1 In-sample and out-of-sample risk for least squares

Assume that \((x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, i = 1, \ldots, n\) are i.i.d. pairs satisfying a linear relationship
\[y_i = x_i^T \beta_0 + \epsilon_i, \quad i = 1, \ldots, n \]
where \(\beta_0 \in \mathbb{R}^p\) is the unknown regression parameter to be estimated, \(x_i \sim P_X, i = 1, \ldots, n\), and \(\epsilon_i \sim N(0, \sigma^2), i = 1, \ldots, n\) with the predictors and errors being independent. Write \(\hat{\beta}\) for the least squares estimator trained on \((x_i, y_i), i = 1, \ldots, n\).

In class we showed that the in-sample risk satisfies
\[
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(x_i^T \hat{\beta} - x_i^T \beta_0)^2 = \frac{\sigma^2 p}{n},
\]
where the expectation is taken over the i.i.d. training points \((x_i, y_i), i = 1, \ldots, n\). We also showed the out-of-sample risk satisfies
\[
\mathbb{E}(x_0^T \hat{\beta} - x_0^T \beta_0)^2 \geq \frac{\sigma^2 p}{n},
\]
where the expectation is taken over the i.i.d. training points \((x_i, y_i), i = 1, \ldots, n\) as well as the independent draw \(x_0 \sim P_X\).

Prove or disprove: there is a distribution \(P_X\) such that the out-of-sample risk is equal to \(\frac{\sigma^2 p}{n}\). You should consider the cases \(p = 1\) and \(p > 1\) separately. Hint: you may use the fact that if \(U\) is random variable that is not almost surely constant, and \(f\) is a strictly convex function, then \(\mathbb{E}[f(U)] > f(\mathbb{E}[U])\), i.e., we get a strict inequality in Jensen’s inequality.

2 Gaussian maximal inequalities

In class we extensively used the following Gaussian maximal inequality, which you will prove here, over the next few parts. If \(W_i \sim N(0, \sigma_i^2), i = 1, \ldots, p\) are Gaussian variates, not necessarily independent, then for any \(\delta > 0\),
\[
P\left(\max_{i=1,\ldots,p} |W_i| \leq \sigma \sqrt{2 \log(ep/\delta)} \right) \geq 1 - \delta, \tag{1}
\]
where \(\sigma = \max_{i=1,\ldots,p} \sigma_i\).

(a) Prove that, for any \(t > 0\),
\[
P\left(\max_{i=1,\ldots,p} |W_i| \geq t \right) \leq 2p \frac{\phi(t/\sigma)}{t/\sigma},
\]
where \(\phi\) is the standard normal density. Hint: you may use Mill’s inequality, which states that \(P(|Z| > t) \leq 2\phi(t)/t\) for a standard Gaussian variate \(Z\).
(b) Using the result from the previous part, plug in \(t = \sigma \sqrt{2 \log(p/\delta)} \) and establish (1).

The result (1) is a high-probability bound on the maximum or Gaussians; of interest is also an expectation bound,

\[
E\left(\max_{i=1,...,p} |W_i| \right) \leq \sigma \sqrt{2 \log(2p)}. \tag{2}
\]

(c) Prove that, for any \(t > 0 \),

\[
E\left(\max_{i=1,...,p} |W_i| \right) \leq \frac{\log(2p)}{t} + \frac{t \sigma^2}{2}.
\]

Hint: use Jensen’s inequality to argue that \(\exp(tE(\max_{i=1,...,p} |W_i|)) \leq E(\exp(\max_{i=1,...,p} t|W_i|)) \); also, it will help to recall that the moment-generating function of a standard Gaussian variate \(Z \) is \(E(e^{tZ}) = e^{t^2/2} \).

(d) Using the result from the previous part, plug in an appropriate value of \(t \) and establish (2).

(e) Suppose now, instead of Gaussianity, we assume that \(E(e^{tW_i}) \leq e^{\sigma^2 t^2/2}, i = 1,...,n \). Argue that the same result as in (2) still holds.

3 In-sample and out-of-sample risk for the lasso

Assume the same model as in Problem 1, except additionally assume that \(P_X \) is a distribution supported on \([-M,M]^p\). Now write \(\hat{\beta} \) for the lasso estimator in constrained form,

\[
\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} \|y - X\beta\|_2^2 \text{ subject to } \|\beta\|_1 \leq t,
\]

where \(y = (y_1,\ldots,y_n) \in \mathbb{R}^n \) is the response vector and \(X \in \mathbb{R}^{n \times p} \) is the matrix of predictors, with rows \(x_i, i = 1,...,n \).

(a) Prove that the lasso estimator, with \(t = \|\beta_0\|_1 \), has in-sample risk satisfying

\[
\frac{1}{n}E\|X\hat{\beta} - X\beta_0\|_2^2 \leq 4M \sigma \|\beta_0\|_1 \sqrt{\frac{2\log(2p)}{n}},
\]

where the expectation is taken over the training data \((x_i,y_i), i = 1,...,n\). Hint: follow the same strategy we used in class to derive the slow rate for the lasso estimator in bound form. Take an expectation where appropriate (rather than invoking high-probability arguments as we did in class), and apply the result in (2).

