Linear Regression

We observe D = {(X1,Y1),...,(X,,Y,)} where X; = (X;(1),...,X;(d)) € R? and Y; € R.
For notational simplicity, we will always assume that X;(1) = 1.

Given a new pair (X,Y) we want to predict Y from X. The conditional prediction risk is

R(m) = E[(Y — m(X))*|D] = /(y —i(x))*dP(z,y)

and the prediction risk of m is

where the expected value is over all random variables. The true regression function is

m(z) = E[Y|X = z].

We have the following bias-variance decomposition:

r(m) =o*+ /bi(az)dp(x) + /vn(x)dP(:c)

where

o =ElY —m(X))?, bu(z) = E[m(z)] — m(x), v,(z) = Var(m(z)).

Let e =Y — m(X). Note that

El] = E[Y — m(X)] = E[E[Y — m(X) | X]] = 0.

A linear predictor has the form g(z) = 87x. The best linear predictor minimizes E(Y — 37 X)2.
(We do not assume that m(zx) is linear.) The minimizer, assuming that ¥ is non-singular, is

By =X o

where ¥ = E[XX7] and @ = E(Y X). We will use linear predictors; but we should
never assume that m(z) is linear. The excess risk is of the lineat predictor 37z is

r(B) —r(B) = (b—B)" (b — B). (1)

The training error is
1
m(B) ==Y (Yi— XIp)?
PB) = S (v - XT)
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1 Low Dimensional Linear Regression

Recall that ¥ = E[X XT]. The least squares estimator A3 minimizes the training error ().
We then have that PR
f=%"ta

-1 1
Ezﬁzi:XiXiT, a:ﬁ;w{i.

where

~

We want to show that (/) is close to r(5,). For simplicity, we will assume that the distri-
bution P of (Y;, X;) supported on a compact set.

Theorem 1 Let P be the set of all distributions for Z = (X,Y') supported on a compact set
K. There exists constants c1,cy such that the following is true. For any e > 0,

sup P (r(B,) > r(B.(P)) + 2€) < cre, (2)

r(B.) — r(5.) = O (ﬁ) |

Proof. Given any 3, define 8 = (=1, 8) and A = E[ZZ7] where Z = (Y, X). Note that

Hence,

r(8) = E(Y - 87X)* = E[(Z"5)] = B"AB.

Similarly, o

Ta(B) = BTALB
where 1

A,=—SN 7277

n n Zl: 145

So R B B
72(8) — r(B)] = |67 (A — N)B| < 1187 An

where

A, = max A, (j. k) = A k).
Js

By Hoeffding’s inequality and the union bound,

p(sup 7.(8) — r(8)] > e> < cje e

BeB



On the event supgcp [1(8) — r(8)| < €, we have

r(B,) < 7(Bn) < TulBn) + € < Pu(Ba) + € < r(Ba) + 26
O

Here are two, more refined, bounds.

Theorem 2 (Theorem 11.3 of Gyorfi, Kohler, Krzyzak and Walk, 2002) Let 02 =
sup, Var(Y|X = z) < co. Assume that all the random variables are bounded by L < oo.
Then

Cd(log(n) + 1)‘

n

(/Wx m(z)PdP(x) <&m/mT m(z)PdP(z) +

The proof is straightforward but is very long. The strategy is to first bound n=! Zi(BTXi —
m(X;))? using the properties of least squares. Then, using concentration of measure one can

relate n™' ", f2(X;) to [ f*(x)dP(x).

Theorem 3 (Hsu, Kakade and Zhang 2014) Let m(z) = E[Y|X = 2] and e = Y —
m(X). Suppose there exists o > 0 such that

E[ete|X _ ZE} < €t202/2

for all z and all t € R. Let 3Tx be the best linear approzimation to m(x). With probability
at least 1 — 3e7t,

o?(d + 2V/dt + 2t)

n

r(B)—r(8) < 22 VA +
where A = E[||27Y2X (m(X) — 87 X)|)?].

