5.1 Convergence of random variables continued

In the last lecture we discussed almost sure convergence and convergence in probability, and proved the WLLN. Today we will discuss some examples and then prove some of the relations between different modes of convergence.

5.2 Convergence in quadratic mean

An often useful way to show convergence in probability is to show something stronger known as convergence in quadratic mean. We say that a sequence converges to X in quadratic mean if:

$$\mathbb{E}(X_n - X)^2 \to 0,$$

as $n \to \infty$. We will return to this one when we discuss some examples.

5.3 Convergence in distribution

The other commonly encountered mode of convergence is convergence in distribution. We say that a sequence converges to X in distribution if:

$$\lim_{n \to \infty} F_{X_n}(t) = F_X(t),$$

for all points t where the CDF F_X is continuous. We will see why the exception matters in a little while but for now it is worth noting that convergence in distribution is the weakest form of convergence.

For instance, a sequence of i.i.d. $N(0,1)$ RVs converge in distribution to an independent $N(0,1)$ RV, even though the values of the random variables are not close in any meaningful sense (their distributions are however, identical). A famous example that we will spend a chunk of the next lecture on is the central limit theorem. The central limit theorem says that an average of i.i.d. random variables (appropriately normalized) converges in distribution to a $N(0,1)$ random variable.
The picture to keep in mind to understand the relationships is the following one:

\[
\begin{array}{c}
\text{q.m.} \\
\text{\downarrow} \\
\text{a.s. } \rightarrow \text{ prob } \rightarrow \text{ distribution}
\end{array}
\]

We will re-visit this in the next lecture and perhaps try to prove some of the implications (or disprove some of the non-implications).

5.4 More Examples

Example 1: Suppose we consider a sequence \(X_n = \mathcal{N}(0, 1/n) \). Intuitively, it seems like this sequence converges to 0. Let us first consider what happens in distribution.

The CDF of the RV that is deterministically 0 is simply \(F_{X}(x) = 0 \), for \(x < 0 \) and \(F_{X}(x) = 1 \) for \(x \geq 0 \). Now, let us consider,

\[
F_{X_n}(x) = \Pr(Z \leq \sqrt{n}x),
\]

where \(Z \sim \mathcal{N}(0,1) \). If \(x > 0 \) this tends to 1, and if \(x < 0 \) this tends to 0. Interestingly, at \(x = 0 \), \(F_{X_n}(x) = 1/2 \), and does not converge to \(F_{X}(0) = 1 \). Remember, however, that we had an exception at points of discontinuity.

Example 2: Let us consider the same example and consider convergence in probability.

\[
\Pr(|X_n - X| \geq \epsilon) = \frac{\mathbb{E}[X_n^2]}{\epsilon^2} = \frac{1}{ne^2} \to 0,
\]

so the sequence converges to 0 in probability.

Example 3: Let us consider another example from the Casella and Berger book. Suppose \(X_1, \ldots \sim \mathcal{U}[0,1] \). Let us define \(X_{(n)} = \max_{1 \leq i \leq n} X_i \). Now, we verify two things:

1. \(X_{(n)} \) converges in probability to 1. To see this observe that,

\[
\Pr(|X_{(n)} - 1| \geq \epsilon) = \Pr(X_{(n)} \leq 1 - \epsilon)
\]

\[
= \prod_{i=1}^{n} \Pr(X_i \leq 1 - \epsilon) = (1 - \epsilon)^n
\]

\[\to 0.\]

2. The random variable \(n(1 - X_{(n)}) \) converges in distribution to an \(\operatorname{Exp}(1) \) RV. To see this we compute:

\[
F_{X_{(n)}}(t) = \Pr(n(1 - X_{(n)}) \leq t) = 1 - \Pr(X_{(n)} \leq 1 - t/n)
\]

\[= 1 - (1 - t/n)^n \to 1 - \exp(-t) = F_{X}(t).\]
5.4.1 Quadratic mean \implies convergence in probability

Suppose that X_1, \ldots, X_n converges in quadratic mean to X, then fix an $\epsilon > 0$,

$$
P(|X_n - X| \geq \epsilon) = P(|X_n - X|^2 \geq \epsilon^2) \leq \frac{E(X_n - X)^2}{\epsilon^2} \to 0,
$$

showing convergence in probability.

