36-724 Spring 2006: Tree-based Methods

Brian Junker

March 24, 2006

- Introduction
- Regression Trees: Basic Ideas
- Classification Trees
- Some Pro’s and Con’s

Introduction

Last time we looked briefly at

- Generalized additive models: gam in R or Splus; package vgam (install from http://www.stat.auckland.ac.nz/PEOPLE/yee) extends gam to multinomial response models (e.g. classification with more than two groups).

- Projection Pursuit regression: ppr in Splus; ppr in library(MASS) (R or Splus); package classPP in R; and neural network models: nnet in R or Splus.

Today we will look at

- Tree-based methods; and Classification and Regression Trees in particular (rpart in R or Splus; package tree in R).
Choosing a completely optimal partition is usually computationally infeasible. Recursive partitioning (rpart in R/Splus; CART in the literature) proceeds in a top-down, one-variable-at-a-time, greedy fashion.

Suppose we have a partition R_1, R_2, \ldots, R_M and we want to decide whether and where to split the mth element of the partition R_m:

$$\hat{y}_i = \sum_{m=1}^{M} c_m 1_{\{x_i \in R_m\}}$$

Under squared-error loss,

$$c_m = \frac{\sum_{i=1}^{M} y_i 1_{\{x_i \in R_m\}}}{\sum_{i=1}^{M} 1_{\{x_i \in R_m\}}} = \frac{1}{N_m} \sum_{x_i \in R_m} y_i = \bar{y}_m$$

(and other losses give corresponding point estimates).

Choosing the partition

Choosing a completely optimal partition is usually computationally infeasible. Recursive partitioning (rpart in R/Splus; CART in the literature) proceeds in a top-down, one-variable-at-a-time, greedy fashion.

Suppose we have a partition R_1, \ldots, R_{M-1} and we want to decide whether and where to split the m^{th} element of the partition R_m into two pieces:

$$R_m^{(1)}(j, s) = \{x : x_j \leq s\} \quad \text{and} \quad R_m^{(2)}(j, s) = \{x : x_j > s\}$$

(where x_j is the j^{th} coordinate of $x = (x_1, \ldots, x_d)$).

Then under squared error loss we really want to find $j, s, c_m^{(1)}$ and $c_m^{(2)}$ solving

$$\min_{j,s} \left[\min_{c_m^{(1)}} \sum_{x_i \in R_m^{(1)}(j,s)} (y_i - c_m^{(1)})^2 + \min_{c_m^{(2)}} \sum_{x_i \in R_m^{(2)}(j,s)} (y_i - c_m^{(2)})^2 \right]$$

For any j, s the inner minimia are achieved by setting

$$c_m^{(k)} = \text{ave}\{x : x \in R_m^{(k)}\}$$

and the outer minimum is now a matter of searching over j and optimizing over s (which is also essentially a discrete optimization).
Classification Trees

When \(y_i \) indicates class membership (\(y_i = k \iff i \in \text{Class } k \)), a classification tree can be built in the same way, with two minor modifications:

- In partition element \(R_m \) we estimate all \(K \) class membership probabilities:
 \[
 \hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} 1_{\{y_i = k\}}
 \]
 and for \((x, y)\) with \(x \in R_m \) we predict \(\hat{y} = \arg\max_k \hat{p}_{mk} \equiv k(m) \). Note that all observations in \(R_m \) get assigned to the same class, \(k(m) \).
- Usually squared error loss is not used for \(R(T) \). Instead, some common choices are:
 - Misclassification rate: \(R(T) = \frac{1}{N_m} \sum_{x_i \in R_m} 1_{\{y_i \neq k(m)\}} = 1 - \hat{p}_{mk(m)} \)
 - Gini index: \(R(T) = \sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}) \)
 - Information index: \(R(T) = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk} \)

Growing a tree

The usual approach to growing a tree proceeds in two phases:

- Phase 1: Grow a “full” tree, starting from a single partition element \(R_1 \) consisting of the entire set of rows of \(X \), and continuing to recursively divide elements until there are a minimum number of observations (say, 5) in each partition element. This maximal tree is called \(T_0 \).
- Phase 2: For each \(\alpha \), collapse \(T_0 \) to a subtree \(T = T_\alpha \) that minimizes
 \[
 PL(T) = R(T) + \alpha |T|
 \]
 where \(R(T) \) is some appropriate measure of loss (e.g. squared error) and \(|T| \) is size, in number of leaves, of \(T \). \(T_\alpha \) can be found greedily, that is by successively collapsing the internal node that least increases \(R(T) \) [see Breiman et al., (1984) or Ripley (1996)].

In practice, \(R(T) \) is usually computed by 5- or 10-fold cross validation. The final \(\alpha \), and hence final \(T_\alpha \), can be chosen from a plot of \(\alpha \) vs \(PL(T) \) or of \(\alpha \) vs. \(R(T) \), etc. This is called cost-complexity pruning.
Some Pro’s and Con’s

− Their (cross-validation or test-data-set) error rates are usually not as good as other methods.
− Trees have a hard time capturing smooth structure, additive regression structure, interactions, and more generally structure that is not “parallel” to the coordinate axes of the features \(X\) (*this is a bias issue*).
+ Trees are easy to interpret (splits on individual variables) and easy to implement as simple classifiers.
+ Since classification trees essentially give estimates \(\hat{p}_{mk(m)}\) of the likelihood, it is easy to combine them with prior class probabilities to get posterior probabilities of class membership.
+ Loss functions for misclassification can be incorporated into the splitting process, e.g. if we have a loss matrix \(L_{kk'}\) it can be incorporated into the Gini index as \(\sum_{k\neq k'} L_{kk'} \hat{p}_{mk} \hat{p}_{mk'}\).
− Trees are highly dependent on the configuration of the training data and have high variance over repeated training samples (*this is a variance issue*).

We will return to tree based methods later to see how model averaging procedures can improve the bias and variance of tree classifiers (at the expense of simple interpretability!).

Comments on the different loss functions

- All (Misclassification, Gini, Info) are similarly-shaped but Misclassification is not continous; the others work better in optimization
- Gini and Information tend to be better at isolating areas of the space where there are no observations, and no more work has to be done.
- Usually *cost-complexity pruning* is guided by misclassification rate, even if some other loss function was used to grow the tree.

For two classes, with \(p = \) prob. of first class,

\[
R_{\text{Misclass}} = 1 - \max(p, 1 - p) \\
R_{\text{Gini}} = 2p(1 - p) \\
R_{\text{Info}} = -[p \log(p) + (1 - p) \log(1 - p)]
\]