(b) Let \(\Sigma \) denote the predictor covariance matrix, i.e., \(\Sigma = E(x_0x_0^T) \), and \(\hat{\Sigma} = (1/n)X^T X \). Let \(V = \hat{\Sigma} - \Sigma \). Prove that

\[
E\left(\max_{j,k=1,...,p} |V_{jk}| \right) \leq 2M^2 \sqrt{\frac{2\log(2p^2)}{n}}.
\]
Hint: you may use the following fact, which is a consequence of Lemma 4 and Theorem 5 (i.e., Hoeffding’s inequality) in our concentration of measure class notes. If Z_i, $i = 1, \ldots, n$ are i.i.d. mean zero random variables lying in $[a, b]$, then

$$
\mathbb{E}\left[\exp\left(\frac{t}{n} \sum_{i=1}^{n} Z_i \right) \right] \leq e^{t^2(b-a)^2/(8n)}.
$$

Write $V_{jk} = (1/n) \sum_{i=1}^{n} x_{ij}x_{ik} - \mathbb{E}(x_0jx_{0k})$. Apply the above fact to bound the moment generating function of each V_{jk}, $j, k = 1, \ldots, p$. Then apply Problem 2 part (e) to conclude the result.

(c) Prove that the lasso estimator, with $t = \|\beta_0\|_1$, has out-of-sample risk satisfying

$$
\mathbb{E}(\hat{x}_0^T\hat{\beta} - x_0^T\beta_0)^2 \leq 4M\sigma\|\beta_0\|_1\sqrt{\frac{2\log(p)}{n}} + 8M^2\|\beta_0\|_2^2\sqrt{\frac{2\log(p^2)}{n}}.
$$

where the expectation is taken over the training data (x_i, y_i), $i = 1, \ldots, n$ and independent draw $x_0 \sim P_X$. Hint: first, argue that the in-sample risk and out-of-sample risk can be written as

$$
\mathbb{E}\left[(\hat{\beta} - \beta_0)^T \Sigma (\hat{\beta} - \beta_0) \right] \quad \text{and} \quad \mathbb{E}\left[(\hat{\beta} - \beta_0)^T \Sigma (\hat{\beta} - \beta_0) \right],
$$

respectively, where the expectations above are each taken with respect to the training samples (x_i, y_i), $i = 1, \ldots, n$ only. Next, argue that

$$
(\hat{\beta} - \beta_0)^T \Sigma (\hat{\beta} - \beta_0) - (\hat{\beta} - \beta_0)^T \Sigma (\hat{\beta} - \beta_0) = \sum_{j,k=1}^{p} (\hat{\beta} - \beta_0)_j(\hat{\beta} - \beta_0)_k |V_{jk}|
$$

$$
\leq 4\|\beta_0\|_1^2 \max_{j,k=1,\ldots,p} |V_{jk}|,
$$

where recall $V_{jk} = (\hat{\Sigma} - \Sigma)_{jk}$, $j, k = 1, \ldots, p$. Then, apply the previous parts, (b) and (a), to conclude the result.

4 Bonus: high-dimensional regression simulation

Produce a convincing simulation where the lasso estimator has smaller out-of-sample risk than forward stepwise regression. Produce a convincing simulation where forward stepwise regression has smaller out-of-sample risk than the lasso.

Note: the descriptor “convincing” is of course kind of ambiguous here. But a good answer will involve averaging simulation results over multiple runs, tuning the lasso and forward stepwise estimators in a reasonable way, etc.

5 Graphical models

(a) Let $X = (X_1, \ldots, X_d) \in \mathbb{R}^d$. Suppose that $X \sim N(\mu, \Sigma)$. Let $\Omega = \Sigma^{-1}$. Let j, k be integers among $1, \ldots, d$ such that $j \neq k$. Let $Z = (X_s : s \neq j, k)$.

3
i. Show that the distribution of \((X_j, X_k) \mid Z\) is \(N(\alpha, B)\) and find \(\alpha\) and \(B\) explicitly.

ii. Show that \(X_j \perp \perp X_k \mid Z\) if and only if \(\Omega_{jk} = 0\).

(b) Let \(X = (X_1, \ldots, X_5)\) be a random vector distributed as \(X \sim N(0, \Sigma)\) where the covariance matrix \(\Sigma\) is given by

\[
\Sigma = \frac{1}{15} \begin{pmatrix}
9 & -3 & -3 & -3 & -3 \\
-3 & 6 & 1 & 1 & 1 \\
-3 & 1 & 6 & 1 & 1 \\
-3 & 1 & 1 & 6 & 1 \\
-3 & 1 & 1 & 1 & 6 \\
\end{pmatrix}.
\]

i. What is the graph for \(X\), viewed as an undirected graphical model?

ii. Which of the following independence statements are true?
 1. \(X_2 \perp X_3 \mid X_1\)
 2. \(X_3 \perp X_4\)
 3. \(X_1 \perp X_3 \mid X_2\)
 4. \(X_1 \perp X_5\)

iii. List the local Markov properties for this graphical model.

iv. Find the conditional density \(p(x_4 \mid X_1 = 2)\).

(c) Let \(X = (X_1, \ldots, X_4)\) where each variable is binary. Suppose the probability function is

\[
\log p(x) = \psi_\varnothing + \psi_{12}(x_1, x_2) + \psi_{13}(x_1, x_3) + \psi_{24}(x_2, x_4) + \psi_{34}(x_3, x_4).
\]

i. Draw the implied graph.

ii. Write down all the independence and conditional independence relations implied by the graph.

iii. Is the model graphical? Is the model hierarchical?