
estimate itself is so poor. The split conformal method must be omitted here, since linear
regression is not well-defined once the sample is split (n/2 = 250, d = 490).

Because of the problems that high dimensions pose for linear regression, we also explore
the use of ridge regression (Table 3). The parametric intervals here are derived in a similar
fashion to those for ordinary linear regression (Burnaev & Vovk, 2014). For all methods
we used ridge regression tuning parameter λ = 10, which gives nearly optimal prediction
bands in the ideal setting (Setting A). For the split conformal method, such a choice of
λ gives similar results to the cross-validated choice of λ. The results show that the ridge
penalty improves the performance of all methods, but that the conformal methods continue
to outperform the parametric one. Moreover, the split conformal method exhibits a clear
computational advantage compared to the full conformal method, with similar performance.
With such a dramatically reduced computation cost, we can easily combine split conformal
with computationally heavy estimators that involve cross-validation or bootstrap. The
(rough) link between prediction error and interval length will be further examined in the
next subsection.

4.2 Comparisons of Conformal Intervals Across Base Estimators

We explore the behavior of the conformal intervals across a variety of base estimators.
We simulate data from Settings A-C, in both low (n = 200, d = 20) and high (n = 200,
d = 2000) dimensions, and in each case we apply forward stepwise regression (Efroymson,
1960), the lasso (Tibshirani, 1996), the elastic net (Zou & Hastie, 2005), sparse additive
models (SPAM, Ravikumar et al., 2009), and random forests (Breiman, 2001).

In Settings A and C (where the mean is linear), the mean function was defined by choosing
s = 5 regression coefficients to be nonzero, assigning them values ±8 with equal probability,
and mulitplying them against the standardized predictors. In Setting B (where the mean is
nonlinear), it is defined by multiplying these coefficients against B-splines transforms of the
standardized predictors. To demonstrate the effect of sparsity, we add a Setting D with
high-dimensionality that mimics Setting A except that the number of nonzero coefficients is
s = 100. Figures 1 (low-dimensional), 2 (high-dimensional) and 6 (high-dimensional, linear,
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Setting A

Conformal Jackknife Split Parametric

Coverage 0.904 (0.005) 0.892 (0.005) 0.905 (0.008) 0.9 (0.006)

Length 3.529 (0.044) 3.399 (0.04) 3.836 (0.082) 3.477 (0.036)

Time 1.106 (0.004) 0.001 (0) 0 (0) 0.001 (0)

Setting B

Conformal Jackknife Split Parametric

Coverage 0.915 (0.005) 0.901 (0.006) 0.898 (0.006) 0.933 (0.007)

Length 6.594 (0.254) 6.266 (0.254) 7.384 (0.532) 8.714 (0.768)

Time 1.097 (0.002) 0.001 (0) 0.001 (0) 0.001 (0)

Setting C

Conformal Jackknife Split Parametric

Coverage 0.904 (0.004) 0.892 (0.005) 0.896 (0.008) 0.943 (0.005)

Length 20.606 (1.161) 19.231 (1.082) 24.882 (2.224) 33.9 (4.326)

Time 1.105 (0.002) 0.001 (0) 0.001 (0) 0 (0)

Table 1: Comparison of prediction intervals in low-dimensional problems with n = 100,
d = 10. All quantities have been averaged over 50 repetitions, and the standard errors are
in parantheses. The same is true in Tables 2 and 3.

nonsparse, deferred to Appendix B) show the results of these experiments.

Each method is applied over a range of tuning parameter choices. For the sake of defining
a common ground for comparisons, all values are plotted against the relative optimism,2

defined to be

(relative optimism) =
(test error)− (train error)

(test error)
.

The only exception is the random forest estimator, which gave stable errors over a variety of
tuning choices; hence it is represented by a single point in each plot (corresponding to 500
trees in the low-dimensional problems, and 1000 trees in the high-dimensional problems).
All curves in the figures represent an average over 50 repetitions, and error bars indicating
the standard errors. In all cases, we used the split conformal method for computational
efficiency.

In the low-dimensional problems (Figure 1), the best test errors are obtained by the linear
methods (lasso, elastic net, stepwise) in the linear Setting A, and by SPAM in the nonlinear

2 In challenging settings (e.g., Setting C), the relative optimism can be negative. This is not an error, but
occurs naturally for inflexible estimators and very difficult settings. This is unrelated to conformal inference
and to observations about the plot shapes.
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Setting A

Conformal Jackknife Parametric

Coverage 0.903 (0.013) 0.883 (0.018) 0.867 (0.018)

Length 8.053 (0.144) 26.144 (0.95) 24.223 (0.874)

Time 167.189 (0.316) 1.091 (0) 0.416 (0)

Setting B

Conformal Jackknife Parametric

Coverage 0.882 (0.015) 0.881 (0.016) 0.858 (0.019)

Length 53.544 (12.65) 75.983 (15.926) 69.309 (14.757)

Time 167.52 (0.019) 1.092 (0.001) 0.415 (0)

Setting C

Conformal Jackknife Parametric

Coverage 0.896 (0.013) 0.869 (0.017) 0.852 (0.019)

Length 227.519 (12.588) 277.658 (16.508) 259.352 (15.391)

Time 168.531 (0.03) 1.092 (0.002) 0.415 (0)

Table 2: Comparison of prediction intervals in high-dimensional problems with n = 500,
d = 490.

Setting A

Conformal Jackknife Split Parametric

Coverage 0.903 (0.004) 0.9 (0.005) 0.907 (0.005) 1 (0)

Length 3.348 (0.019) 3.325 (0.019) 3.38 (0.031) 23.837 (0.107)

Test error 1.009 (0.018) 1.009 (0.018) 1.009 (0.021) 1.009 (0.018)

Time 167.189 (0.316) 1.091 (0) 0.155 (0.001) 0.416 (0)

Setting B

Conformal Jackknife Split Parametric

Coverage 0.905 (0.006) 0.903 (0.004) 0.895 (0.006) 0.999 (0)

Length 5.952 (0.12) 5.779 (0.094) 5.893 (0.114) 69.335 (12.224)

Test error 6.352 (0.783) 6.352 (0.783) 11.124 (3.872) 6.352 (0.783)

Time 167.52 (0.019) 1.092 (0.001) 0.153 (0) 0.415 (0)

Setting C

Conformal Jackknife Split Parametric

Coverage 0.906 (0.004) 0.9 (0.004) 0.902 (0.005) 0.998 (0.001)

Length 15.549 (0.193) 14.742 (0.199) 15.026 (0.323) 249.932 (9.806)

Test error 158.3 (48.889) 158.3 (48.889) 114.054 (19.984) 158.3 (48.889)

Time 168.531 (0.03) 1.092 (0.002) 0.154 (0) 0.415 (0)

Table 3: Comparison of prediction intervals in high-dimensional problems with n = 500,
d = 490, using ridge regularization.



