
Linear Regression

We observe D = {(X1, Y1), . . . , (Xn, Yn)} where Xi = (Xi(1), . . . , Xi(d)) ∈ Rd and Yi ∈ R.
For notational simplicity, we will always assume that Xi(1) = 1.

Given a new pair (X, Y ) we want to predict Y from X. The conditional prediction risk is

R(m̂) = E[(Y − m̂(X))2|D] =

∫
(y − m̂(x))2dP (x, y)

and the prediction risk of m̂ is

r(m̂) = E(Y − m̂(X))2 = E[r(m̂)]

where the expected value is over all random variables. The true regression function is

m(x) = E[Y |X = x].

We have the following bias-variance decomposition:

r(m̂) = σ2 +

∫
b2
n(x)dP (x) +

∫
vn(x)dP (x)

where
σ2 = E[Y −m(X)]2, bn(x) = E[m̂(x)]−m(x), vn(x) = Var(m̂(x)).

Let ε = Y −m(X). Note that

E[ε] = E[Y −m(X)] = E[E[Y −m(X) |X]] = 0.

A linear predictor has the form g(x) = βTx. The best linear predictor minimizes E(Y−βTX)2.
(We do not assume that m(x) is linear.) The minimizer, assuming that Σ is non-singular, is

β∗ = Σ−1α

where Σ = E[XXT ] and α = E(Y X). We will use linear predictors; but we should
never assume that m(x) is linear. The excess risk is of the lineat predictor βTx is

r(β)− r(β∗) = (b− β)TΣ(b− β). (1)

The training error is

r̂n(β) =
1

n

∑
i

(Yi −XT
i β)2
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1 Low Dimensional Linear Regression

Recall that Σ = E[XXT ]. The least squares estimator β̂ minimizes the training error r̂n(β).
We then have that

β̂ = Σ̂−1α̂

where

Σ̂ =
1

n

∑
i

XiX
T
i , α̂ =

1

n

∑
i

YiXi.

We want to show that r(β̂) is close to r(β∗). For simplicity, we will assume that the distri-
bution P of (Yi, Xi) supported on a compact set.

Theorem 1 Let P be the set of all distributions for Z = (X, Y ) supported on a compact set
K. There exists constants c1, c2 such that the following is true. For any ε > 0,

sup
P∈P

P n
(
r(β̂n) > r(β∗(P )) + 2ε

)
≤ c1e

−nc2ε2 . (2)

Hence,

r(β̂n)− r(β∗) = OP

(√
1

n

)
.

Proof. Given any β, define β̃ = (−1, β) and Λ = E[ZZT ] where Z = (Y,X). Note that

r(β) = E(Y − βTX)2 = E[(ZT β̃)2] = β̃TΛβ̃.

Similarly,
r̂n(β) = β̃T Λ̂nβ̃

where

Λ̂n =
1

n

∑
i

ZiZ
T
i .

So
|r̂n(β)− r(β)| = |β̃T (Λ̂n − Λ)β̃| ≤ ||β̃||21 ∆n

where
∆n = max

j,k
|Λ̂n(j, k)− Λ(j, k)|.

By Hoeffding’s inequality and the union bound,

P
(

sup
β∈B
|r̂n(β)− r(β)| > ε

)
≤ c1e

−nc2ε2 .
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On the event supβ∈B |r̂n(β)− r(β)| < ε, we have

r(β∗) ≤ r(β̂n) ≤ r̂n(β̂n) + ε ≤ r̂n(β∗) + ε ≤ r(β∗) + 2ε.

�

Here are two, more refined, bounds.

Theorem 2 (Theorem 11.3 of Gyorfi, Kohler, Krzyzak and Walk, 2002) Let σ2 =
supx Var(Y |X = x) < ∞. Assume that all the random variables are bounded by L < ∞.
Then

E
∫
|β̂Tx−m(x)|2dP (x) ≤ 8 inf

β

∫
|βTx−m(x)|2dP (x) +

Cd(log(n) + 1)

n
.

The proof is straightforward but is very long. The strategy is to first bound n−1
∑

i(β̂
TXi−

m(Xi))
2 using the properties of least squares. Then, using concentration of measure one can

relate n−1
∑

i f
2(Xi) to

∫
f 2(x)dP (x).

