Carnegie Mellon University

Department of Statistics

Kalman Fil

$x_t = F x_{t-1} + \delta_t,$	$\delta_t \sim \mathcal{N}(0, Q)$
$z_t = Hx_t + \epsilon_t,$	$\epsilon_t \sim \mathcal{N}(0, R)$

Process m then perfo

Regression EquivalenceRegression EquivalenceRegression EquivalenceSecond Equivalence
$$x_t - Fx_{t-1} + \delta_t - \delta_t \sim \mathcal{N}(0, Q)$$
 $z_t = Hx_t - \epsilon_t - \kappa(0, R)$ $x_{t+1} = x_{t-1} + \kappa_{t-1}(x_{t+1} - Hx_{t+1})$ $x_{t+1} = x_{t-1} + \kappa_{t-1}(x_{t+1} - Hx_{t+1})$ $\psi_{t+1} = k_{t-1} + \kappa_{t-1}(x_{t+1} - Hx_{t+1})$ $\psi_{t+1} = k_{t-1} + \kappa_{t-1}(x_{t+1} - Hx_{t+1})$ $where $s_t = (H^T R^{-1}H)^{-1}H^T R^{-1}z_{t+1}$ Possible to recover state dynamics exactlyContributionsKF is equivalent to augmented SFAugment $\tilde{z}_{t-1} = (k_{t-1} - \bar{x}_{t+1})$ $\hat{H} = \begin{bmatrix} H \\ h_t \end{bmatrix}$ $\hat{R}_{t-1} = \begin{bmatrix} R & 0 \\ 0 & P_{t-1} \end{bmatrix}$ $\hat{H} = \begin{bmatrix} H \\ h_t \end{bmatrix}$ $\hat{R}_{t-1} = \begin{bmatrix} R & 0 \\ 0 & P_{t-1} \end{bmatrix}$ Sensor selection Learn relevant sensors (or process model). With same constraint $H^T b_t - c_t$ Multiple Triple Triple$

where K_{t+}

Sensor Fu state estim

Possible

• KF is eq

 $(\tilde{H}^T \tilde{R}_{t+1}^{-1})$

• SF is eq

Regress s interpret

• Extensi

- ℓ_2 per
- ℓ_1 per
- gradi

• SF for state-of-the-art influenza prediction

Kalman Filter, Sensor Fusion, and Constrained Regression: Equivalences and Insights

Maria Jahja[†] David Farrow[‡] Roni Rosenfeld^{*} Ryan Tibshirani^{†,*} Department of Statistics[†] Computational Biology Department[‡] Machine Learning Department^{*}

• Update total state fit $x_{ij}^{(b)} = x_{ij}^{(b-1)} + \eta \bar{x}_{ij}^{(b)}$

Nowcast weekly flu incidence in 51 US states

- - web searches with flu-related terms
 - tweets indicating flu infection
 - visits to Wikipedia or CDC flu pages

• Use auto-regressive sensor as process model analogue

Application: Influenza Nowcasting

• Track weighted Influenza-like Illness, available after 1 week • 308 sensors fitted with digital surveillance sources observed at different geographic resolutions, e.g.

Role of Constraints