(additive) Setting B. In Setting C, all estimators perform quite poorly. We note that across
all settings and estimators, no matter the performance in test error, the coverage of the
conformal intervals is almost exactly 90%, the nominal level, and the interval lengths seem
to be highly correlated with test errors.

In the high-dimensional problems (Figure 2), the results are similar. The regularized linear
estimators perform best in the linear Setting A, while SPAM dominates in the nonlinear
(additive) Setting B and performs slightly better in Setting C. All estimators do reasonably
well in Setting A and quite terribly in Setting C, according to test error. Nevertheless, across
this range of settings and difficulties, the coverage of the conformal prediction intervals is
again almost exactly 90%, and the lengths are highly correlated with test errors.

5 Extensions of Conformal Inference

The conformal and split conformal methods, combined with basically any fitting procedure
in regression, provide finite-sample distribution-free predictive inferences. We describe some
extensions of this framework to improve the interpretability and applicability of conformal
inference.

5.1 In-Sample Split Conformal Inference

Given samples (Xi, Yi), i = 1, . . . , n, and a method that outputs a prediction band, we would
often like to evaluate this band at some or all of the observed points Xi, i = 1, . . . , n. This
is perhaps the most natural way to visualize any prediction band. However, the conformal
prediction methods from Section 2 are designed to give a valid prediction interval at a
future point Xn+1, from the same distribution as {Xi, i = 1, . . . , n}, but not yet observed.
If we apply the full or split conformal prediction methods at an observed feature value,
then it is not easy to establish finite-sample validity of these methods.

A simple way to obtain valid in-sample predictive inference from the conformal methods
is to treat each Xi as a new feature value and use the other n− 1 points as the original
features (running either the full or split conformal methods on these n− 1 points). This
approach has two drawbacks. First, it seriously degrades the computational efficiency of
the conformal methods—for full conformal, it multiplies the cost of the (already expensive)
Algorithm 1 by n, making it perhaps intractable for even moderately large data sets; for
split conformal, it multiplies the cost of Algorithm 2 by n, making it as expensive as the
jackknife method in Algorithm 3. Second, if we denote by C(Xi) the prediction interval
that results from this method at Xi, for i = 1, . . . , n, then one might expect the empirical
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Figure 1: Comparison of conformal prediction intervals in low-dimensional problems with
n = 200, d = 20, across a variety of base estimators.
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Figure 2: Comparison of conformal prediction intervals in high-dimensional problems with
n = 200, d = 2000, across a variety of base estimators.



Algorithm 4 Rank-One-Out Split Conformal

Input: Data (Xi, Yi), i = 1, . . . , n, miscoverage level α ∈ (0, 1), regression algorithm A
Output: Prediction intervals at each Xi, i = 1, . . . , n
Randomly split {1, . . . , n} into two equal-sized subsets I1, I2

for k ∈ {1, 2} do
µ̂k = A

(
{(Xi, Yi) : i ∈ Ik}

)
for i /∈ Ik do

Ri = |Yi − µ̂k(Xi)|
end for
for i /∈ Ik do

di = the mth smallest value in {Rj : j /∈ Ik, j 6= i}, where m = dn/2(1− α)e
Croo(Xi) = [µ̂k(Xi)− di, µ̂k(Xi) + di]

end for
end for
Return intervals Croo(Xi), i = 1, . . . , n

coverage 1
n

∑n
i=1 1{Yi ∈ C(Xi)} to be at least 1 − α, but this is not easy to show due to

the complex dependence between the indicators.

Our proposed technique overcomes both of these drawbacks, and is a variant of the split
conformal method that we call rank-one-out or ROO split conformal inference. The basic
idea is quite similar to split conformal, but the ranking is conducted in a leave-one-out
manner. The method is presented in Algorithm 4. For simplicity (as with our presentation
of the split conformal method in Algorithm 2), we assume that n is even, and only minor
modifications are needed for n odd. Computationally, ROO split conformal is very efficient.
First, the fitting algorithm A (in the notation of Algorithm 4) only needs to be run twice.
Second, for each split, the ranking of absolute residuals needs to be calculated just once;
with careful updating, it can be reused in order to calculate the prediction interval for Xi

in O(1) additional operations, for each i = 1, . . . , n.

By symmetry in their construction, the ROO split conformal intervals have the in-sample
finite-sample coverage property

P
(
Yi ∈ Croo(Xi)

)
≥ 1− α, for all i = 1, . . . , n.

A practically interesting performance measure is the empirical in-sample average coverage
1
n

∑n
i=1 1{Yi ∈ Croo(Xi)}. Our construction in Algorithm 4 indeed implies a weak depen-

dence among the random indicators in this average, which leads to a slightly worse coverage
guarantee for the empirical in-sample average coverage, with the difference from the nominal
1− α level being of order

√
log n/n, with high probability.

Theorem 5.1. If (Xi, Yi), i = 1, . . . , n are i.i.d., then for the ROO split conformal band

29



Croo constructed in Algorithm 4, there is an absolute constant c > 0, such that for all ε > 0,

P
(

1

n

n∑
i=1

1{Yi ∈ Croo(Xi)} ≥ 1− α− ε
)
≥ 1− 2 exp(−cnε2).

Moreover, if we assume additionally that the residuals Ri, i = 1, . . . , n, have a continuous
joint distribution, then for all ε > 0,

P
(

1− α− ε ≤ 1

n

n∑
i=1

1{Yi ∈ Croo(Xi)} ≤ 1− α+
2

n
+ ε

)
≥ 1− 2 exp(−cnε2).

The proof of Theorem 5.1 uses McDiarmid’s inequality. It is conceptually straightforward
but requires a careful tracking of dependencies and is deferred until Appendix A.3.

Remark 5.1. An even simpler, and conservative approximation to each in-sample prediction
interval Croo(Xi) is

C̃roo(Xi) = [µ̂k(Xi)− d̃k, µ̂k(Xi) + d̃k], (12)

where, using the notation of Algorithm 4, we define d̃k to be the mth smallest element of the
set {Ri : i ∈/∈ Ik}, for m = d(1− α)n/2e+ 1. Therefore, now only a single sample quantile
from the fitted residuals is needed for each split. As a price, each interval in (12) is wider
than its counterpart from Algorithm 4 by at most one interquantile difference. Moreover,
the results of Theorem 5.1 carry over to the prediction band C̃roo: in the second probability
statement (trapping the empirical in-sample average coverage from below and above), we
need only change the 2/n term to 6/n.

In Appendix A.1, we prove Theorem 2.3 as a modification of Theorem 5.1.