+o(1/n)

We have the following central limit theorem for ,/8\ .

Theorem 4 We have R
V(B — ) ~ N(0,T)
where
I =Y"'E[(Y - XT3)’X X1 ]x!

The covariance matriz I' can be consistently estimated by

~

L=3S"1as-!

where
1 n
E)==Y Xi()Xi(k)e
)= 5 LX) Xilk:

and &, =Y; — BT X,



The matrix T is called the sandwich estimator. The Normal approximation can be used to

construct confidence intervals for §. For example, 5(j) £ 2,1/ T(J,7)/n is an asymptotic 1 —«
confidence interval for 5(j). We can also get confidence intervals by using the bootstrap. Do

not use the textbook formulas for the standard errors of E . These assume that the regression
function itself is linear. See Buja et al (2015) for details.

2 High Dimensional Linear Regression

Now suppose that d > n. We can no longer use least squares. There are many approaches.

The simplest is to preprocess the data to reduce the dimension. For example, we can perform
PCA on the X’s and use the first k& principal components where k < n. Alternatively, we
can cluster the covariates based on their correlations. We can the use one feature from each
cluster or take the average of the covariates within each cluster. Another approach is to
screen the variables by choosing the k features with the largest correlation with Y. After
dimension reduction, we can the use least squares. These preprocessing methods can be very
effective.

A different approach is to use all the covariates but, instead of least squares, we shrink the
coefficients towards 0. This is called ridge regression and is discussed in the next section.

Yet another approach is model selection where we try to find a good subset of the covariates.
Let S be a subset of {1,...,d} and let Xg = (X(j) : j € S). If the size of S is not too
large, we can regress Y on Xg instead of S.

In particular, fix k£ < n and let Sy denote all subsets of size k. For a given S € Sy, let 85 be
the best linear predictor g = Eglozg for the subset S. We would like to choose S € S to
minimize

E(Y — 85 Xs)*.

This is equivalent to:
minimize E(Y — 87 X)? subject to ||3]|o < k
where ||5]|o is the number of non-zero elements of (.

There will be a bias-variance tradeoff. As k increases, the bias decreases but the varaince
increases.

We can approximate the risk with the training error. But the minimization is over all subsets
of size k. This minimization is NP-hard. So best subset regression is infeasible. We can
approximate best subset regression in two different ways: a greedy approxmation or a convex
relaxation. The former leads to forward stepwise regression. The latter leads to the lasso.



All these methods involve a tuning parameter which can be chosen by cross-validation.

3 Ridge Regression

In this case we minimize ]

= (Y= X[B)* + MBI
where A > 0. The minimizer is R R
B=E+)"a.

As )\ increases, the bias increases and the variance decreases.

Theorem 5 (Hsu, Kakade and Zhang 2014) Suppose that ||X;|| < r. Let fTx be the
best linear apprrimation to m(xz). Then, with probability at least 1 — 4e™*,

r(B) —r(8) < (1+O <1+72)> MAIE | " tr(®)

2 n 2\

Proposition 6 IfY = XT3 +¢, e ~ N(0,02) and 3 ~ N(0,7%I). Then the posterior mean
is the ridge regression estimator with A = o* /7.

4 Forward Stepwise Regression (Greedy Regression)

Forward stepwise regression is a greedy approximation to best subset regression. In what
follows, we will assume that the features have been standardized to have sample mean 0 and
sample variance n=' >, X?(j) = 1. The algorithm is in Fugure 1.

Now we will discuss the theory of forward stepwise regression. Let’s start with a functional,
noise-free version. We want to greedily approximate a function f using a dictionary of
functions D = {11, s, ..., }. The elements of D are called atoms. Assume that ||¢|| = 1 for
all ¢ € D. Assume that f and the atoms of the dictionary belong to a Hilbert space H.