At a high-level the convergence in qm requirement penalizes X_n for having large deviations from X by both how frequent the deviation is but also by the magnitude of the deviation. On the other hand convergence in probability only penalizes you for how frequent the deviation is and hence is a weaker notion of convergence.

Counterexample to reverse: Suppose we take $U \sim U[0, 1]$ and define $X_n = \sqrt{n}[0, 1/n](U)$, then X_n converges in probability to 0 but does not converge in quadratic mean to 0.

To see this:

$$
P(|X_n| \geq \epsilon) = P(\sqrt{n}[0, 1/n](U) \geq \epsilon) = P(U \in [0, 1/n]) = \frac{1}{n} \to 0.
$$

On the other hand,

$$
E(X_n - X)^2 = EX_n^2 = nP(U \in [0, 1/n]) = 1.
$$

Observe that most of the time the RV X_n takes the value 0, but when it does not it takes a huge value.

5.4.2 Convergence in probability \implies convergence in distribution

This one is a little bit involved but perhaps also useful to know. The idea roughly is to trap the CDF of X_n by the CDF of X with an interval whose length converges to 0.

We fix a point x where the CDF $F_X(x)$ is continuous. Choose an arbitrary $\epsilon > 0$. We have that,

$$
F_{X_n}(x) = P(X_n \leq x) = P(X_n \leq x, X \leq x + \epsilon) + P(X_n \leq x, X \geq x + \epsilon)
\leq P(X \leq x + \epsilon) + P(|X_n - X| \geq \epsilon)
= F_X(x + \epsilon) + P(|X_n - X| \geq \epsilon).
$$

Now,

$$
F_X(x - \epsilon) = P(X \leq x - \epsilon) = P(X \leq x - \epsilon, X_n \leq x) + P(X \leq x - \epsilon, X_n \geq x)
\leq F_{X_n}(x) + P(|X_n - X| \geq \epsilon).
$$
Putting these two together we have,

\[F_X(x - \epsilon) - \mathbb{P}(|X_n - X| \geq \epsilon) \leq F_{X_n}(x) \leq F_X(x + \epsilon) + \mathbb{P}(|X_n - X| \geq \epsilon). \]

Intuitively, now as \(n \) gets large the two probabilities converge to 0, and since \(\epsilon \) was chosen arbitrarily we can let \(\epsilon \to 0 \) and use the continuity of \(F_X(x) \) at \(x \) to conclude that \(F_{X_n}(x) \to F_X(x) \).

Slightly more rigorously, we cannot assume that the limit of \(F_{X_n}(x) \) exists so we instead need to use lim infs and lim sups (do not worry about this if you have not seen it before). Formally, we would take the lim sup of the first half to obtain that,

\[\limsup_{n \to \infty} F_{X_n}(x) \leq F_X(x + \epsilon), \]

and similarly that,

\[\liminf_{n \to \infty} F_{X_n}(x) \geq F_X(x - \epsilon), \]

and conclude that,

\[F_X(x - \epsilon) \leq \liminf_{n \to \infty} F_{X_n}(x) \leq \limsup_{n \to \infty} F_{X_n}(x) \leq F_X(x + \epsilon). \]

Now since \(\epsilon > 0 \) was arbitrary, we can take the limit as \(\epsilon \to 0 \) and use continuity to conclude the desired convergence in distribution.

Counterexample to reverse: This of course is almost trivial since two random variables having the same distribution does not in any sense mean that they are close (see Lecture 4 notes for an example).

An important caveat: An important exception is that when \(X \) is deterministic then convergence in distribution implies convergence in probability. Concretely, fix \(\epsilon > 0 \), consider the case when \(X = c \), then

\[\mathbb{P}(|X_n - c| > \epsilon) = \mathbb{P}(X_n > c + \epsilon) + \mathbb{P}(X_n < c - \epsilon) \]

\[= F_{X_n}(c - \epsilon) + 1 - F_{X_n}(c + \epsilon) \]

\[\to F_X(c - \epsilon) + 1 - F_X(c + \epsilon) = 0. \]

using convergence in distribution and the fact that at both \(c + \epsilon \), and \(c - \epsilon \), the distribution function \(F_X \) is continuous.