5.2 Locally-Weighted Conformal Inference

The full conformal and split conformal methods both tend to produce prediction bands
C(x) whose width is roughly constant over x ∈ Rd. In fact, for split conformal, the width
is exactly constant over x. For full conformal, the width can vary slightly as x varies, but
the difference is often negligible as long as the fitting method is moderately stable. This
property—the width of C(x) being roughly immune to x—is desirable if the spread of the
residual Y − µ(X) does not vary substantially as X varies. However, in some scenarios this
will not be true, i.e., the residual variance will vary nontrivially with X, and in such a case
we want the conformal band to adapt correspondingly.

We now introduce an extension to the conformal method that can account for nonconstant
residual variance. Recall that, in order for the conformal inference method to have valid
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coverage, we can actually use any conformity score function to generalize the definition of
(absolute) residuals as given in (8) of Remark 2.4. For the present extension, we modify
the definition of residuals in Algorithm 1 by scaling the fitted residuals inversely by an
estimated error spread. Formally

Ry,i =
|Yi − µ̂y(Xi)|

ρ̂y(Xi)
, i = 1, . . . , n, and Ry,n+1 =

|y − µ̂y(x)|
ρ̂y(x)

, (13)

where now ρ̂y(x) denotes an estimate of the conditional mean absolute deviation (MAD) of
(Y − µ(X))|X = x, as a function of x ∈ Rd. We choose to estimate the error spread by the
mean absolute deviation of the fitted residual rather than the standard deviation, since the
former exists in some cases in which the latter does not. Here, the conditional mean µ̂y
and conditional MAD ρ̂y can either be estimated jointly, or more simply, the conditional
mean µ̂y can be estimated first, and then the conditional MAD ρ̂y can be estimated using
the collection of fitted absolute residuals |Yi − µ̂y(Xi)|, i = 1, . . . , n and |y − µ̂y(Xn+1)|.
With the locally-weighted residuals in (13), the validity and accuracy properties of the full
conformal inference method carry over.

For the split conformal and the ROO split conformal methods, the extension is similar. In
Algorithm 2, we instead use locally-weighted residuals

Ri =
|Yi − µ̂(Xi)|

ρ̂(Xi)
, i ∈ I2, (14)

where the conditional mean µ̂ and conditional MAD ρ̂ are fit on the samples in I1, either
jointly or in a two-step fashion, as explained above. The output prediction interval at a
point x must also be modified, now being [µ̂(x)− ρ̂(x)d, µ̂(x) + ρ̂(x)d]. In Algorithm 4,
analogous modifications are performed. Using locally-weighted residuals, as in (14), the
validity and accuracy properties of the split methods, both finite sample and asymptotic, in
Theorems 2.2, 2.3 and 5.1, again carry over. The jackknife interval can also be extended in
a similar fashion.

Figure 3 displays a simple example of the split conformal method using locally-weighted
residuals. We let n = 1000, drew i.i.d. copies Xi ∼ Unif(0, 2π), i = 1, . . . , n, and let

Yi = sin(Xi) +
π|Xi|

20
εi, i = 1, . . . , n,

for i.i.d. copies εi ∼ N(0, 1), i = 1, . . . , n. We divided the data set randomly into two
halves I1, I2, and fit the conditional mean estimator µ̂ on the samples from the first half I1

using a smoothing spline, whose tuning parameter was chosen by cross-validation. This
was then used to produce a 90% prediction band, according to the usual (unweighted) split
conformal strategy, that has constant width by design; it is plotted, as a function of x ∈ R,
in the top left panel of Figure 3. For our locally-weighted version, we then fit a conditional
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MAD estimator ρ̂ on |Yi − µ̂(Xi)|, i ∈ I1, again using a smoothing spline, whose tuning
parameter was chosen by cross-validation. Locally-weighted residuals were used to produce
a 90% prediction band, with locally-varying width, plotted in the top right panel of the
figure. Visually, the locally-weighted band adapts better to the heteroskedastic nature of
the data. This is confirmed by looking at the length of the locally-weighted band as a
function of x in the bottom right panel. It is also supported by the improved empirical
average length offered by the locally-weighted prediction band, computed over 5000 new
draws from Unif(0, 2π), which is 1.105 versus 1.247 for the unweighted band. In terms of
average coverage, again computed empirically over the same 5000 new draws, both methods
are very close to the nominal 90% level, with the unweighted version at 89.7% and the
weighted version at 89.9%. Most importantly, the locally-weighted version does a better
job here of maintaining a conditional coverage level of around 90% across all x, as shown
in the bottom left panel, as compared to the unweighted split conformal method, which
over-covers for smaller x and under-covers for larger x.

Lastly, it is worth remarking that if the noise is indeed homoskedastic, then of course
using such a locally-weighted conformal band will have generally a inflated (average) length
compared to the usual unweighted conformal band, due to the additional randomness in
estimating the conditional MAD. In Appendix B, we mimic the setup in Figure 3 but with
homoskedastic noise to demonstrate that, in this particular problem, there is not too much
inflation in the length of the locally-weighted band compared to the usual band.

6 Model-Free Variable Importance: LOCO

In this section, we discuss the problem of estimating the importance of each variable in
a prediction model. A critical question is: how do we assess variable importance when
we are treating the working model as incorrect? One possibility, if we are fitting a linear
model with variable selection, is to interpret the coefficients as estimates of the parameters
in the best linear approximation to the mean function µ. This has been studied in, e.g.,
Wasserman (2014); Buja et al. (2014); Tibshirani et al. (2016). However, we take a different
approach for two reasons. First, our method is not limited to linear regression. Second, the
spirit of our approach is to focus on predictive quantities and we want to measure variable
importance directly in terms of prediction. Our approach is similar in spirit to the variable
importance measure used in random forests (Breiman, 2001).

Our proposal, leave-one-covariate-out or LOCO inference, proceeds as follows. Denote by µ̂
our estimate of the mean function, fit on data (Xi, Yi), i ∈ I1 for some I1 ⊆ {1, . . . , n}. To
investigate the importance of the jth covariate, we refit our estimate of the mean function
on the data set (Xi(−j), Yi), i ∈ I1, where in each Xi(−j) = (Xi(1), . . . , Xi(j − 1), Xi(j +
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Figure 3: A simple univariate example of the usual (unweighted) split conformal and locally-
weighted split conformal prediction bands. The top left panel shows the split conformal band,
and the top right shows the locally-weighted split conformal band; we can see that the latter
properly adapts to the heteroskedastic nature of the data, whereas the former has constant
length over all x (by construction). The bottom left and right panels plot the empirical local
coverage and local length measures (which have been mildly smoothed as functions of x for
visibility). The locally-weighted split conformal method maintains a roughly constant level
of local coverage across x, but its band has a varying local length; the usual split conformal
method exhibits precisely the opposite trends.



