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Kalman Filter and Sensor Fusion
Kalman Filter Sequential estimation via two-step process

xt = Fxt−1 + δt, δt ∼ N (0, Q)

zt = Hxt + ϵt, ϵt ∼ N (0, R)

Process model predicts intermediate state x̄t+1 = Fx̂t,
then perform update with observed measurement

x̂t+1 = x̄t+1 +Kt+1(zt+1 −Hx̄t+1),

whereKt+1 is the Kalman gain.
Sensor Fusion Send process noise Q → ∞ (flat prior),
state estimate is regression of measurement z onH :

x̂t+1 = (HTR−1H)−1HTR−1zt+1

• Possible to recover state dynamics exactly

Contributions

◦ KF is equivalent to augmented SF
Augment z̃t+1 = (zt+1, x̄t+1)

H̃ =

[
H
Ik

]
R̃t+1 =

[
R 0
0 P̄t+1

]
(H̃T R̃−1

t+1H̃)−1H̃T R̃−1
t+1z̃t+1 = x̄t+1+Kt+1(zt+1−Hx̄t+1)

◦ SF is equivalent to regression with constraints
Regress states x on measurements z, subject to
interpretable equality constraintHTB = I

◦ Extensions given by the regression viewpoint

– ℓ2 penalty ⇐⇒ covariance shrinkage
– ℓ1 penalty→ sensor (or process model) selection
– gradient boosting to jointly fit sensors

◦ SF for state-of-the-art influenza prediction

Application: Influenza Nowcasting
Nowcast weekly flu incidence in 51 US states
• Trackweighted Influenza-like Illness, available after 1 week
• 308 sensors fitted with digital surveillance sources ob-
served at different geographic resolutions, e.g.

– web searches with flu-related terms
– tweets indicating flu infection
– visits to Wikipedia or CDC flu pages

• Use auto-regressive sensor as process model analogue
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Regression Equivalence
SF prediction is x̂t+1 = B̂T zt+1, where

B̂T = (HT R̂−1
t+1H)−1HT R̂−1

t+1,

and R̂t+1 is the empirical covariance (fromobserved states).

Each column of B̂, denoted b̂j ∈ Rd, j = 1, . . . , k, solves

minimize
bj∈Rd

t∑
i=1

(xij − bTj zi)
2

subject to HT bj = ej ,

where ej ∈ Rd is the jth standard basis vector.

A (1− α)/α∥bj∥22 penalty ⇐⇒ covariance shrinkage:

R̂t+1 =
α

t

t∑
i=1

(zi −Hxi)(zi −Hxi)
T + (1− α)I.

Role of Constraints
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Extensions

Sensor selection Learn relevant sensors (or process
model). With same constraintHT bj = ej ,

minimize
bj∈Rd

1

t

t∑
i=1

(xij − bTj zi)
2 + λj∥bj∥1

Gradient Boosting Can iterate between sensor fitting
and sensor fusion. At time i, denoteui as thedata source
and yi = Hxi. Set x

(0)
i , then repeat for b = 1, ..., B

• For each source j, set y(b−1)
ij = (Hx(b−1))ij

• Fit response {yij − y
(b−1)
ij }ti=1 with {uij}ti=1 to get z(b)ij

• For each state j, run SFon{xij−x
(b−1)
ij }ti=1 with{z(b)}ti=1

to get intermediate state fit x̄(b)
ij

• Update total state fit x(b)
ij = x

(b−1)
ij + ηx̄

(b)
ij