Theorem 3 (Hsu, Kakade and Zhang 2014) Let m(x) = E[Y |X = x] and ε = Y −
m(X). Suppose there exists σ ≥ 0 such that

E[etε|X = x] ≤ et
2σ2/2

for all x and all t ∈ R. Let βTx be the best linear approximation to m(x). With probability
at least 1− 3e−t,

r(β̂)− r(β) ≤ 2A

n
(1 +

√
8t)2 +

σ2(d+ 2
√
dt+ 2t)

n
+ o(1/n)

where A = E[||Σ−1/2X(m(X)− βTX)||2].

We have the following central limit theorem for β̂.

Theorem 4 We have √
n(β̂ − β) N(0,Γ)

where
Γ = Σ−1E[(Y −XTβ)2XXT ]Σ−1

The covariance matrix Γ can be consistently estimated by

Γ̂ = Σ̂−1M̂Σ̂−1

where

M̂(j, k) =
1

n

n∑
i=1

Xi(j)Xi(k)ε̂2i

and ε̂i = Yi − β̂TXi.
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The matrix Γ̂ is called the sandwich estimator. The Normal approximation can be used to

construct confidence intervals for β. For example, β̂(j)±zα
√

Γ̂(j, j)/n is an asymptotic 1−α
confidence interval for β(j). We can also get confidence intervals by using the bootstrap. Do

not use the textbook formulas for the standard errors of β̂. These assume that the regression
function itself is linear. See Buja et al (2015) for details.

2 High Dimensional Linear Regression

Now suppose that d > n. We can no longer use least squares. There are many approaches.

The simplest is to preprocess the data to reduce the dimension. For example, we can perform
PCA on the X ′s and use the first k principal components where k < n. Alternatively, we
can cluster the covariates based on their correlations. We can the use one feature from each
cluster or take the average of the covariates within each cluster. Another approach is to
screen the variables by choosing the k features with the largest correlation with Y . After
dimension reduction, we can the use least squares. These preprocessing methods can be very
effective.

A different approach is to use all the covariates but, instead of least squares, we shrink the
coefficients towards 0. This is called ridge regression and is discussed in the next section.

Yet another approach is model selection where we try to find a good subset of the covariates.
Let S be a subset of {1, . . . , d} and let XS = (X(j) : j ∈ S). If the size of S is not too
large, we can regress Y on XS instead of S.

In particular, fix k < n and let Sk denote all subsets of size k. For a given S ∈ Sk, let βS be
the best linear predictor βS = Σ−1

S αS for the subset S. We would like to choose S ∈ Sk to
minimize

E(Y − βTSXS)2.

This is equivalent to:

minimize E(Y − βTX)2 subject to ||β||0 ≤ k

where ||β||0 is the number of non-zero elements of β.

There will be a bias-variance tradeoff. As k increases, the bias decreases but the varaince
increases.

We can approximate the risk with the training error. But the minimization is over all subsets
of size k. This minimization is NP-hard. So best subset regression is infeasible. We can
approximate best subset regression in two different ways: a greedy approxmation or a convex
relaxation. The former leads to forward stepwise regression. The latter leads to the lasso.
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All these methods involve a tuning parameter which can be chosen by cross-validation.

3 Ridge Regression

In this case we minimize
1

n

∑
i

(Yi −XT
i β)2 + λ||β||2

where λ ≥ 0. The minimizer is
β̂ = (Σ̂ + λI)−1α̂.

As λ increases, the bias increases and the variance decreases.

Theorem 5 (Hsu, Kakade and Zhang 2014) Suppose that ||Xi|| ≤ r. Let βTx be the
best linear apprximation to m(x). Then, with probability at least 1− 4e−t,

r(β̂)− r(β) ≤

(
1 +O

(
1 + r2

λ

n

))
λ||β||2

2
+
σ2

n

tr(Σ)

2λ
.

Proposition 6 If Y = XTβ + ε, ε ∼ N(0, σ2) and β ∼ N(0, τ 2I). Then the posterior mean
is the ridge regression estimator with λ = σ2/τ 2.