1), . . . , Xi(d)) ∈ Rd−1, we have removed the jth covariate. Denote by µ̂(−j) this refitted
mean function, and denote the excess prediction error of covariate j, at a new i.i.d. draw
(Xn+1, Yn+1), by

∆j(Xn+1, Yn+1) = |Yn+1 − µ̂(−j)(Xn+1)| − |Yn+1 − µ̂(Xn+1)|.

The random variable ∆j(Xn+1, Yn+1) measures the increase in prediction error due to not
having access to covariate j in our data set, and will be the basis for inferential statements
about variable importance. There are two ways to look at ∆j(Xn+1, Yn+1), as discussed
below.

6.1 Local Measure of Variable Importance

Using conformal prediction bands, we can construct a valid prediction interval for the
random variable ∆j(Xn+1, Yn+1), as follows. Let C denote a conformal prediction set for
Yn+1 given Xn+1, having coverage 1−α, constructed from either the full or split methods—
in the former, the index set used for the fitting of µ̂ and µ̂(−j) is I1 = {1, . . . , n}, and in
the latter, it is I1 ( {1, . . . , n}, a proper subset (its complement I2 is used for computing
the appropriate sample quantile of residuals). Now define

Wj(x) =
{
|y − µ̂(−j)(x)| − |y − µ̂(x)| : y ∈ C(x)

}
.

From the finite-sample validity of C, we immediately have

P
(
∆j(Xn+1, Yn+1) ∈Wj(Xn+1), for all j = 1, . . . , d

)
≥ 1− α. (15)

It is important to emphasize that the prediction sets W1, . . . ,Wd are valid in finite-sample,
without distributional assumptions. Furthermore, they are uniformly valid over j, and there
is no need to do any multiplicity adjustment. One can decide to construct Wj(Xn+1) at a
single fixed j, at all j = 1, . . . , d, or at a randomly chosen j (say, the result of a variable
selection procedure on the given data (Xi, Yi), i = 1, . . . , n), and in each case the interval(s)
will have proper coverage.

As with the guarantees from conformal inference, the coverage statement (15) is marginal
over Xn+1, and in general, does not hold conditionally at Xn+1 = x. But, to summarize
the effect of covariate j, we can still plot the intervals Wj(Xi) for i = 1, . . . , n, and loosely
interpret these as making local statements about variable importance.

We illustrate this idea in a low-dimensional additive model, where d = 6 and the mean
function is µ(x) =

∑6
j=1 fj(x(j)), with f1(t) = sin(π(1 + t))1{t < 0}, f2(t) = sin(πt),

f3(t) = sin(π(1 + t))1{t > 0}, and f4 = f5 = f6 = 0. We generated n = 1000 i.i.d pairs
(Xi, Yi), i = 1, . . . , 1000, where each Xi ∼ Unif[−1, 1]d and Yi = µ(Xi) + εi for εi ∼ N(0, 1).
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Figure 4: In-sample prediction intervals for ∆j(Xi) across all covariates j = 1, . . . , 6 and
samples i = 1, . . . , 1000, in an additive model setting described in the text. Each interval
that lies strictly above zero is colored in green.

We then computed each interval Wj(Xi) using the ROO split conformal technique at the
miscoverage level α = 0.1, using an additive model as the base estimator (each component
modeled by a spline with 5 degrees of freedom). The intervals are plotted in Figure 4. We
can see that many intervals for components j = 1, 2, 3 lie strictly above zero, indicating
that leaving out such covariates is damaging to the predictive accuracy of the estimator.
Furthermore, the locations at which these intervals lie above zero are precisely locations at
which the underlying components f1, f2, f3 deviate significantly from zero. On the other
hand, the intervals for components j = 4, 5, 6 all contain zero, as expected.
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6.2 Global Measures of Variable Importance

For a more global measure of variable importance, we can focus on the distribution of
∆j(Xn+1, Yn+1), marginally over (Xn+1, Yn+1). We rely on a splitting approach, where the
index set used for the training of µ̂ and µ̂(−j) is I1 ( {1, . . . , n}, a proper subset. Denote
by I2 its complement, and by Dk = {(Xi, Yi) : i ∈ Ik}, k = 1, 2 the data samples in each
index set. Define

Gj(t) = P
(

∆j(Xn+1, Yn+1) ≤ t
∣∣ D1

)
, t ∈ R,

the distribution function of ∆j(Xn+1, Yn+1) conditional on the data D1 in the first half of
the data-split. We will now infer parameters of Gj such as its mean θj or median mj . For
the former parameter,

θj = E
[
∆j(Xn+1, Yn+1)

∣∣ D1

]
,

we can obtain the asymptotic 1− α confidence interval[
θ̂j −

zα/2sj√
n/2

, θ̂j +
zα/2sj√
n/2

]
,

where θ̂j = (n/2)−1
∑

i∈I2 ∆j(Xi, Yi) is the sample mean, s2
j is the analogous sample vari-

ance, measured on D2, and zα/2 is the 1−α/2 quantile of the standard normal distribution.
Similarly, we can perform a one-sided hypothesis test of

H0 : θj ≤ 0 versus H1 : θj > 0

by rejecting when
√
n/2 · θ̂j/sj > zα. Although these inferences are asymptotic, the con-

vergence to its asymptotic limit is uniform (say, as governed by the Berry-Esseen Theorem)
and independent of the feature dimension d (since ∆j(Xn+1, Yn+1) is always univariate).
To control for multiplicity, we suggest replacing α in the above with α/|S| where S is the
set of variables whose importance is to be tested.

Inference for the parameter θj requires existence of the first and second moments for the
error term. In practice it may be more stable to consider the median parameter

mj = median
[
∆j(Xn+1, Yn+1)

∣∣ D1

]
.

We can conduct nonasymptotic inferences about mj using standard, nonparametric tests
such as the sign test or the Wilcoxon signed-rank test, applied to ∆j(Xi, Yi), i ∈ I2. This
allows us to test

H0 : mj ≤ 0 versus H1 : mj > 0

with finite-sample validity under essentially no assumptions on the distribution Gj (the
sign test only requires continuity, and the Wilcoxon test requires continuity and symmetry).
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Confidence intervals for mj can be obtained by inverting the (two-sided) versions of the
sign and Wilcoxon tests, as well. Again, we suggest replacing α with α/|S| to adjust for
multiplicity, where S is the set of variables to be tested.