Let X denote all linear combinations of elements of D with at most N terms. Define the
best N-term approximation error

on(f)= inf  inf |f—g] (3)

|A|<N geSpan(A)

where A denotes a subset of D and Span(A) is the set of linear combinations of functions in
A.



Forward Stepwise Regression

1. Input k. Let S = 0.

2. Let ; =n~' >, Y;X;(j) denote the corrleation between Y and the j™ feature.
Let J = argmax; [r;|. Let S = SU{J}.

3. Compute the regression of Y on Xg = (X(j): j € S). Compute the residuals

e=(e1,...,e,) where ¢; =Y; — BgXZ

Compute the correlations r; between the residuals e and the remaining features.

Let J = argmax; [r;|. Let S = SU{J}.

Repeat steps 3-5 until |S| = k.

Output S.

N G

Figure 1: Forward Stepwise Regression

1. Input: f.
2. Initialize: ro = f, fo =0,V = 0.

3. Repeat: At step N define

gn = argmaxcp|(ry_1,v)|

and set Vy = Vy_1 U {gn}. Let fx be the projection of ry_; onto Span(Vy).
Let rnN = f — fN.

Figure 2: The Orthogonal Greedy Algorithm.

Suppose first that f is in the span of the dictionary. The function may then have more than
one expansion of the form f = )" ; Bjtb;. We define the norm

[fllz, = mf |51,

where the infimum is over all expansions of f. The functional version of stepwise regres-
sion, known as the Orthogonal Greedy Algorithm (OGA), is also known as Orthogonal
Matching Pursuit. The algorithm is given in Figure 2.

The algorithm produces a series of approximations fy with corresponding residuals ry. We
have the following two theorems from Barron et al (2008), the first dating back to DeVore
and Temlyakov (1996).



Theorem 7 For all f € Ly, the residual 'y after N steps of OGA satsifies

1/l
rnll < \/ﬁ (4)

for all N > 1.

Proof. Note that fy is the best approximation to f from Span(Vy). On the other hand, the
best approximation from the set {a gn : @ € R} is (f, gn)gn. The error of the former must be
smaller than the error of the latter. In other words, ||f— fx||> < ||f—fv-1— (rv_1, gn)gn ][
Thus,

||7”NH2 < lryve1 — <7"N—179N>9N||2
= |rv—1l® + [{rv—1, 9w lgn I =2 (rn—1, gn)|?
=1
= |lrv-all® = [{rv—1, 98] (5)

Now, f = fy—1 +7rny-1 and (fy_1,7n-1) = 0. So,

||7“N—1||2 = (TN—1>7“N—1> = <7“N—1,f - fN—1> = <7“N—1,f> - <7"N—1,fN—1>
~———

=0

= (ry-1, f) = E Bi(rn-1,v;) SZ“%WN&WH E 1351
j € j
= sup [(rv—1, V)| | flle, = [{rv—1, g [ | f] 2, -
weD

Continuing from equation (5), we have

Il < lrwl® = [ gw) 2 = sl (1 _

N1l {rn—1, gn) |2)

||7“N—1||4

lrv—al*[{rv—1, gn)[? > lrn-all?
< lrwal? (1- et (1= Ll
[(rv-1, 98) P 1 F11Z, 1112,
If ap > a3 > ay > --- are nonnegative numbers such that ap < M and ay < ay_1(1 —

an_1/M) then it follows from induction that ay < M/(N +1). The result follows by setting
ay = [[ry|* and M = | f||Z,. O

If f is not in L4, it is still possible to bound the error as follows.