4 Forward Stepwise Regression (Greedy Regression)

Forward stepwise regression is a greedy approximation to best subset regression. In what
follows, we will assume that the features have been standardized to have sample mean 0 and
sample variance n−1

∑
iX

2
i (j) = 1. The algorithm is in Fugure 1.

Now we will discuss the theory of forward stepwise regression. Let’s start with a functional,
noise-free version. We want to greedily approximate a function f using a dictionary of
functions D = {ψ1, ψ2, . . . , }. The elements of D are called atoms. Assume that ||ψ|| = 1 for
all ψ ∈ D. Assume that f and the atoms of the dictionary belong to a Hilbert space H.

Let ΣN denote all linear combinations of elements of D with at most N terms. Define the
best N -term approximation error

σN(f) = inf
|Λ|≤N

inf
g∈Span(Λ)

‖f − g‖ (3)

where Λ denotes a subset of D and Span(Λ) is the set of linear combinations of functions in
Λ.
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Forward Stepwise Regression

1. Input k. Let S = ∅.
2. Let rj = n−1

∑
i YiXi(j) denote the corrleation between Y and the jth feature.

Let J = argmaxj |rj|. Let S = S ∪ {J}.
3. Compute the regression of Y on XS = (X(j) : j ∈ S). Compute the residuals

e = (e1, . . . , en) where ei = Yi − β̂TSXi.

4. Compute the correlations rj between the residuals e and the remaining features.

5. Let J = argmaxj |rj|. Let S = S ∪ {J}.
6. Repeat steps 3-5 until |S| = k.

7. Output S.

Figure 1: Forward Stepwise Regression

1. Input: f .

2. Initialize: r0 = f , f0 = 0, V = ∅.

3. Repeat: At step N define

gN = argmaxψ∈D|〈rN−1, ψ〉|

and set VN = VN−1 ∪ {gN}. Let fN be the projection of rN−1 onto Span(VN).
Let rN = f − fN .

Figure 2: The Orthogonal Greedy Algorithm.

Suppose first that f is in the span of the dictionary. The function may then have more than
one expansion of the form f =

∑
j βjψj. We define the norm

‖f‖Lp = inf ‖β‖p

where the infimum is over all expansions of f . The functional version of stepwise regres-
sion, known as the Orthogonal Greedy Algorithm (OGA), is also known as Orthogonal
Matching Pursuit. The algorithm is given in Figure 2.

The algorithm produces a series of approximations fN with corresponding residuals rN . We
have the following two theorems from Barron et al (2008), the first dating back to DeVore
and Temlyakov (1996).
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Theorem 7 For all f ∈ L1, the residual rN after N steps of OGA satsifies

‖rN‖ ≤
‖f‖L1√
N + 1

(4)

for all N ≥ 1.

Proof. Note that fN is the best approximation to f from Span(VN). On the other hand, the
best approximation from the set {a gN : a ∈ R} is 〈f, gN〉gN . The error of the former must be
smaller than the error of the latter. In other words, ||f−fN ||2 ≤ ||f−fN−1−〈rN−1, gN〉gN ||2.
Thus,

‖rN‖2 ≤ ‖rN−1 − 〈rN−1, gN〉gN‖2

= ‖rN−1‖2 + |〈rN−1, gN〉|2 ‖gN‖2︸ ︷︷ ︸
=1

−2|〈rN−1, gN〉|2

= ‖rN−1‖2 − |〈rN−1, gN〉|2. (5)

Now, f = fN−1 + rN−1 and 〈fN−1, rN−1〉 = 0. So,

‖rN−1‖2 = 〈rN−1, rN−1〉 = 〈rN−1, f − fN−1〉 = 〈rN−1, f〉 − 〈rN−1, fN−1〉︸ ︷︷ ︸
=0

= 〈rN−1, f〉 =
∑
j

βj〈rN−1, ψj〉 ≤ sup
ψ∈D
|〈rN−1, ψ〉|

∑
j

|βj|

= sup
ψ∈D
|〈rN−1, ψ〉| ‖f‖L1 = |〈rN−1, gN〉| ‖f‖L1 .

