Carnegie Mellon University Kalman Filter, Sensor Fusion, and Constrained Regression: Equivalences and Insights

Department ( Maria Jahja® David Farrow* Roni Rosenfeld* Ryan Tibshirani'*
of Statistics * Department of Statistics' Computational Biology Department® Machine Learning Department*
R
Kalman Filter and Sensor Fusion Regression Equivalence Application: Influenza Nowcasting

Kalman Filter Sequential estimation via two-step process  SF predictionis ;1 = BthH, where Nowcast weekly flu incidence in 51 US states

vy = Fxy_ 14+ 6;, 6 ~N(0,Q) BT — (HTRtHH) 1HTRH1, . Track weighted Influenza-like lliness, available after 1 week

zt = Hry + €4, er ~ N (0, R) and f{t—l—l is the empirical covariance (from observed states).  ° 308 sgnscg.sﬁﬁtted with dighijcal surlvei.llance sources ob-
Process model predicts intermediate state z;11 = Fay, ) - served at dilterent geographic resolutions, €.9.
then perform update with observed measurement Each column of B,denoted b; € R%, j = 1,...,k, solves — web searches with flu-related terms

Tpa1 = Tpaq + Kioq (2001 — HTpa1), ‘ — tweets indicating flu infection

ST tJ.rl( ik +1) minimize Z(mi' —b; 2;)° — visits to Wikipedia or CDC flu pages

where K;, 1 is the Kalman gain. b; €ERd / P Pag

Sensor Fusion Send process noise ) — oo (flat prior), subject to H b; = e, Use auto-regressive sensor as process model analogue

state estimate is regression of measurement z on H: where e; € R% s the jth standard basis vector.
i1 =(H'RT'H) 'H' R 2,4
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« Possible to recover state dynamics exactly A (1 — «a)/a|b;||5 penalty <= covariance shrinkage:
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> KF is equivalent to augmented SF
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i H Rt—l—l _ R _O Sensor selection Learn relevant sensors (or process
n 0 Piya model). With same constraint H' b; = ¢;,
(HT R H)Y " HT R 2y = Zoa+ Kot (41— HEgr) IS A2

t+1 tH12t+1 = Te41 T 8841 (241 t+1 minimize — Y (z;; — b5 2;)° + X;||b; |1
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o SF is equivalent to regression with constraints
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Regress states x on measurements z, subject to 1 0 0 0 0
: : - T Gradient Boosting Can iterate between sensor fittin
interpretable equality constraint H'B = I ting — Lan il 9 0 1.0 0 0
and sensor fusion. At time ¢, denote u; as the data source Regional Q Q 90 1 0 0
: : : : : and y; = Hz;. Set 2\ ,thenrepeatforb=1,...,B
o Extensions given by the regression viewpoint Jo = A o8 P e y_ |0 00 10
For each source 7, set y( D= = (Hz®*~Y);, States 6 Q Q Q e 1O 1() 1() 0 1
- /5 penalty <= covariance shrinkage | Fit response {11 — ?/w_ DY with {uss V| to get Z( ) o ox o o /3 /3 /3 1O 1O
— {1 penalty — sensor (or process model) selection For each state 7, run SF on { (- 1)} with { (b)} 1() 1() 1() 1/2 1/2
/ L4 j — < i .
— gradient boosting to jointly fit sensors / O 3 i ' For state x3: /s /s s s s

to get intermediate state fit 7,

b33 + /3bss + /5b3s =1
: Py Update total state fit x( ) = :z:(b Y ¥ Dot + 1/ abar + L& hag —
o SF for state-of-the-art influenza prediction ij 34+ /3bsr+ /5b38 =