We finish with an example of a high-dimensional linear regression problem with n = 200
observations and d = 500 variables. The mean function µ(x) was defined to be a linear
function of x(1), . . . , x(5) only, with coefficients drawn i.i.d. from N(0, 4). We drew Xi(j) ∼
N(0, 1) independently across all i = 1, . . . , 200 and j = 1, . . . , 500, and then defined the
responses by Yi = µ(Xi) + εi, for εi ∼ N(0, 1), i = 1, . . . , 200. A single data-split was
applied, and the on the first half we fit the lasso estimator µ̂ with the tuning parameter λ
chosen by 10-fold cross-validation. The set of active predictors S was collected, which had
size |S| = 17; the set S included the 5 truly relevant variables, but also 12 irrelevant ones.
We then refit the lasso estimator µ̂(−j) using the same cross-validation, with covariate j
excluded, for each j ∈ S. On the second half of the data, we applied the Wilcoxon rank
sum test to compute confidence intervals for the median excess test error due to variable
dropping, mj , for each j ∈ S. These intervals were properly corrected for multiplicity: each
was computed at the level 1− 0.1/17 in order to obtain a simultaneous level 1− 0.1 = 0.9 of
coverage. Figure 5 shows the results. We can see that the intervals for the first 5 variables
are well above zero, and those for the next 12 all hover around zero, as desired.

The problem of inference after model selection is an important but also subtle topic and we
are only dealing with the issue briefly here. In a future paper we will thoroughly compare
several approaches including LOCO.

7 Conclusion

Current high-dimensional inference methods make strong assumptions while little is known
about their robustness against model misspecification. We have shown that if we focus on
prediction bands, almost all existing point estimators can be used to build valid prediction
bands, even when the model is grossly misspecified, as long as the data are i.i.d. Conformal
inference is similar to the jackknife, bootstrap, and cross-validation in the use of symmetry
of data. A remarkable difference in conformal inference is its “out-of-sample fitting”. That
is, unlike most existing prediction methods which fit a model using the training sample
and then apply the fitted model to any new data points for prediction, the full conformal
method refits the model each time when a new prediction is requested at a new value Xn+1.
An important and distinct consequence of such an “out-of-sample fitting” is the guaranteed
finite-sample coverage property.

The distribution-free coverage offered by conformal intervals is marginal. The conditional
coverage may be larger than 1− α at some values of Xn+1 = x and smaller than 1− α at
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Figure 5: Wilcoxon-based confidence intervals for the median excess test error due to variable
dropping, for all selected variables in a high-dimensional linear regression example with
n = 200 and d = 500 described in the text.

other values. This should not be viewed as a disadvantage of conformal inference, as the
statistical accuracy of the conformal prediction band is strongly tied to the base estimator.
In a sense, conformal inference broadens the scope and value of any regression estimator
at nearly no cost: if the estimator is accurate (which usually requires an approximately
correctly specified model, and a proper choice of tuning parameter), then the conformal
prediction band is near-optimal; if the estimator is bad, then we still have valid marginal
coverage. As a result, it makes sense to use a conformal prediction band as a diagnostic
and comparison tool for regression function estimators.

There are many directions in conformal inference that are worth exploring. Here we give
a short list. First, it would be interesting to better understand the trade-off between the
full and split conformal methods. The split conformal method is fast, but at the cost of
less accurate inference. Also, in practice it would be desirable to reduce the additional
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randomness caused by splitting the data. In this paper we showed that aggregating results
from multiple splits (using a Bonferonni-type correction) leads to wider bands. It would be
practically appealing to develop novel methods that more efficiently combine results from
multiple splits. Second, it would be interesting to see how conformal inference can help with
model-free variable selection. Our leave-one-covariate-out (LOCO) method is a first step in
this direction. However, the current version of LOCO based on excess prediction error can
only be implemented with the split conformal method due to computational reasons. When
split conformal is used, the inference is then conditional on the model fitted in the first half
of the data. The effect of random splitting inevitably raises an issue of selective inference,
which needs to be appropriately addressed. In a future paper, we will report on detailed
comparisons of LOCO with other approaches to high-dimensional inference.

References

Belloni, A., Chen, D., Chernozhukov, V., & Hansen, C. (2012). Sparse models and methods
for optimal instruments with an application to eminent domain. Econometrica, 80 (6),
2369–2429.

Berk, R., Brown, L., Buja, A., Zhang, K., & Zhao, L. (2013). Valid post-selection inference.
Annals of Statistics, 41 (2), 802–837.

Bickel, P. J., Ritov, Y., & Tsybakov, A. B. (2009). Simultaneous analysis of lasso and
dantzig selector. The Annals of Statistics, (pp. 1705–1732).

Breiman, L. (2001). Random forests. Machine Learning , 45 (1), 5–32.

Buhlmann, P. (2013). Statistical significance in high-dimensional linear models. Bernoulli ,
19 (4), 1212–1242.

Buja, A., Berk, R., Brown, L., George, E., Pitkin, E., Traskin, M., Zhang, K., & Zhao,
L. (2014). Models as approximations: How random predictors and model violations
invalidate classical inference in regression. ArXiv: 1404.1578.

Bunea, F., Tsybakov, A., & Wegkamp, M. (2007). Sparsity oracle inequalities for the lasso.
Electronic Journal of Statistics, 1 , 169–194.

Burnaev, E., & Vovk, V. (2014). Efficiency of conformalized ridge regression. Proceedings
of the Annual Conference on Learning Theory , 25 , 605–622.

Butler, R., & Rothman, E. (1980). Predictive intervals based on reuse of the sample.
Journal of the American Statistical Association, 75 (372), 881–889.

Efroymson, M. A. (1960). Multiple regression analysis. In Mathematical Methods for Digital
Computers, vol. 1, (pp. 191–203). Wiley.

39



Fithian, W., Sun, D., & Taylor, J. (2014). Optimal inference after model selection. ArXv:
1410.2597.

Hebiri, M. (2010). Sparse conformal predictors. Statistics and Computing , 20 (2), 253–266.

Javanmard, A., & Montanari, A. (2014). Confidence intervals and hypothesis testing for
high-dimensional regression. Journal of Machine Learning Research, 15 , 2869–2909.

Lee, J., Sun, D., Sun, Y., & Taylor, J. (2016). Exact post-selection inference, with application
to the lasso. Annals of Statistics, 44 (3), 907–927.

Lei, J. (2014). Classification with confidence. Biometrika, 101 (4), 755–769.

Lei, J., Rinaldo, A., & Wasserman, L. (2015). A conformal prediction approach to explore
functional data. Annals of Mathematics and Artificial Intelligence, 74 (1), 29–43.

Lei, J., Robins, J., & Wasserman, L. (2013). Distribution free prediction sets. Journal of
the American Statistical Association, 108 , 278–287.

Lei, J., & Wasserman, L. (2014). Distribution-free prediction bands for non-parametric
regression. Journal of the Royal Statistical Society: Series B , 76 (1), 71–96.

Meinshausen, N., & Buhlmann, P. (2010). Stability selection. Journal of the Royal Statistical
Society: Series B , 72 (4), 417–473.

Papadopoulos, H., Proedrou, K., Vovk, V., & Gammerman, A. (2002). Inductive confidence
machines for regression. In Machine Learning: ECML 2002 , (pp. 345–356). Springer.

