36-724 Spring 2006: EDA, Prediction, Classification, Modeling

Brian Junker

March 22A, 2006

- Choice of Loss in the Expected Prediction Error (EPE)
- Discrete Classification and the Bayes Classifier
- The Curse of Dimensionality
- MSE and the Bias-Variance Tradeoff
- K-fold Cross-Validation
- Directions in which to extend linear regression and k-nn methods
Choice of Loss in the Expected Prediction Error (EPE)

Let Y be a random variable representing outcomes and $X = (X_1, \ldots, X_p)^T$ be a random vector of predictors (covariates). We wish to construct a function $f(x)$ such that $Y \approx f(X)$ over the joint distribution $P(dx, dy)$.

We previously considered

$$EPE(f) = E[L(Y, f(X))] = \int (y - f(x))^2 P(dx, dy)$$

for squared error loss $L(Y, f(X)) = (Y - f(X))^2$, and concluded

$$f(x) = \arg\min_c E[Y|X][(Y - c)^2|X = x] = E[Y|X = x]$$

- For L_1 loss $L(Y, f(X)) = |(Y - f(X)|$, minimizing EPE leads to $f(x) = \text{median}(Y|X = x)$.
- In discrete classification problems with K categories, $Y \in \{1, \ldots, K\}$, may write the loss as a $K \times K$ matrix $L = [L(k, \ell)]$, where $L(k, \ell)$ is the loss in misclassifying a category-k object into category ℓ.

Discrete Classification and the Bayes Classifier

For the discrete loss matrix $L = [L(k, \ell)]$,

$$EPE = E[L(Y, f(X))] = E_X \left\{ \sum_{k=1}^{K} L(k, f(X))P(Y = k|X) \right\}$$

and again we can minimize pointwise to obtain

$$f(x) = \arg\min_{\ell} \sum_{k=1}^{K} L(k, \ell)P(Y = k|X = x)$$

When $L(k, \ell) = 1_{\{k \neq \ell\}}$, zero-one loss, we obtain

$$f(x) = \arg\min_{\ell} \sum_{k \neq \ell} P(Y = k|X = x)$$

$$= \arg\min_{\ell} \{1 - p(Y = \ell|X = x)\}$$

$$= \arg\max_{\ell} P(Y = \ell|X = x)$$

This the the posterior mode, or Bayes classifier. Its error rate is the Bayes rate.
The Curse of Dimensionality
Consider k nearest neighbor method applied to data uniformly distributed in the unit cube in \mathbb{R}^p.

- To capture a fraction r of the unit volume (analogous to k-nn for a fixed sample size) we need to encompass a cube of edge length $r^{1/p}$.
 As $p \to \infty$, $r^{1/p} \to 1$!

- Clearly data gets “farther apart” as p grows!

- Similarly, the sampling density in any small patch of the unit cube is proportional to $N^{1/p}$, so the SE for a local estimate of a mean or proportion “at a fixed distance” from x decreases like $N^{-1/2p}$.

- If $N = 100$ is sufficient to estimate a local mean in \mathbb{R}^1, need $N = 100^{10}$ observations to estimate the corresponding local mean in \mathbb{R}^{10}!
MSE and the Bias-Variance Tradeoff

Let \(\mathcal{T} = ((x_1, y_1), \ldots, (x_n, y_n)) \) be a training set on which we train our predictor \(\hat{y}_i = \hat{f}(x_i) \). Let \(y_0 = f(x_0) \) represent a new pair, or test point. We can write the mean-squared error in predicting \(y_0 \approx \hat{y}_0 = \hat{f}(x_0) \) as

\[
MSE(x_0) = E_{\mathcal{T}}[f(x_0) - \hat{y}_0]^2
\]

\[
= E_{\mathcal{T}}[\hat{y}_0 - E_{\mathcal{T}}(\hat{y}_0)]^2 + [E_{\mathcal{T}}(\hat{y}_0) - f(x_0)]^2
\]

\[
= Var_{\mathcal{T}}(\hat{y}_0) + Bias^2
\]

This is an average over the distribution of training sets, holding the test point fixed.

- For 1-nn:
 - For \(N \) large and \(p \) small, both terms can be small for 1-nn, e.g.
 - As \(p \) grows, neighbors get farther apart, and both terms can grow.
 - Certainly the variance grows due to the \(N^{-1/2} \) behavior mentioned above.

- For least squares regression \(Y = X\beta + \epsilon \):

\[
MSE(x_0) = E_{\mathcal{T}}[f(x_0) - \hat{y}_0]^2 = \sigma^2 + E_{\mathcal{T}}x_0^T(X^TX)^{-1}x_0\sigma^2
\]

\[
E_{x_0}MSE(x_0) = \int MSE(x_0)p(x_0)dx_0 = \sigma^2 + (p/N)\sigma^2
\]

- So by assuming a strong model we can reduce the effects of the curse of dimensionality [speeding the rate of \(MSE \to 0 \), from \(O(N^{-1/2}) \) to \(O(N^{-1}) \)].
What accounts for the difference?

