36-724 Spring 2006: EDA, Prediction, Classification, Modeling

Brian Junker

March 20, 2006

- Some Statistical / Data-Analytic Activities
- Prediction/Classification
- Linear Regression and Nearest Neighbors
- Features and Questions
Some Statistical / Data-Analytic Activities

• Exploratory Data Analysis; Ad-hoc Dimension Reduction; “Unsupervised Learning”
 – Elementary numerical and graphical summaries
 – PCA/FA/ICA/etc.
 – Clustering
 – Projection Pursuit
 – MDS
 – etc. etc.

• Prediction and Classification; “Supervised Learning”
 – Linear and nonlinear regression models; additive models;
 projection-pursuit regression and neural networks; etc.
 – k-nearest-neighbors;
 – Discriminant analysis; tree-based methods (CART); support-vector classifiers; etc.

• Scientific Modeling; “Statistical Science”
 – Experimental (medicine, agriculture, engineering) and survey (social sciences) data
Scientific Modeling; “Statistical Science” [continued]

- Models often directly reflect the structure and assumptions of the data collection (“experimental design”) or an underlying data generation theory (Rasch model; choice models; survival models; etc.)

None of these are model-free! However they are ordered from “weakest model” to “strongest model”:

- EDA
- Prediction and classification
- Scientific modeling

The boundaries are not strict.

Different sorts of model complexity depending on purpose (probabilistic models such as Hierarchical Bayes, vs algorithmic models such as K-nearest-neighbors). Both can be computationally complex!

Different measures of success depending on purpose (summarization, inference, prediction, ...).
Prediction/Classification

Types of problems

• Predict whether a patient, hospitalized due to heart attack, will have another. Use demographic, diet, clinical covariates.

• Identify the risk factors for prostate cancer, based on clinical and demographic covariates.

• Predict the price of a stock six months from now based on recent performance of the company and the economy.

• Identify the numbers in a handwritten zip code, from digitized images.

• Score the quality of an essay.

• Classify incoming email as spam or not spam.
Types of data

• Data is typically *multivariate* with many *features* or *coordinates*.

• There may or may not be many *cases*.

• For supervised learning problems, the data is typically broken up into

 – *Training set*: We use both the covariates (predictor variables) and true outcomes or classifications, to train the model to make good predictions (model fitting).

 – *Testing set*: Use the covariates to make model-based predictions and compare to the true outcomes/classifications.

Dividing up the data into training/testing sets is an example of the *cross-validation paradigm*. It tries to explicitly control the “bias/variance tradeoff” implicit in most model fitting and prediction.

Different from intrinsic model-fit indices like χ^2, likelihood ratio, Bayes factors. Penalized indices like AIC/BIC/etc. implicitly try to control “bias/variance tradeoff” (and are faster than cross-validation).
Linear Regression and Nearest Neighbors

Let Y be a random variable representing outcomes and $X = (X_1, \ldots, X_p)^T$ be a random vector of predictors (covariates). We wish to construct a function $f(x)$ such that $Y \approx f(X)$ over the joint distribution $P(dx, dy)$.

It is useful to think about is the expected prediction error,

$$EPE(f) = E[(Y - f(X))^2] = \int (y - f(x))^2 P(dx, dy)$$ \hspace{1cm} (*)

(Squared error loss $(Y - f(X))^2$ is not the only kind we can think about but it is convenient here). By conditioning we see that

$$EPE(f) = E_X \{ E_{Y|X}[(Y - f(X))^2|X] \}$$

so, to minimize $EPE(f)$, it suffices to consider

$$f(x) = \arg\min_c E_{Y|X}[(Y - c)^2|X = x] = E[Y|X = x]$$

So prediction and classification amount to obtaining good estimates of the regression function $E[Y|X = x]$.
Linear Regression

Linear regression tries to model \(f(x) = E[Y|X = x] \) by assuming that \(f(x) \approx x^T \beta \). Plugging this into (\(\ast \)) and differentiating to minimize over \(\beta \) we get that

\[
\beta = E[(XX^T)]^{-1}E[XY]
\]

As we know, solving the same problem for a data vector \(y = (y_1, \ldots, y_n)^T \) and data matrix \(X = [x_{ij}] \) with rows \(x_i^T \), and replacing the theoretical quantity (\(\ast \)) with

\[
S(\beta) = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2
\]

(note the connection with statistical functionals in bootstrapping), we obtain the usual least-squares estimator

\[
\hat{\beta} = (X^TX)^{-1}X^Ty
\]

so that

\[
\hat{f}(x) = x^T \hat{\beta}
\]
Nearest Neighbors

The nearest-neighbor approach attempts to estimate \(f(x) = \text{E}[Y|X = x] \), using the training data directly.

With probability 1, there will be 0 or 1 observations at any given \(x \). Therefore we settle for “nearby” points where there are observations to work with.

At each point \(x \), we find the set of \(k \) nearest neighbors \(N_k(x) \). Then \(k \)-nn estimates

\[
\hat{f}(x) = \text{Ave}\{y_i \mid x_i \in N_k(x)\}
\]

This involves two approximations or relaxations:

- Expectation is relaxed to averaging over sample data
- Conditioning on \(X = x \) is replaced by conditioning on \(X \in N(x) \) for some appropriate neighborhood \(N(x) \).
Features and Questions

Features

• Both linear regression and k-nn approximate the regression function $f(x) = E[Y|X = x]$ by averaging the data.

• Least squares assumes $f(x)$ is *globally linear* and uses global averages to approximate $f(x)$.

• k-nn assumes $f(x)$ is *locally constant* and uses local averages to approximate $f(x)$.

Questions

• Is either method optimal?

• If not, what is the optimal method?

• How can we generalize these methods to be more flexible about what is the form of the regression (linear regression) or what counts as a neighbor (k-nn)?