Ravikumar, P., Lafferty, J., Liu, H., & Wasserman, L. (2009). Sparse additive models.
Journal of the Royal Statistical Society: Series B , 71 (5), 1009–1030.

Steinberger, L., & Leeb, H. (2016). Leave-one-out prediction intervals in linear regression
models with many variables. ArXiv: 1602.05801.

Thakurta, A. G., & Smith, A. (2013). Differentially private feature selection via stability
arguments, and the robustness of the lasso. In Conference on Learning Theory , (pp.
819–850).

Tian, X., & Taylor, J. (2015a). Asymptotics of selective inference. ArXiv: 1501.03588.

Tian, X., & Taylor, J. (2015b). Selective inference with a randomized response. ArXiv:
1507.06739.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B , 58 (1), 267–288.

Tibshirani, R. J., Taylor, J., Lockhart, R., , & Tibshirani, R. (2016). Exact post-selection
inference for sequential regression procedures. Journal of the American Statistical Asso-
ciation, 111 (514), 600–620.

40



van de Geer, S., Buhlmann, P., Ritov, Y., & Dezeure, R. (2014). On asymptotically optimal
confidence regions and tests for high-dimensional models. Annals of Statistics, 42 (3),
1166–1201.

Vovk, V. (2013). Conditional validity of inductive conformal predictors. Machine Learning ,
92 , 349–376.

Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic Learning in a Random World .
Springer.

Vovk, V., Nouretdinov, I., & Gammerman, A. (2009). On-line predictive linear regression.
The Annals of Statistics, 37 (3), 1566–1590.

Wasserman, L. (2014). Discussion: A significance test for the lasso. Annals of Statistics,
42 (2), 501–508.

Zhang, C.-H., & Zhang, S. (2014). Confidence intervals for low dimensional parameters in
high dimensional linear models. Journal of the Royal Statistical Society: Series B , 76 (1),
217–242.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B , 67 (2), 301–320.

41



A Technical Proofs

A.1 Proofs for Section 2

Proof of Theorem 2.1. The first part (the lower bound) comes directly from the definition
of the conformal interval in (7), and the (discrete) p-value property in (6). We focus on the
second part (upper bound). Define α′ = α − 1/(n + 1). By assuming a continuous joint
distribution of the fitted residuals, we know that the values Ry,1, . . . , Ry,n+1 are all distinct
with probability one. The set Cconf in (7) is equivalent to the set of all points y such that
Ry,n+1 ranks among the d(n+ 1)(1−α)e smallest of all Ry,1, . . . , Ry,n+1. Consider now the
set D(Xn+1) consisting of points y such that Ry,n+1 is among the d(n+ 1)α′e largest. Then
by construction

P
(
Yn+1 ∈ D(Xn+1)

)
≥ α′,

and yet Cconf(Xn+1) ∩D(Xn+1) = ∅, which implies the result.

Proof of Theorem 2.2. The first part (lower bound) follows directly by symmetry between
the residual at (Xn+1, Yn+1) and those at (Xi, Yi), i ∈ I2. We prove the upper bound
in the second part. Assuming a continuous joint distribution of residual, and hence no
ties, the set Csplit(Xn+1) excludes the values of y such that |y − µ̂(Xn+1)| is among the
(n/2)− d(n/2 + 1)(1− α)e largest in {Ri : i ∈ I2}. Denote the set of these excluded points
as D(Xn+1). Then again by symmetry,

P
(
Yn+1 ∈ D(Xn+1)

)
≥ (n/2)− d(n/2 + 1)(1− α)e

n/2 + 1
≥ α− 2/(n+ 2),

which completes the proof.

Proof of Theorem 2.4. Without loss of generality, we assume that the sample size is 2n.
The individual split conformal interval has length infinity if α/N < 1/n. Therefore, we only
need to consider 2 ≤ N ≤ αn ≤ n. Also, in this proof we will ignore all rounding issues
by directly working with the empirical quantiles. The differences caused by rounding are
negligible.

For j = 1, . . . , N , the jth split conformal prediction band at X, Csplit,j(X), is an interval
with half-width F̂−1

n,j (1− α/N), where F̂n,j is the empirical CDF of fitted absolute residuals
in the ranking subsample in the jth split.

We focus on the event {
max

j=1,...,N
‖µ̂j − µ̃‖∞ < ηn

}
,
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which has probability at least 1−Nρn ≥ 1−nρn → 1. On this event, the length of C
(N)
split(X)

is at least
2 min
j=1,...,N

F̃−1
n,j (1− α/N)− 2ηn,

where F̃n,j is the empirical CDF of the absolute residuals about µ̃ in the ranking subsample
in the jth split.

Note that the split conformal band Csplit,1(X) from a single split has length no more than
2F̃−1

n,1(1− α) + 2ηn on the event we focus on. Therefore, it suffices to show that

P
(
F̃−1
n,1(1− α) < F̃−1

n,j (1− α/N)− 2ηn, j = 1, . . . , N
)
→ 1. (16)

Let F̃ be the CDF of |Y − µ̃(X)|. Note that it is F̃n,j , instead of F̂n,j , that corresponds to
F̃ . By the Dvoretzky-Kiefer-Wolfowitz inequality, we have

P
(
F̃−1
n,j (1− α/N) ≤ F̃−1(1− α/1.6)

)
≤ P

(
‖F̃n,j − F̃‖∞ ≥ α(1/1.6− 1/N)

)
≤ P

(
‖F̃n,j − F̃‖∞ ≥ α/8

)
≤ 2 exp(−nα2/32).

Using a union bound,

P
(

min
j=1,...,N

F̃−1
n,j (1− α/N) ≤ F̃−1(1− α/1.6)

)
≤ 2N exp(−nα2/32).

On the other hand,

P
(
F̃−1
n,1(1− α) ≥ F̃−1(1− α/1.4)

)
≤ P

(
‖F̃n,1 − F̃‖∞ ≥ α(1− 1/1.4)

)
≤ 2 exp(−nα2/8).

So with probability at least 1− 2 exp(−nα2/8)− 2N exp(−nα2/32) we have

min
j=1,...,N

F̃−1
n,j (1− α/N)− F̃−1

n,1(1− α) ≥ F̃−1(1− α/1.6)− F̃−1(1− α/1.4) > 0.

Therefore we conclude (16), as ηn = o(1).

Proof of Theorem 2.3. Comparing the close similarity of d̃1 in (12) and d in Algorithm 2,
we see that d̃1 = d if we choose the target coverage levels to be 1− α for the regular split
conformal band Csplit, and 1− (α+ 2α/n) for the modified ROO split conformal band C̃roo.
The desired result follows immediately by replacing α by α+ 2α/n in Theorem 5.1, as it
applies to C̃roo (explained in the above remark).
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A.2 Proofs for Section 3

Proof of Theorem 3.1. For any t > 0, by Fubini’s theorem and independence between ε and
(∆n, X),

Fn(t) = P(|Y − µ̂n(X)| ≤ t)
= P(−t+ ∆n(X) ≤ ε ≤ t+ ∆n(X))

= Eµ̂n,X [F0(t+ ∆n(X))− F0(−t+ ∆n(X))], (17)

where F0 is the CDF of ε.