Theorem 8 For all f € H and h € L4,

47
Il < 117 = B2 + S ()



Proof. Choose any h € £, and write h = > 8;1; where ||h]|z, = > .[6;]. Write f =
fN_1+f—fn_-1= fn_1+7ry_1 and note that ry_; is orthogonal to fy_;. Hence, ||ry_1||* =
(ry_1, f) and so

H7“N—1||2 = (rnv—1, f) = (vt h+ f = h) = (rn_1, h) + (rv_1, f — D)
< (rv-1, 1) + lrv=all [1f = Al
= D Bilrn—n, ) + lrwall I =2
J

< STIB a4 a1 = bl
J

< max |{ry-1, ;)| 181+ el 1 = hll
j

= |rx—v, 90 1alley + eyl 1 = Al
1
< |rw g Blles + SUrwall® + [1F = 2.

Hence,

(lry-all? = IIf = RlI*)?
|<TN— ’gk>|2 > .
' 4[R2,

aN-1
< _ 1 — —
“N—GNI( NM%)

where ay = ||rx||* — ||f — h||*>. By induction, the last displayed inequality implies that
an < 4[|h||Z, /k and the result follows. [

Thus,

Corollary 9 For each N,
463
R

where Oy is the L1 norm of the best N-atom approximation.

In Figure 3 we re-express forward stepwise regression in a form closer to the notation we
have been using. In this version, we have a finite dictionary D, and a data vector ¥ =
(Y1,...,Y,)T and we use the empirical norm defined by

We assume that the dictionary is normalized in this empirical norm.

8



1. Input: Y € R".
2. Initialize: 7o =Y, fg =0,V =0.
3. Repeat: At step N define
gN = argmaxweDK?“N—h V)l

where (a,b), =n"' """ a;b;. Set Viy = Vy_1U{gn}. Let fy be the projection
of ry_1 onto Span(Vy). Let ry =Y — fy.

Figure 3: The Greedy (Forward Stepwise) Regression Algorithm: Dictionary Version

By combining the previous results with concentration of measure arguments (see appendix
for details) we get the following result, due to Barron, Cohen, Dahmen and DeVore (2008).

Theorem 10 Let h,, = argmin, .z || fo — h||*. Suppose that limsup,_, ||z, < oo. Let

N ~ \/n. Then, for every v > 0, there exist C' > 0 such that

C'logn

If = fnll” < 4ok + i

except on a set of probability n™7.

Let us compare this with the lasso which we will discuss next. Let fp = > ; B minimize
|f — fr||? subject to ||3||y < L. Then, we will see that

T2 2 logn 1/2
If =Tl < 1If = ful +op( )

which is the same rate.

The rate n='/2 is in fact optimal. It might be surprising that the rate is independent of the
dimension. Why do you think this is the case?

4.1 The Lasso

The lasso approximates best subset regression by using a convex relaxation. In particular,
the norm |[|3||o is replaced with [|3]]; = >_; |-



The lasso estimator B is defined as the minimizer of
> (¥ = 87X + MBI

This is a convex problem so the estimator can be found efficiently. The estimator is sparse:
for large enough A, many of the components of § are 0. This is proved in the course on
convex optimization. Now we discuss some theoretical properties of the lasso.!

The following result was proved in Zhao and Yu (2006), Meinshausen and Biithlmann (2005)

and Wainwright (2006). The version we state is from Wainwright (2006). Let 5 = (54, ..., 5,0, ..

and decompose the design matrix as X = (Xg Xgc) where S = {1,...,s}. Let g =
(B Bs)-

Theorem 11 (Sparsistency) Suppose that:

1. The true model is linear.

2. The design matrix satisfies

[ X5eXg(XEXg) oo <1 —€ for some 0 < e < 1. (7)
3. ¢on(d,) > 0.
4. The €; are Normal.
5. \n satisfies
nA? .
— 5 00
log(dn - Sn)

and

-1
(—1 XTX)
n

~

1 1 "
. S,
ming <j<s, |5l n

) — 0. (8)

Then the lasso is sparsistent, meaning that P(support(3) = support(3)) — 1 where support(3) =

{7+ 80)#0.

The conditions of this theorem are very strong. They are not checkable and they are unlikely
to ever be true in practice.