Continuing from equation (5), we have

‖rN‖2 ≤ ‖rN−1‖2 − |〈rN−1, gN〉|2 = ‖rN−1‖2

(
1− ‖rN−1‖2|〈rN−1, gN〉|2

‖rN−1‖4

)
≤ ‖rN−1‖2

(
1− ‖rN−1‖2|〈rN−1, gN〉|2

|〈rN−1, gN〉|2 ‖f‖2
L1

)
= ‖rN−1‖2

(
1− ‖rN−1‖2

‖f‖2
L1

)
.

If a0 ≥ a1 ≥ a2 ≥ · · · are nonnegative numbers such that a0 ≤ M and aN ≤ aN−1(1 −
aN−1/M) then it follows from induction that aN ≤M/(N + 1). The result follows by setting
aN = ‖rN‖2 and M = ‖f‖2

L1 . �

If f is not in L1, it is still possible to bound the error as follows.

Theorem 8 For all f ∈ H and h ∈ L1,

‖rN‖2 ≤ ‖f − h‖2 +
4‖h‖2

L1
N

. (6)
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Proof. Choose any h ∈ L1 and write h =
∑

j βjψj where ‖h‖L1 =
∑

j |βj|. Write f =

fN−1 +f −fN−1 = fN−1 +rN−1 and note that rN−1 is orthogonal to fN−1. Hence, ‖rN−1‖2 =
〈rN−1, f〉 and so

‖rN−1‖2 = 〈rN−1, f〉 = 〈rN−1, h+ f − h〉 = 〈rN−1, h〉+ 〈rN−1, f − h〉
≤ 〈rN−1, h〉+ ‖rN−1‖ ‖f − h‖
=

∑
j

βj〈rN−1, ψj〉+ ‖rN−1‖ ‖f − h‖

≤
∑
j

|βj| |〈rN−1, ψj〉|+ ‖rN−1‖ ‖f − h‖

≤ max
j
|〈rN−1, ψj〉|

∑
j

|βj|+ ‖rN−1‖ ‖f − h‖

= |〈rN−1, gk〉| ‖h‖L1 + ‖rN−1‖ ‖f − h‖

≤ |〈rN−1, gk〉| ‖h‖L1 +
1

2
(‖rN−1‖2 + ‖f − h‖2).

Hence,

|〈rN−1, gk〉|2 ≥
(‖rN−1‖2 − ‖f − h‖2)2

4‖h‖2
L1

.

Thus,

aN ≤ aN−1

(
1− aN−1

4‖h‖2
L1

)
where aN = ‖rN‖2 − ‖f − h‖2. By induction, the last displayed inequality implies that
aN ≤ 4‖h‖2

L1/k and the result follows. �

Corollary 9 For each N ,

‖rN‖2 ≤ σ2
N +

4θ2
N

N

where θN is the L1 norm of the best N-atom approximation.

In Figure 3 we re-express forward stepwise regression in a form closer to the notation we
have been using. In this version, we have a finite dictionary Dn and a data vector Y =
(Y1, . . . , Yn)T and we use the empirical norm defined by

‖h‖n =

√√√√ 1

n

n∑
i=1

h2(Xi).

We assume that the dictionary is normalized in this empirical norm.
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1. Input: Y ∈ Rn.

2. Initialize: r0 = Y , f̂0 = 0, V = ∅.

3. Repeat: At step N define

gN = argmaxψ∈D|〈rN−1, ψ〉n|

where 〈a, b〉n = n−1
∑n

i=1 aibi. Set VN = VN−1 ∪{gN}. Let fN be the projection
of rN−1 onto Span(VN). Let rN = Y − fN .

Figure 3: The Greedy (Forward Stepwise) Regression Algorithm: Dictionary Version

By combining the previous results with concentration of measure arguments (see appendix
for details) we get the following result, due to Barron, Cohen, Dahmen and DeVore (2008).

Theorem 10 Let hn = argminh∈FN‖f0 − h‖2. Suppose that lim supn→∞ ‖hn‖L1,n < ∞. Let
N ∼

√
n. Then, for every γ > 0, there exist C > 0 such that

‖f − f̂N‖2 ≤ 4σ2
N +

C log n

n1/2

except on a set of probability n−γ.