Let f0 be the density function of F0. We can approximate F0 at any t using first order
Taylor expansion

F0(t+ δ) = F0(t) + δf0(t) + δ2R(t, δ),

where R(t, δ) = 0.5
∫ 1

0 (1− u)f ′0(t+ uδ)du satisfies supt,δ |R(t, δ)| ≤M/4.

Next, using symmetry of F0 we have f0(t) = f0(−t) for all t, the RHS of (17) becomes

Eµ̂n,X [F0(t+ ∆n(X))− F0(−t+ ∆n(X))]

= Eµ̂n,X [F0(t) + ∆n(X)f0(t) + ∆2
n(X)R(t,∆n(X))

− F0(−t)−∆n(X)f0(−t)−∆2
n(X)R(−t,∆n(X))]

= F0(t)− F0(−t) + Eµ̂n,X [∆2
n(X)W ]

= F (t) + Eµ̂n,X [∆2
n(X)W ],

where W = R(t,∆n(X))−R(−t,∆n(X)). Equation (10) follows immediately since |W | ≤
M/2, almost surely.

Next we show equation (11). Because F has density at least r > 0 in an open neighborhood
of qα, if t < qα − δ for some δ > (M/2r)E(∆2

n(X)) then

Fn(t) ≤F (qα − δ) + (M/2)E(∆2
n(X))

≤ F (qα)− δr + (M/2)E(∆2
n(X))

< 1− α.

Thus qn,α ≥ qα− (M/2r)E∆2
n(X). Similarly we can show that qn,α ≤ qα + (M/2r)E∆2

n(X),
and hence establish the claimed result.

Proof of Theorem 3.2. Without a loss of generality, we assume that the split conformal
band is obtained using 2n samples. Let q̃α be the α upper quantile of |Y − µ̃(X)|. We first
show that

|q̃α − qn,α| ≤ ρn/r + ηn, (18)
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where r > 0 is the assumed lower bound on f̃ in an open neighborhood of its α upper
quantile. To see this, note that

P(|Y − µ̂n(X)| ≤ q̃α+ρn − ηn) ≤ P
(
|Y − µ̂n(X)| ≤ q̃α+ρn − ηn, ‖µ̃− µ̂n‖∞ ≤ ηn

)
+ ρn

≤ P(|Y − µ̃(X)| ≤ q̃α+ρn) + ρn

= 1− α− ρn + ρn = 1− α.

Thus qn,α ≥ q̃α+ρn − ηn ≥ q̃α − ρn/r − ηn. Similarly, qn,α ≤ q̃α−ρn + ηn ≤ q̃α + ρn/r + ηn.

The width of split conformal band is 2F̂−1
n (1− α), where F̂n denotes the empirical CDF

of |Yi − µ̂n(Xi)|, i = 1, . . . , n, and µ̂n = An({(Xi, Yi) : i = n+ 1, . . . , 2n}). On the event
{‖µ̂n − µ̃‖∞ ≤ ηn}, we have |Yi − µ̂n(Xi)| − |Yi − µ̃(Xi)| ≤ ηn for 1 = 1, . . . , n. Therefore,
denoting by F̃n the empirical CDF of |Yi − µ̃(Xi)|, i = 1, . . . , n, we have

P
(
|F̂−1
n (1− α)− F̃−1

n (1− α)| ≤ ηn
)
≥ 1− ρn. (19)

Using standard empirical quantile theory for i.i.d. data and using the assumption that f̃ is
bounded from below by r > 0 in a neighborhood of its α upper quantile, we have

F̃−1
n (1− α) = q̃α +OP(n−1/2). (20)

Combining (18), (19), and (20), we conclude that

|F̂−1
n (1− α)− qn,α| = OP(ηn + ρn + n−1/2),

which gives the result.

Proof of Theorem 3.3. We focus on the event

{‖µ̂n − µ̃‖∞ ≤ ηn} ∩

{
sup
y∈Y
‖µ̂n − µ̂n,(X,y)‖∞ ≤ ηn

}
,

which, by assumption, has probability at least 1− 2ρn → 1. On this event, we have∣∣∣|Yi − µ̂n,(X,y)(Xi)| − |Yi − µ̃(Xi)|
∣∣∣ ≤ 2ηn, i = 1, . . . , n, (21)∣∣∣|y − µ̂n,(X,y)(X)| − |y − µ̃(X)|

∣∣∣ ≤ 2ηn. (22)

With (21) and (22), by the construction of full conformal prediction interval we can directly
verify the following two facts.

1. y ∈ Cn,conf(X) if |y − µ̃(X)| ≤ F̃−1
n (1− α)− 4ηn, and
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2. y /∈ Cn,conf(X) if |y − µ̃(X)| ≥ F̃−1
n (1− (α− 3/n)) + 4ηn,

where F̃n is the empirical CDF of |Yi − µ̃(Xi)|, i = 1, . . . , n.

Therefore, the length of Cn,conf(X) satisfies

νn,conf(X) = 2q̃α +OP(ηn + n−1/2).

The claimed result follows by further combining the above equation with (18).

Proof of Theorem 3.4. Without loss of generality, we assume that the split conformal band
is obtained using 2n data points. The proof consists of two steps. First we establish that
µ̂n(X)− µ(X) = oP(1). Second we establish that F̂−1

n (1− α)− qα = oP(1), where F̂n is the
empirical CDF of |Yi − µ̂n(Xi)|, i = 1, . . . , n, and µ̂n = An({(Xi, Yi) : i = n+ 1, . . . , 2n}).

We now show the first part. We will focus on the event that {EX(µ̂n(X)− µ(X))2 ≤ ηn},
which has probability at least 1− ρn by Assumption A4. On this event, applying Markov’s
inequality, we have that P(X ∈ Bc

n | µ̂n) ≥ 1− η1/3
n , where Bn = {x : |µ̂n(x)− µ(x)| ≥ η1/3

n }.
Hence we conclude that PX,µ̂n(|µ̂n(X)− µ(X)| ≥ η1/3

n ) ≤ η1/3
n + ρn → 0 as n → ∞, and

the first part of the proof is complete.

For the second part, define I1 = {i ∈ {1, . . . , n} : Xi ∈ Bc
n} and I2 = {1, . . . , n}\I1. Note

that Bn is independent of (Xi, Yi), i = 1, . . . , n. Using Hoeffding’s inequality conditionally
on µ̂n, we have |I2| ≤ nη1/3

n + c
√
n log n = o(n) with probability tending to 1, for some

absolute constant c > 0. This also holds unconditionally on µ̂n.