Theorem 12 (Consistency: Meinshausen and Yu 2006) Assume that

!The norm ||3]|1 can be thought of as a measure of sparsity. For example, the vectors z =
(1/v4d,...,1/v/d) and y = (1,0,...,1) have the same Ly norm. But |jy||; = 1 < ||z||; = Vd.

10
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1. The true regression function is linear.

The columns of X have norm n and the covariates are bounded.
E(exp |e]) < oo and E(e?) = 02 < cc.

E(Y?) <o, < oo.

0 < on(kn) < P,(k,) < 0o for k, = min{n,d,}.

S o

liminf,, . @n(s,logn) > 0 where s, = ||Bn||o-

Then

—~ logn  s,logn 1
J— 2 = "
185 — Bull OP< n ¢%(sn10gn)) +O<10gn> Y
If
1
s logd, ( oin> 0 (10)
and
sn logn

then || B, — Ball> = 0.

Once again, the conditions of this theorem are very strong. They are not checkable and they
are unlikely to ever be true in practice.

The next theorem is the most important one. It does not require unrealistic conditions. We
state the theorem for bounded covariates. A more general version appears in Greenshtein
and Ritov (2004).

Theorem 13 Let Z = (Y, X). Assume that |Y| < B and max; | X(j)| < B. Let

B« = argmin ()
[1BlL<L
where r(3) = E(Y — BT X)2. Thus, 2T 3, is the best, sparse linear predictor (in the L, sense).
Let 3 be the lasso estimator: R
f = argmin7(p)
18I <L

where 7(B) =n~t Y0 (Vi — XTI 8)%. With probabilty at least 1 — 6,

6L+ 1)1 (ﬁd)

r(B) < r(B.) +

11



Proof. Let Z = (Y, X) and Z; = (Y}, X;). Define v = v(5) = (=1, ). Then
r(B) =E(Y — B X)* =~"Ay

where A = E[ZZ7]. Note that [|v|[y = ||8]|1 + 1. Let B= {8 : ||B|]: < L}. The training

error is
n

FB) == (Yi— X['B)? =9"Ay

=1
where A = 25" 7,77, For any f € B,
[7(8) = r(B)| = V" (A = A)y]
< Z YO (R TAG, k) — A, R)] < (91136,

< (L +1)°A,
where

A, = max|A(j, k) = AG,F)]-
.]’
So,

-~

r(B) <F(B) + (L +1)2A, <F(B) + (L + 1A, < r(B.) + 2(L + 1)%A,.
Note that |Z(j)Z (k)| < B? < co. By Hoeffding’s inequality,

P(A,(j, k) > €) < 2e77¢/ (B
and so, by the union bound,

P(A, > €) < 2d%¢7"/B) = §

if we choose € = \/(432/n) log (%). Hence,

r(B) < r(B.) +

6L+ 1B (ﬁd)

with probabiloty at least 1 — ¢. [

Problems With Sparsity. Sparse estimators are convenient and popualr but they can
some problems. Say that (3 is weakly sparsistent if, for every (3,

Ps(I(B; =1) < I(8; =1) forall j) =1 (12)

as n — oo. In particular, if Bn is sparsistent, then it is weakly sparsistent. Suppose that d
is fixed. Then the least squares estimator (3, is minimax and satisfies

S%pEﬁ(n”ﬁn - B*) = 0(1). (13)
But sparsistent estimators have much larger risk:

12



Theorem 14 (Leeb and Potscher (2007)) Suppose that the following condiitons hold:

1. d is fized.

2. The covariariates are nonstochastic and n=*X*'X — Q for some positive definite matriz

Q.

3. The errors €; are independent with mean 0, finite variance o

satisfying / ,
0< / (f ($)> f(z)dx < .

2

If 3 1s weakly sparsistent then
sup Es(n[|3, = B]1?) = oo.

More generally, if € is any nonnegative loss function then

sup Eg(((n'/*(B, — B))) — sup ((s).