Let us compare this with the lasso which we will discuss next. Let fL =
∑

j βjψj minimize

‖f − fL‖2 subject to ‖β‖1 ≤ L. Then, we will see that

‖f − f̂L‖2 ≤ ‖f − fL‖2 +OP

(
log n

n

)1/2

which is the same rate.

The rate n−1/2 is in fact optimal. It might be surprising that the rate is independent of the
dimension. Why do you think this is the case?

4.1 The Lasso

The lasso approximates best subset regression by using a convex relaxation. In particular,
the norm ||β||0 is replaced with ||β||1 =

∑
j |βj|.
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The lasso estimator β̂ is defined as the minimizer of∑
i

(Yi − βTXi)
2 + λ||β||1.

This is a convex problem so the estimator can be found efficiently. The estimator is sparse:
for large enough λ, many of the components of β̂ are 0. This is proved in the course on
convex optimization. Now we discuss some theoretical properties of the lasso.1

The following result was proved in Zhao and Yu (2006), Meinshausen and Bühlmann (2005)
and Wainwright (2006). The version we state is from Wainwright (2006). Let β = (β1, . . . , βs, 0, . . . , 0)
and decompose the design matrix as X = (XS XSc) where S = {1, . . . , s}. Let βS =
(β1, . . . , βs).

Theorem 11 (Sparsistency) Suppose that:

1. The true model is linear.

2. The design matrix satisfies

‖XScXS(XT
SXS)−1‖∞ ≤ 1− ε for some 0 < ε ≤ 1. (7)

3. φn(dn) > 0.

4. The εi are Normal.

5. λn satisfies
nλ2

n

log(dn − sn)
→∞

and
1

min1≤j≤sn |βj|

(√
log sn
n

+ λn

∥∥∥∥∥
(

1

n
XTX

)−1
∥∥∥∥∥
∞

)
→ 0. (8)

Then the lasso is sparsistent, meaning that P (support(β̂) = support(β))→ 1 where support(β) =
{j : β(j) 6= 0.

The conditions of this theorem are very strong. They are not checkable and they are unlikely
to ever be true in practice.

Theorem 12 (Consistency: Meinshausen and Yu 2006) Assume that

1The norm ||β||1 can be thought of as a measure of sparsity. For example, the vectors x =
(1/
√
d, . . . , 1/

√
d) and y = (1, 0, . . . , 1) have the same L2 norm. But ||y||1 = 1 < ||x||1 =

√
d.
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1. The true regression function is linear.

2. The columns of X have norm n and the covariates are bounded.

3. E(exp |εi|) <∞ and E(ε2i ) = σ2 <∞.

4. E(Y 2
i ) ≤ σ2

y <∞.

5. 0 < φn(kn) ≤ Φn(kn) <∞ for kn = min{n, dn}.

6. lim infn→∞ φn(sn log n) > 0 where sn = ‖βn‖0.

Then

‖βn − β̂n‖2 = OP

(
log n

n

sn log n

φ2
n(sn log n)

)
+O

(
1

log n

)
(9)

If

sn log dn

(
log n

n

)
→ 0 (10)

and

λn =

√
σ2
yΦn(minn, dn)n2

sn log n
(11)

then ‖β̂n − βn‖2 P→ 0.

Once again, the conditions of this theorem are very strong. They are not checkable and they
are unlikely to ever be true in practice.

The next theorem is the most important one. It does not require unrealistic conditions. We
state the theorem for bounded covariates. A more general version appears in Greenshtein
and Ritov (2004).

Theorem 13 Let Z = (Y,X). Assume that |Y | ≤ B and maxj |X(j)| ≤ B. Let

β∗ = argmin
||β||1≤L

r(β)

where r(β) = E(Y −βTX)2. Thus, xTβ∗ is the best, sparse linear predictor (in the L1 sense).