Let Ĝn,1 be the empirical CDF of |Yi − µ̂n(Xi)|, i ∈ I1, and G̃n,1 be the empirical CDF of
|Yi − µ(Xi)|, i ∈ I1. By definition of I1 we know that∣∣∣|Yi − µ̂n(Xi)| − |Yi − µ(Xi)|

∣∣∣ ≤ η1/3
n ,

for all i ∈ I1. All empirical quantiles of Ĝn,1 and G̃n,1 are at most OP(
√
n) apart, because

|I1| = n(1 + oP(1)).

The half-width of Cn,split(X) is F̂−1
n (1− α). According to the definition of I1, we have

Ĝ−1
n,1

(
1− nα

|I1|

)
≤ F̂−1

n (1− α) ≤ Ĝn,1
(

1− nα− |I2|
|I1|

)
.

Both nα/|I1| and (nα− |I2|)/|I1| are α+ oP(1). As a result we conclude that

F̂−1
n (1− α)− qα = oP(1),

and the second part of the proof is complete.
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Proof of Theorem 3.5. Using the same arguments as in the proof of Theorem 3.4, we can
define the set Bn and index sets I1, I2. Now we consider the event {X ∈ Bc

n}, which has
probability tending to 1. Then on this event, by definition of Bn and the fact that ηn ≤ η1/3

n ,
we have ∣∣∣|Yi − µ̂n,(X,y)(Xi)| − |Yi − µ̃(Xi)|

∣∣∣ ≤ 2η1/3
n , i ∈ I1, (23)∣∣∣|y − µ̂n,(X,y)(X)| − |y − µ̃(X)|

∣∣∣ ≤ 2η1/3
n . (24)

By definition of Cn,conf(X) and following the same reasoning as in the proof of Theorem 3.3,
we can verify the following facts:

1. y ∈ Cn,conf(X) if |y − µ̃(X)| ≤ G̃−1
n,1

(
1− nα

|I1|

)
− 4η

1/3
n , and

2. y /∈ Cn,conf(X) if |y − µ̃(X)| ≥ G̃−1
n,1

(
1− nα−|I2|−3

|I1|

)
+ 4η

1/3
n ,

where G̃n,1 is the empirical CDF of |Yi − µ̃(Xi)|, i ∈ I1.

Both nα/|I1| and (nα− |I2| − 3)/|I1| are α+ oP(1), and hence

G̃−1
n,1

(
1− nα

|I1|

)
= qα + oP(1), G̃−1

n,1

(
1− nα− |I2| − 3

|I1|

)
= qα + oP(1).

Thus the lower (upper) end point of Cn,conf(X) is qα + oP(1) below (above) µ(X), and the
proof is complete.

A.3 Proofs for Section 5

Proof of Theorem 5.1. For notational simplicity, we assume that I1 = {1, . . . , n/2}, and
Ri, i = 1, . . . , n/2 are in increasing order. Let m = d(1−α)n/2e. Then 1{Yi ∈ Croo(Xi)} =
1{Ri ≤ di} where di is the mth smallest value in R1, . . . , Ri−1, Ri+1, . . . , Rn/2. Now we
consider changing a sample point, say, (Xj , Yj), in I1 and denote the resulting possibly
unordered residuals by R′1, . . . , R

′
n/2, and define d′i correspondingly. Consider the question:

for which values of i ∈ I1\{j} can we have 1{Ri ≤ di} 6= 1{R′i ≤ d′i}?

Recall that by assumption R1 ≤ R2 ≤ . . . ≤ Rn/2. If i ≤ m− 1 and i 6= j, then di ≥ Rm,
d′i ≥ Rm−1, Ri = R′i, and hence 1{Ri ≤ di} = 1{R′i ≤ d′i} = 1. If i ≥ m+ 2 and i 6= j, then
using similar reasoning we have 1{Ri ≤ di} = 1{R′i ≤ d′i} = 0. Therefore, changing a single
data point can change 1{Yi ∈ Croo(Xi)} for at most three values of i (i.e., i = m,m+ 1, j).
As the input sample points are independent, we can use McDiarmid’s inequality, which
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gives

P

 2

n

∑
i∈I1

1{Yi ∈ Croo(Xi)} ≤ 1− α− ε

 ≤ exp(−cnε2).

The claim follows by switching I1 and I2 and adding the two inequalities up.

Now we consider the other direction. We must only show that P(Yj /∈ Croo(Xj)) ≥ α− 2/n.
Under the continuity assumption, with probability one the residuals are all distinct. Let
j ∈ Ik for k = 1 or 2. By construction, Croo(Xj) does not contain the y values such that
|y − µ̂3−k(Xj)| is among the n/2− d(n/2)(1− α)e largest of {Ri : i ∈ Ik\{j}}. Denote this
set by Droo(Xj). Then the standard conformal argument implies that

P(Yi ∈ Droo(Xi)) ≥
n/2− d(n/2)(1− α)e

n/2
≥ α− 2

n
,

and we can establish the corresponding exponential deviation inequality using the same
reasoning as above.

For C̃roo(Xj), the lower bound follows from that of Croo(Xj) because C̃roo(Xj) ⊇ Croo(Xj).
To prove the upper bound, note that C̃roo(Xj) does not contain y such that |y − µ̂3−k(Xj)|
is among the (n/2) − d(n/2)(1 − α)e − 1 largest of {Ri : i ∈ Ik\{j}}. Hence it does not
contain points y such that |y − µ̂3−k(Xj)| is among the (n/2)−d(n/2)(1−α)e− 2 largest of
{Ri : i ∈ Ik\{j}}. Comparing this with the argument for Croo, the extra −2 in the ranking
changes 2/n to 6/n in the second probability statement in the theorem.

B Additional Experiments

We present two additional experiments.

Figure 6 shows the results for the same simulation setup as in the first panel of Figure 2,
except with a nonsparse mean function: the mean is a linear combination of s = 100 of
the underlying features. The message is that, while no methods perform well in terms of
test error, all conformal bands still achieve exactly (more or less) 90% average coverage, as
prescribed.

Figure 7 displays the results for the same simulation setup as in Figure 3, but without
heteroskedasticity in the noise distribution. We can see that the locally-weighted method
produces a band with only mildly varying local length, and with essentially constant local
coverage. Overall, the average length of the locally-weighted method is not much worse
than the usual unweight conformal method.
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Figure 6: More comparisons of conformal prediction intervals in high-dimensional problems
with n = 200, d = 2000; here the setup mimics Setting A of Figure 2, but without sparsity:
the number of active variables in the linear model for the mean is s = 100.
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Figure 7: Another example of the usual (unweighted) split conformal and locally-weighted split
conformal prediction bands, in the same setup as Figure 3, except without heteroskedasticity.
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