5.5 Other things that are very useful to know

5.5.1 Continuous mapping theorem

If a sequence \(X_1, \ldots, X_n \) converges in probability to \(X \) then for any continuous function \(h, h(X_1), \ldots, h(X_n) \) converges in probability to \(h(X) \). The same is true for convergence in distribution.
This is useful because often we will have a consistent estimator for some parameter, and this theorem allows to construct estimators for some function of the parameter in a straightforward way.

5.5.2 Slutsky’s theorem

There are some important consequences of the fact that convergence in distribution is weaker than convergence in probability.

Concretely, for convergence in probability (and stronger forms of convergence) it is the case that, if X_n converges in probability to X and Y_n converges in probability to Y then $X_n + Y_n$ converges in probability to $X + Y$, and the same is true of products, i.e. X_nY_n converges in probability to XY.

These statements are not true for convergence in distribution, i.e. if X_n converges in distribution to X and Y_n converges in distribution to Y then $X_n + Y_n$ does not necessarily converge in distribution to $X + Y$.

The one exception to this is known as Slutsky’s theorem. It says that if Y_n converges in distribution to a constant c, and X converges in distribution to X: then $X_n + Y_n$ converges in distribution to $X + c$ and X_nY_n converges in distribution to cX.

5.5.3 Convergence of moments is not implied by convergence in probability

Convergence in probability is actually quite weak as a form of convergence. We have seen previously that it does not imply quadratic mean convergence. Now we will see that it does not even imply something much simpler.

If we have X_n converges in probability to some constant c, then it is not the case that $\mathbb{E}[X_n]$ converges to c.

Here is an example of this non-convergence. Let X_n be 0 with probability $1 - 1/n$ and n^2 with probability $1/n$. Then X_n converges to 0 in probability, but $\mathbb{E}[X_n] = n \to \infty$.

This is a manifestation of the same phenomena as we saw in the counterexample to qm convergence. On the events when $|X_n| \geq \epsilon$ it has a huge value and this affects the moments but does not affect the convergence in probability (which only cares about how frequent this violation is).
5.6 The central limit theorem

We will now state and prove a form of the central limit theorem, which is one of the most famous examples of convergence in distribution.

Let X_1, X_2, \ldots, X_n be a sequence of independent random variables with mean μ and variance σ^2. Assume that the mgf $\mathbb{E}[\exp(tX_i)]$ is finite for t in a neighborhood around zero. Let

$$S_n = \frac{\sqrt{n}(\hat{\mu} - \mu)}{\sigma},$$

then S_n converges in distribution to $Z \sim N(0, 1)$.

Comments:

1. The central limit theorem is incredibly general. It does not matter what the distribution of X_i is, the average S_n converges in distribution to a Gaussian (under fairly mild assumptions).

2. The most general version of the CLT does not require any assumption about the mgf. It just requires that the mean and variance are finite. We will prove this weaker version in lecture.

5.6.1 Use Case

We should try to understand why the CLT might be useful. Roughly, the CLT allows to make approximate probability statements about averages using corresponding statements about standard normals. At a high-level instead of using a different tail bound for different types of averages (sub-Gaussian, sub-exponential, bounded etc.) we can now just use the Gaussian CDF although our results will only be approximate.

I will introduce a simple use case: we will discuss this idea again later on in more detail when we discuss confidence intervals.

Suppose for now that we are averaging i.i.d. RVs with known variance (and unknown mean μ). Typically one would also estimate the variance but this will not change much. We would like to construct a confidence interval for the unknown mean. For some parameter α this is an interval C_{α} such that,

$$\mathbb{P}(\mu \in C) \geq 1 - \alpha.$$

One might guess that we would center such an interval around the sample average $\hat{\mu}$ but the main difficulty is that we do not know the distribution of $\hat{\mu}$. We can see that,

$$\mathbb{P}(\mu \in [\hat{\mu} - t, \hat{\mu} + t]) = \mathbb{P}(|\hat{\mu} - \mu| \leq t).$$
So we would like to choose t to make this probability at least $1 - \alpha$. One can construct such intervals using tail bounds (see HW3) but we will instead construct an approximate interval using the CLT. Using the CLT we know that distribution of $\hat{\mu} - \mu$ converges to a normal with mean 0, and variance σ^2/n, i.e.

$$P(|\hat{\mu} - \mu| \leq t) \approx P \left(|Z| \leq \frac{\sqrt{n}t}{\sigma} \right).$$

Now, if we let $\Phi(x) = P(Z \leq x)$ denote the standard normal CDF, then we can see that we need to choose $t = \sigma \Phi^{-1}(\alpha/2)/\sqrt{n} := \sigma z_{\alpha/2}/\sqrt{n}$.