S

Proof. Choose any s € R? and let 3, = —s/y/n. Then,

up B30 (5 = ) 2 B (0*(5 = 5)) 2 By ({3 ~ 5)I(B =0)

= U(=v/nB.)Ps, (B = 0) = ((s)Ps, (5 = 0).

~

and have a density f

(14)

(15)

Now, Py(f = 0) — 1 by assumption. It can be shown that we also have Pg, (B =0) — 1.2

Hence, with probability tending to 1,
sup Eg(((n'*(B = 8)) > (s).

Since s was arbitrary the result follows. [

It follows that, if R, denotes the minimax risk then

sup R(ﬁn)
B n

— 0

The implication is that when d is much smaller than n, sparse estimators have poor behavior.
However, when d,, is increasing and d,, > n, the least squares estimator no longer satisfies
(13). Thus we can no longer say that some other estimator outperforms the sparse estimator.
In summary, sparse estimators are well-suited for high-dimensional problems but not for low

dimensional problems.

2This follows from a property called contiguity.

13



5 Inference?

Is it possible to do inference after model selection? Do we need to? I'll discuss this in class.
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Appendix: L, Boosting

Define estimators 7?15?), - ,mﬁf’, ..., as follows. Let m®(z) = 0 and then iterate the follow-

ing steps:

1. Compute the residuals U; = Y; — m®(X;).
2. Regress the residuals on the Y;’s: 3] =3 UiXy/ > X3, i =1,...,d.
3. Find J = argmin; RSS; where RSS; =}, (U; — B\JXiJ)2.

4. Set m*+D(z) = m® () + Bya,.
The version above is called L, boosting or matching pursuit. A variation is to set
mE) () = m®)(z) + vByaz; where 0 < v < 1. Another variation is to set m*+(z) =
m®) (z)+vsign(B;)x; which is called forward stagewise regression. Yet another variation

is to set Mm*) to be the linear regression estimator based on all variables selected up to that
point. This is forward stepwise regression or orthogonal matching pursuit.

Theorem 15 The matching pursuit estimator is linear. In particular,

Y® = By (16)

14



where Y® = (m®(X,), ..., m* (X )T,

B =1—(~Hy)([ —Hg) - (I = Hy), (17)
and
i, = % (18)
T

Theorem 16 (Biihlmann 2005) Let m,(z) = Z?ll Bjnx; be the best linear approxima-
tion based on d, terms. Suppose that:

(A1 Growth) d,, < CpeCrm'™* for some Co,Cy > 0 and some 0 < & < 1.

(A2 Sparsity) sup,, Z?ll |Bjn] < o0.

(A8 Bounded Covariates) sup,, maxi<;<q, max; | X;;| < oo with probability 1.
(A4 Moments) Ele|® < oo for some s > 4/¢.

Then there exists k,, — oo such that
E x|, (X) — my(z)[*> = 0 (19)

asn — 0.

We won’t prove the theorem but we will outline the idea. Let H be a Hilbert space with
inner product (f,g) = [ f(z)g(x)dP(z). Let D be a dictionary, that is a set of functions,
each of unit norm, that span H. Define a functional version of matching pursuit, known as
the weak greedy algorithm, as follows. Let Ry(f) = f, Fo = 0. At step k, find gx € D so
that

[(Rr—1(f); gr)| = te Sup [(Ri—1(f), 1)

for some 0 < t; < 1. In the weak greedy algorithm we take Fy, = Fj,_1+(f, gx)gr. In the weak
orthogonal greedy algorithm we take Fj to be the projection of Ry_1(f) onto {g1,..., 9k}
Finally set Ry(f) = f — Fy.