Let β̂ be the lasso estimator:
β̂ = argmin

||β||1≤L
r̂(β)

where r̂(β) = n−1
∑n

i=1(Yi −XT
i β)2. With probabilty at least 1− δ,

r(β̂) ≤ r(β∗) +

√√√√16(L+ 1)4B2

n
log

(√
2 d√
δ

)
.
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Proof. Let Z = (Y,X) and Zi = (Yi, Xi). Define γ ≡ γ(β) = (−1, β). Then

r(β) = E(Y − βTX)2 = γTΛγ

where Λ = E[ZZT ]. Note that ||γ||1 = ||β||1 + 1. Let B = {β : ||β||1 ≤ L}. The training
error is

r̂(β) =
1

n

n∑
i=1

(Yi −XT
i β)2 = γT Λ̂γ

where Λ̂ = 1
n

∑n
i=1 ZiZ

T
i . For any β ∈ B,

|r̂(β)− r(β)| = |γT (Λ̂− Λ)γ|

≤
∑
j,k

|γ(j)| |γ(k)| |Λ̂(j, k)− Λ(j, k)| ≤ ||γ||21δn

≤ (L+ 1)2∆n

where
∆n = max

j,k
|Λ̂(j, k)− Λ(j, k)|.

So,
r(β̂) ≤ r̂(β̂) + (L+ 1)2∆n ≤ r̂(β∗) + (L+ 1)2∆n ≤ r(β∗) + 2(L+ 1)2∆n.

Note that |Z(j)Z(k)| ≤ B2 <∞. By Hoeffding’s inequality,

P(∆n(j, k) ≥ ε) ≤ 2e−nε
2/(2B2)

and so, by the union bound,

P(∆n ≥ ε) ≤ 2d2e−nε
2/(2B2) = δ

if we choose ε =

√
(4B2/n) log

(√
2 d√
δ

)
. Hence,

r(β̂) ≤ r(β∗) +

√√√√16(L+ 1)4B2

n
log

(√
2 d√
δ

)
.

with probabiloty at least 1− δ. �

Problems With Sparsity. Sparse estimators are convenient and popualr but they can
some problems. Say that β̂ is weakly sparsistent if, for every β,

Pβ
(
I(β̂j = 1) ≤ I(βj = 1) for all j

)
→ 1 (12)

as n → ∞. In particular, if β̂n is sparsistent, then it is weakly sparsistent. Suppose that d
is fixed. Then the least squares estimator β̂n is minimax and satisfies

sup
β
Eβ(n‖β̂n − β‖2) = O(1). (13)

But sparsistent estimators have much larger risk:
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Theorem 14 (Leeb and Pötscher (2007)) Suppose that the following condiitons hold:

1. d is fixed.

2. The covariariates are nonstochastic and n−1XTX→ Q for some positive definite matrix
Q.

3. The errors εi are independent with mean 0, finite variance σ2 and have a density f
satisfying

0 <

∫ (
f ′(x)

f(x)

)2

f(x)dx <∞.

If β̂ is weakly sparsistent then

sup
β
Eβ(n‖β̂n − β‖2)→∞. (14)

More generally, if ` is any nonnegative loss function then

sup
β
Eβ(`(n1/2(β̂n − β)))→ sup

s
`(s). (15)

Proof. Choose any s ∈ Rd and let βn = −s/
√
n. Then,

sup
β
Eβ(`(n1/2(β̂ − β)) ≥ Eβn(`(n1/2(β̂ − β)) ≥ Eβn(`(n1/2(β̂ − β))I(β̂ = 0))

= `(−
√
nβn)Pβn(β̂ = 0) = `(s)Pβn(β̂ = 0).

Now, P0(β̂ = 0) → 1 by assumption. It can be shown that we also have Pβn(β̂ = 0) → 1.2

Hence, with probability tending to 1,

sup
β
Eβ(`(n1/2(β̂ − β)) ≥ `(s).

Since s was arbitrary the result follows. �

It follows that, if Rn denotes the minimax risk then

sup
β

R(β̂n)

Rn

→∞.

The implication is that when d is much smaller than n, sparse estimators have poor behavior.
However, when dn is increasing and dn > n, the least squares estimator no longer satisfies
(13). Thus we can no longer say that some other estimator outperforms the sparse estimator.
In summary, sparse estimators are well-suited for high-dimensional problems but not for low
dimensional problems.

2This follows from a property called contiguity.
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5 Inference?