To summarize, the interval:

$$C_\alpha = \left[\hat{\mu} - \frac{\sigma z_{\alpha/2}}{\sqrt{n}}, \hat{\mu} + \frac{\sigma z_{\alpha/2}}{\sqrt{n}} \right],$$

has the property that,

$$P(\mu \in C) \approx 1 - \alpha,$$

where we appealed to the CLT to justify this construction.

5.6.2 Preliminaries

Sanity Checks: Before we prove the theorem there are two very simple sanity checks that one might consider. The random variable S_n has mean 0, and variance:

$$E[S_n^2] = \frac{n}{\sigma^2}E(\hat{\mu} - \mu)^2 = 1.$$

So in some sense the normalizations (of subtracting μ and dividing by σ/\sqrt{n}) make sense. You should convince yourself that if you did not multiply by \sqrt{n} this would have a degenerate limit (i.e. would converge in distribution to a point mass at 0). Multiplying by \sqrt{n} is enlarging the fluctuations of the average around the expectations at just the right rate.

The other sanity check is to just notice that if $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, then S_n would have distribution exactly equal to that of Z. Roughly, if there was going to be a “universal limit” i.e. if the average was going to converge to a single distribution (irrespective of the distribution of X) then it has a to be a Gaussian distribution (just because we know that the average of Gaussians is Gaussian).

Calculus with mgfs: We need a few simple facts about mgfs that we will quickly prove.

Fact 1: If X and Y are independent with mgfs M_X and M_Y then $Z = X + Y$ has mgf $M_Z(t) = M_X(t)M_Y(t)$.

Proof: We note that,
\[M_Z(t) = \mathbb{E}[\exp(t(X + Y))] = \mathbb{E}[\exp(tX)]\mathbb{E}[\exp(tY)], \]
using independence.

Fact 2: If \(X \) has mgf \(M_X \) then \(Y = a + bX \) has mgf, \(M_Y(t) = \exp(at)M_X(bt) \).

Proof: We just use the definition,
\[M_Y(t) = \mathbb{E}[\exp(at + btX)] = \exp(at)\mathbb{E}[\exp(btX)]. \]

Fact 3: We will not prove this one (strictly speaking one needs to invoke the dominated convergence theorem) but it should be familiar to you. The derivative of the mgf at 0 gives us moments, i.e.
\[M_X^{(r)}(0) = \mathbb{E}[X^r]. \]

Fact 4: The most important result that we also will not prove is that we can show convergence in distribution by showing convergence of the mgfs.

Formally, let \(X_1, \ldots, X_n \) be a sequence of RVs with mgfs \(M_{X_1}, \ldots, M_{X_n} \). If for all \(t \) in an open interval around 0 we have that, \(M_{X_n}(t) \to M_X(t) \), then \(X_n \) converges in distribution to \(X \).

5.6.3 Proof

We will follow the proof from John Rice’s (Math Stat and Data Analysis) textbook. Larry’s notes have a nearly identical proof. First we recall that the mgf of a standard normal is simply \(M_Z(t) = \exp(t^2/2) \).

Note that,
\[M_{S_n}(t) = \left[M_{(X-\mu)}\left(\frac{t}{\sigma\sqrt{n}}\right) \right]^n, \]
using Facts 1 and 2. Now, one should imagine \(t \) as small and fixed so \(t/(\sigma\sqrt{n}) \) is quite close to 0. Taylor expanding the mgf around 0, and using Fact 3 we obtain
\[M_{S_n}(t) = \left[1 + \frac{t}{\sigma\sqrt{n}}\mathbb{E}(X - \mu) + \frac{t^2}{2n\sigma^2}\mathbb{E}(X - \mu)^2 + \frac{t^3}{6n^{3/2}\sigma^3}\mathbb{E}(X - \mu)^3 + \ldots \right]^n \]
\[\approx \left[1 + \frac{t^2}{2n}\right]^n \to \exp(t^2/2), \]
using the fact that,
\[\lim_{n \to \infty} (1 + x/n)^n \to \exp(x). \]