Theorem 17 (Temlyakov 2000) Let f(z) = 3, 8;g;(x) where g; € D and 377, |35 <
B < o0. Then, for the weak orthogonal greedy algorithm

B

[Re()I < 73 (20)
E 49
(1 + Zj:1 tj>
and for the weak greedy algorithm

B
HRk(f)H < e/ (2(2+t0)) " (21>

ko 42

(1 + i tj>

15



L, boosting essentially replaces (f, X;) with (Y, X;), = n~!'>",YiX,;. Now (Y, X;), has
mean (f, X;). The main burden of the proof is to show that (Y, X;), is close to (f, X;) with
high probability and then apply Temlyakov’s result. For this we use Bernstein’s inequality.
Recall that if |Z;| are bounded by M and Z; has variance o2 then

P(|Z —E(Z;)] > €) §2exp{—%#§we/3}. (22)

Hence, the probability that any empirical inner products differ from their functional coun-

terparts is no more than
e L ne =0 (23)
X _———
n P\ T2 T Me3

because of the growth condition.

Appendix: Proof of Theorem 10

The £, norm depends on n and so we denote this by [|h||z, .. For technical reasons, we

assume that || f||~ < B, that f, is truncated to be no more than B and that ||| < B for
all v € D,.

. Let fN be the output of

Theorem 18 Suppose that p, = |D|, < n® for some ¢ > 0
= E(Y|X = z) denote the true

the stepwise regression algorithm after N steps. Let f(x)
regression function. Then, for every h € D,,,

N n n

A alldlr: CN1 1
P <||f_fNH2 > 4||f — R+ 17|z, . ogn ) _ L

for some positive constants v and C.

Before proving this theorem, we need some preliminary results. For any A C D, let Sy =

Span(A). Define
./—"N:U{SAi ‘A| S N}

Recall that, if F is a set of functions then N, (e, F,v) is the L, covering entropy with respect
to the probability measure v and N, (e, F) is the supremum of N, (€, F,v) over all probability
measures .

Lemma 19 For everyt > 0, and every A C D,

2eB . (3eB\\ ! 2eB> . (3eB2\ "M
Nl(ta SA) S 3 (T log (T)) s NQ(t, SA) S 3 ( t2 lOg ( t2 )) .
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2eB 3eB\\ V™ 2e B? 3eB2\\ '
Ni(t, Fy) < 12pY <Tlog <—>) , No(t, Fy) < 12pV ( v log < v >) .

Proof. The first two equation follow from standard covering arguments. The second two
equations follow from the fact that the number of subsets of A of size at most NV is

N (p Y lep) eV _ n PA\Y
< — < — < — < .
Zj_ (j)—zj_l(j> _N<N> =P mﬁXN<N> <4p

0

The following lemma is from Chapter 11 of Gyorfi et al. The proof is long and technical and
we omit it.

Lemma 20 Suppose that |Y| < B, where B > 1, and F is a set of real-valued functions
such that || flle < B for all f € F. Let fo(x) = E(Y|X = z) and ||g|* = [ ¢*(x)dP(z).
Then, for every a, 5 > 0 and € € (0,1/2],

P(ﬂ—fo—ﬁWZHY—fM—WY—JMi+da+@ ﬂﬂwmefEf)
Pe (1 —€)an
< 4N, | —= —_ .
= (QOB’]: P\ 2141 v 0B
Proof of Theorem 18. For any h € F,, we have

If = foll2 ZIW—EW—QOW—fM—HY—hM)

N J/
-

Ay

+2@Y—ﬂﬂwy—wﬁ+a@y—m@wW—ﬁm>.

(. J/ . J/
~~ -~

Az As

Apply Lemma 20 with € = 1/2 together with Lemma 19 to conclude that, for Cy > 0 large
enough,

CoN'1 1
P (A1 > 20 OB g some f) < —.
n ny
To bound A,, apply Theorem 8 with norm || - ||, and with Y replacing f. Then,
= Al|Al7
v = FI2 < Y — B+ o
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and hence Ay < —=*. Next, we have that

E(As) = |lfo = R*
and for large enough C',

C1N logn
n

1
P (Ag > || fo—hl* + for some f) <

18