- \(K \)-nn doesn’t impose any smoothness across the data space; it depends entirely on local averages. As \(p \) grows, there is very little local information from which to compute local averages.

- LS regression imposes smoothness across the data space, and relies on global averages. Thus it doesn’t rely on filling any local neighborhoods with sample points.

Note that

\[
E_{MS E} = \int_{x_0 \in \mathcal{D}} MSE(x_0) p(x_0) dx_0 = \int_{x_0 \in \mathcal{D}} E_T [f(x_0) - \hat{y}_0]^2 p(x_0) dx_0 = E_T \int_{x_0 \in \mathcal{D}} [f(x_0) - \hat{y}_0]^2 p(x_0) dx_0
\]

is a double average over training sets \(\mathcal{T} \) and test points \(x_0 \in \mathcal{D} \), the data space.

A typical estimate is to split the data into a training set \(\mathcal{T} \) and a test set \(\mathcal{S} \), fit \(\hat{y} = \hat{f}(x) \) on \(\mathcal{T} \), and then compute the sample MSE on \(\mathcal{S} \).

This

- Replaces the \(E_T \) with a plug-in for the particular \(\mathcal{T} \) we have to work with.
- Replaces integrating over the whole data space \(\mathcal{D} \) with averaging over the test set \(\mathcal{S} \).
Choosing the number *K* of cross validation groups

CV can also be interpreted as trying to estimate the true error rate of the optimal \(f_{\text{opt}}(x) \) via:

\[
\text{Error}(f_{\text{opt}}(\cdot)) \approx \frac{1}{K} \sum_{k=1}^{K} \text{Error}(\hat{f}^{-k}(\cdot)) \approx \frac{1}{N} \sum_{k=1}^{N} L(y, \hat{f}^{-k(i)}(x_i)) = CV
\]

- There is also a bias/variance tradeoff in *CV* estimates of prediction error:
 - *K large*: Less bias for the true prediction error; but potentially high variance because the *N* training sets are so similar to each other (hence different \(\hat{f} \)'s are highly dependent).
 - *K small*: tends to reverse these effects (smaller variance, larger bias).

Often the point of diminishing returns in this bias/variance tradeoff is around *K* = 5 or 10.

- *K = N* is called “leave-one-out” cross-validation. \(\hat{f}^{-k}(x) \) least biased for \(f_{\text{opt}}(x) \) (largest training sets), but most variance over replicated data sets (the training data sets are essentially all identical).
Using Cross-Validation

- In principle, let \(\alpha \) be any parameters of interest in \(f(x; \alpha) \), and define

\[
CV_K(\alpha) = \frac{1}{N} \sum_{k=1}^{N} L(y, \hat{f}_{-k(i)}(x_i; \alpha))
\]

- Can use cross-validation to estimate \(\hat{\alpha} \) (e.g. gradient-descent, etc.). This is sometimes done, but it is computationally expensive!

- Cross-validation is often useful for “tuning parameters” that are not part of the main model fitting but have to be set in some way
 - The list of variables/features to include in the model
 - The roughness penalty in a penalized function estimation problem
 - The degree of the polynomial in polynomial regression
 - The number of neighbors in \(k \)-nn
 - Etc.

Aside...

- For many linear smoothers (\(\hat{y} = S y \))

\[
CV_N = \frac{1}{N} \sum_{i=1}^{N} [y_i - \hat{f}_{-i}(x_i)]^2 = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{y_i - \hat{f}(x_i)}{1 - S_{ii}} \right]^2 \\
\approx \frac{1}{N} \sum_{i=1}^{N} \left[\frac{y_i - \hat{f}(x_i)}{1 - \text{trace}(S)/N} \right]^2 \equiv GCV
\]

This is *generalized cross-validation*; it can be faster than \(CV \), and it tends to smooth a bit more (choose models with lower \(df=\text{trace}(S) \)) than \(CV \).

- Other penalized methods based on \(df=\text{trace}(S) \) are also used (AIC, BIC, ...!)
Directions in which to extend linear regression and k-nn methods

- Linear regression needs to relax the assumptions made about $E[Y|X = x]$. This leads to
 - Generalized linear models, nonlinear regression
 - Penalized regression methods, spline-based methods
 - Generalized additive models; Projection Pursuit regression; neural networks
 - Basis functions and dictionary methods
 - Discriminant analysis methods
 - Etc.

- k-nn needs to strengthen the assumptions made about $E[Y|X = x]$. This leads to
 - Kernel-weighting the k nearest neighbors according to distance from x.
 - Fully-kernel-based methods (kernel density estimation; kernel regression methods; gaussian mixture models, etc.)
 - Support vector methods
 - Etc.