36-724 Spring 2006: Model Averaging

Brian Junker

April 5b, 2006

- How to Improve Models?
- Bayesian Approach
- Resampling / Sample Re-Use Approach
How to Improve Models?

Improve for what?

• *Model selection* tries to pick a “best” model (or a few “almost best”…).

 – The models \(M_1, \ldots, M_M \) might represent competing “generative” or “scientific” hypotheses for the data-generation process. Maybe…

 ∗ We want to pick the best scientific explanation.

 ∗ We want to pick the best “generative” explanation; etc.

 ∗ We want to pick the most likely/parsimonious/etc. model.

 – What if there is no “best”?

 – What if we just want to know whether the next email is spam?
Model averaging tries to make the “best” prediction by combining predictions of several models.

- Each of the models \(M_1, \ldots, M_M \) might seem equally plausible. Can we make a better prediction by consulting all \(M \) models?
- Each of the models \(M_1, \ldots, M_M \) might predict in one region of the data space really well, but be terrible by global measures of prediction error. Can we combine them in some way to make a better global predictor?
- What if we want a simple, generative or scientific, explanation?

It turns out model selection methods can be adapted to the task of model averaging.

We’ll look at this from two perspectives:

- **Bayesian**
- **Resampling / Sample Re-Use**
Bayesian Approach

Model Selection

For $\ell = 1, \ldots, M$ we know that

$$p(y|\mathcal{M}_\ell) = \int p(y|\theta, \mathcal{M}_\ell)p(\theta|\mathcal{M}_\ell)d\theta$$

and we may choose model \mathcal{M}_m if it maximizes the posterior probability

$$p(\mathcal{M}_m|y) = \frac{p(y, \mathcal{M}_m)}{p(y)} = \frac{p(y|\mathcal{M}_m)p(\mathcal{M}_m)}{\sum_\ell p(y|\mathcal{M}_\ell)p(\mathcal{M}_\ell)}$$

If we take $p_\ell = p(\mathcal{M}_\ell) \equiv 1/M$, and we use the Laplace approximation to the posterior under each model

$$-2 \log p(y|\mathcal{M}_\ell) \approx BIC_\ell = -2 \log p(y|\hat{\theta}, \mathcal{M}_\ell) + d_\ell \log(N)$$

then

$$p(\mathcal{M}_m|y) \approx \frac{e^{-\frac{1}{2}BIC_m}}{\sum_\ell e^{-\frac{1}{2}BIC_\ell}}$$
Model Averaging

Here the goal is prediction. For one model, the Bayesian paradigm tells us

\[p(y_{\text{test}}|y_{\text{train}}) = \int p(y_{\text{test}}|\theta)p(\theta|y_{\text{train}})d\theta \]

For the \(\ell \)th model \(M_\ell \),

\[p(y_{\text{test}}|y_{\text{train}}, M_\ell) = \int p(y_{\text{test}}|\theta, M_\ell)p(\theta|y_{\text{train}}, M_\ell)d\theta \]

Now letting the model index \(\ell \) play the role of parameter \(\theta \) and replacing integration with summation, for \(M \) models we have

\[
p(y_{\text{test}}|y_{\text{train}}) = \sum_{\ell=1}^{M} p(y_{\text{test}}|y_{\text{train}}, M_\ell)p(M_\ell|y_{\text{train}})
\]

\[
= \sum_{\ell=1}^{M} \int p(y_{\text{test}}|\theta, M_\ell)p(\theta|y_{\text{train}}, M_\ell)d\theta p(M_\ell|y_{\text{train}})
\]

Basically, we weight each model’s prediction with its posterior probability!
Methods

We need methods for calculating $p(M_\ell|y)$...

- BIC approximation

\[
p(M_m|y) \approx \frac{e^{-\frac{1}{2}BIC_m}}{\sum_\ell e^{-\frac{1}{2}BIC_\ell}}
\]

- Formally, the Bayesian model selection model is the same as the latent class / clustering / discrete mixture problem we saw earlier
 - The data-generation process “belongs to” latent class ℓ if $y \sim M_\ell$
 - $P(M_\ell|y) = P[\text{data generation process “belongs to” class } \ell \mid y]$
 - So we need to calculate these posterior probabilities...

- Let $z_\ell = 1$ iff $y \sim M_\ell$; we are trying to estimate $P[z_\ell = 1|y]$. This is like estimating class membership probabilities in the latent class model
- MCMC methods can work. However, jumping from one model to another, it is difficult to maintain the “detailed balance” equations that were needed for MCMC convergence.

 * Reversible-jump MCMC (Green, *Biometrica*, 1995, 711–732) designed for this.

 * Some simple versions appear to be implemented in WinBUGS (I haven’t tried them though!)

- The z_ℓ’s are *missing data* and an E-M algorithm can be employed to get posterior-mode estimates of $P[z_\ell = 1|y]$. More later...
Resampling / Sample Re-Use Approach

Model Selection

We have just been exploring these ideas. They are all based on trying to estimate the extra-sample prediction error \(\text{Err} = E[L(Y, \hat{f}(X))] \) by re-using the data.

- Training-set prediction error.
- Adjusting training-set error for “optimism” by various complexity penalties (AIC, BIC, SRM, …).
- Split-half cross-validation prediction error.
- \(K \)-fold cross-validation prediction error.
- Various Bootstrap prediction error ideas.

We choose the model with the smallest prediction error (or a collection of models with similar small prediction error).
Model Averaging

Here “averaging” has a simple meaning. If we construct B “replicates” of the data, we want to average or aggregate predictions from classifiers built from each “data replicate”.

We will pursue two simple versions of this idea:

- Bagging
- Stacking, aka Boosting
Bagging

Bagging is (B)ootsrap (Ag)gregating models. The idea is simple:

- Construct B bootstrap samples S_1, \ldots, S_B.
- Train our prediction/classification function separately on each classifier, yielding $\hat{f}^*1(x), \ldots, \hat{f}^*B(x)$
- The bagged estimator is then

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{i=1}^{B} \hat{f}^*b(x)$$
Stacking or Boosting

The idea here is similar to projection-pursuit regression.

Basically we build up a prediction function

\[\hat{y} = \hat{f}_1(x) + \hat{f}_2(x) + \cdots \hat{f}_B(x) \]

by

- Fitting \(\hat{y} = \hat{f}_1(x) \) alone and calculating the residuals \(r_1 = y - \hat{f}_1(x) \)
- Fitting \(\hat{r}_1 = \hat{f}_2(x) \) and calculating the residuals \(r_2 = r_1 - \hat{f}_2(x) \)
- Fitting \(\hat{r}_2 = \hat{f}_3(x) \) and calculating the residuals \(r_3 = r_2 - \hat{f}_3(x) \)…
- …and repeating until it doesn’t do any more good.