Is it possible to do inference after model selection? Do we need to? I’ll discuss this in class.
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Appendix: L2 Boosting

Define estimators m̂
(0)
n , . . . , m̂

(k)
n , . . . , as follows. Let m̂(0)(x) = 0 and then iterate the follow-

ing steps:

1. Compute the residuals Ui = Yi − m̂(k)(Xi).

2. Regress the residuals on the Yi’s: β̂j =
∑

i UiXij/
∑

iX
2
ij, j = 1, . . . , d.

3. Find J = argminjRSSj where RSSj =
∑

i(Ui − β̂JXiJ)2.

4. Set m̂(k+1)(x) = m̂(k)(x) + β̂JxJ .

The version above is called L2 boosting or matching pursuit. A variation is to set
m̂(k+1)(x) = m̂(k)(x) + νβ̂JxJ where 0 < ν ≤ 1. Another variation is to set m̂(k+1)(x) =

m̂(k)(x)+νsign(β̂J)xJ which is called forward stagewise regression. Yet another variation
is to set m̂(k) to be the linear regression estimator based on all variables selected up to that
point. This is forward stepwise regression or orthogonal matching pursuit.

Theorem 15 The matching pursuit estimator is linear. In particular,

Ŷ (k) = BkY (16)
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where Ŷ (k) = (m̂(k)(X1), . . . , m̂(k)(Xn))T ,

Bk = I − (I −Hk)(I −Hk−1) · · · (I −H1), (17)

and

Hj =
XjXT

j

‖Xj‖2
. (18)

Theorem 16 (Bühlmann 2005) Let mn(x) =
∑dn

j=1 βj,nxj be the best linear approxima-
tion based on dn terms. Suppose that:

(A1 Growth) dn ≤ C0e
C1n1−ξ

for some C0, C1 > 0 and some 0 < ξ ≤ 1.

(A2 Sparsity) supn
∑dn

j=1 |βj,n| <∞.

(A3 Bounded Covariates) supn max1≤j≤dn maxi |Xij| <∞ with probability 1.

(A4 Moments) E|ε|s <∞ for some s > 4/ξ.

Then there exists kn →∞ such that

EX |m̂n(X)−mn(x)|2 → 0 (19)

as n→ 0.

We won’t prove the theorem but we will outline the idea. Let H be a Hilbert space with
inner product 〈f, g〉 =

∫
f(x)g(x)dP (x). Let D be a dictionary, that is a set of functions,

each of unit norm, that span H. Define a functional version of matching pursuit, known as
the weak greedy algorithm, as follows. Let R0(f) = f , F0 = 0. At step k, find gk ∈ D so
that

|〈Rk−1(f), gk〉| ≥ tk sup
h∈D
|〈Rk−1(f), h〉|

for some 0 < tk ≤ 1. In the weak greedy algorithm we take Fk = Fk−1+〈f, gk〉gk. In the weak
orthogonal greedy algorithm we take Fk to be the projection of Rk−1(f) onto {g1, . . . , gk}.
Finally set Rk(f) = f − Fk.

Theorem 17 (Temlyakov 2000) Let f(x) =
∑

j βjgj(x) where gj ∈ D and
∑∞

j=1 |βj| ≤
B <∞. Then, for the weak orthogonal greedy algorithm

‖Rk(f)‖ ≤ B(
1 +

∑k
j=1 t

2
j

)1/2
(20)

and for the weak greedy algorithm

‖Rk(f)‖ ≤ B(
1 +

∑k
j=1 t

2
j

)tk/(2(2+tk))
. (21)
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L2 boosting essentially replaces 〈f,Xj〉 with 〈Y,Xj〉n = n−1
∑

i YiXij. Now 〈Y,Xj〉n has
mean 〈f,Xj〉. The main burden of the proof is to show that 〈Y,Xj〉n is close to 〈f,Xj〉 with
high probability and then apply Temlyakov’s result. For this we use Bernstein’s inequality.
Recall that if |Zj| are bounded by M and Zj has variance σ2 then

P(|Z − E(Zj)| > ε) ≤ 2 exp

{
−1

2

nε2

σ2 +Mε/3

}
. (22)

Hence, the probability that any empirical inner products differ from their functional coun-
terparts is no more than

d2
n exp

{
−1

2

nε2

σ2 +Mε/3

}
→ 0 (23)

because of the growth condition.

Appendix: Proof of Theorem 10

The L1 norm depends on n and so we denote this by ‖h‖L1,n . For technical reasons, we

assume that ‖f‖∞ ≤ B, that f̂n is truncated to be no more than B and that ‖ψ‖∞ ≤ B for
all ψ ∈ Dn.

Theorem 18 Suppose that pn ≡ |D|n ≤ nc for some c ≥ 0. Let f̂N be the output of
the stepwise regression algorithm after N steps. Let f(x) = E(Y |X = x) denote the true
regression function. Then, for every h ∈ Dn,

P

(
‖f − f̂N‖2 > 4‖f − h‖2 +

8‖h‖2
L1,n

N
+
CN log n

n

)
<

1

nγ

for some positive constants γ and C.

Before proving this theorem, we need some preliminary results. For any Λ ⊂ D, let SΛ =
Span(Λ). Define

FN =
⋃{

SΛ : |Λ| ≤ N

}
.

Recall that, if F is a set of functions then Np(ε,F , ν) is the Lp covering entropy with respect
to the probability measure ν and Np(ε,F) is the supremum of Np(ε,F , ν) over all probability
measures ν.

Lemma 19 For every t > 0, and every Λ ⊂ Dn,

N1(t, SΛ) ≤ 3

(
2eB

t
log

(
3eB

t

))|Λ|+1

, N2(t, SΛ) ≤ 3

(
2eB2

t2
log

(
3eB2

t2

))|Λ|+1

.
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Also,

N1(t,FN) ≤ 12pN
(

2eB

t
log

(
3eB

t

))N+1

, N2(t,FN) ≤ 12pN
(

2eB2

t2
log

(
3eB2

t2

))N+1

.

Proof. The first two equation follow from standard covering arguments. The second two
equations follow from the fact that the number of subsets of Λ of size at most N is

N∑
j=1

(
p
j

)
≤

N∑
j=1

(
ep

j

)j
≤ N

(ep
N

)N
≤ pN max

N
N
( p
N

)N
≤ 4pN .

�

The following lemma is from Chapter 11 of Gyorfi et al. The proof is long and technical and
we omit it.

Lemma 20 Suppose that |Y | ≤ B, where B ≥ 1, and F is a set of real-valued functions
such that ‖f‖∞ ≤ B for all f ∈ F . Let f0(x) = E(Y |X = x) and ‖g‖2 =

∫
g2(x)dP (x).

Then, for every α, β > 0 and ε ∈ (0, 1/2],

P

(
(1− ε)‖f − f0‖2 ≥ ‖Y − f‖2

n − ‖Y − f0‖2
n + ε(α + β) for some f ∈ F

)

≤ 14N1

(
βε

20B
,F
)

exp

{
− ε2(1− ε)αn

214(1 + ε)B4

}
.

Proof of Theorem 18. For any h ∈ Fn we have

‖f̂ − f0‖2
n = ‖f̂ − f0‖2 − 2

(
‖Y − f̂‖2

n − ‖Y − f0‖2
n

)
︸ ︷︷ ︸

A1

+ 2

(
‖Y − f̂‖2

n − ‖Y − h‖2
n

)
︸ ︷︷ ︸

A2

+ 2

(
‖Y − h‖2

n − ‖Y − f0‖2
n

)
︸ ︷︷ ︸

A3

.

Apply Lemma 20 with ε = 1/2 together with Lemma 19 to conclude that, for C0 > 0 large
enough,

P
(
A1 >

C0N log n

n
for some f

)
<

1

nγ
.

To bound A2, apply Theorem 8 with norm ‖ · ‖n and with Y replacing f . Then,

‖Y − f̂‖2
n ≤ ‖Y − h‖2

n +
4‖h‖2

1,n

k

17



and hence A2 ≤
8‖h‖21,n

k
. Next, we have that

E(A3) = ‖f0 − h‖2

and for large enough C1,

P
(
A3 > ‖f0 − h‖2 +

C1N log n

n
for some f

)
<

1

nγ
.

�
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