Homework 1

36-350: Data Mining

SOLUTIONS

1. (a) What is the bag-of-words representation of the sentence “to be or not to be”?

 Answer: A vector with one component for each word in our dictionary, all of them zero except for the following:

 \[
 \begin{array}{ccc}
 \text{be} & \text{not} & \text{or} & \text{to} \\
 2 & 1 & 1 & 2
 \end{array}
 \]

 This is the format given by

 \text{table(c("to","be","or","not","to","be"))}

 (b) Suppose we search for the above sentence via the keyword “be”. What is the bag-of-words representation for this query, and what is the Euclidean distance from the sentence?

 Answer: A vector whose only non-zero component is that for “be”, where the count is 1. The Euclidean distance is

 \[
 \sqrt{(2 - 1)^2 + (1 - 0)^2 + (1 - 0)^2 + (0 - 2)^2} = \sqrt{7}
 \]

 (c) Describe how weighting words by inverse-document-frequency (IDF) should help when making a Web query for “The Principles of Data Mining.”

 Answer: It keeps us from wasting time on words like “the” and “of”, and emphasize the less-common, more-informative words “principles”, “data” and “mining”; something titled “Data Mining Principles” is a good match.

 (d) Describe a simple text search that could not be carried out effectively using a bag-of-words representation (no matter what distance measure is used). “Simple” means no high-level understanding of English is required.

 Answer: There are many; but a search for the \textit{exact phrase} “to be or not to be” is impossible.
2. (a) What is the Euclidean distance between each of the vectors $(1, 0, 0)$, $(1, 4, 5)$, and $(10, 0, 0)$?

Answer: The distance between the first and second vectors is $\sqrt{41} \approx 6.4$; between the first and third is 9; and between the second and third is $\sqrt{122} \approx 11$.

(b) Divide each vector by its sum. How do the relative distances change?

Answer: The first and third vectors become the closest pair.

(c) Divide each vector by its Euclidean length. How do the relative distances change?

Answer: The first and third vectors again become the closest pair.

(d) Suppose we’re using the bag-of-words representation for similarity searching with a Euclidean metric. Describe how the previous parts of the question illustrate a potential problem if we do not normalize for document length.

Answer: Documents with the same distribution of words but different sizes will appear to be very far apart.

(e) Consider the conventional searching scheme where the user picks a set of keywords and the system returns all documents containing those keywords. Describe how the previous parts of the question illustrate a potential problem with this type of search.

Answer: The second vector contains the first keyword, but it’s a small part of it, and return it because it’s a match will lower the precision.
3. (a) Create document vectors for each of the posts under talk.politics.misc and talk.religion.misc. What command would you use to extract the 57th word of post number 176845 in talk.politics.misc? (If this is working right, the word should be “escaped”.) Give a command to count the number of times the word “the” appears in that post. (There are at least two ways to do this. The correct answer is 7.)

Answer: Make the word vector in question by a command like

\[\text{politics.176845} = \text{read.doc(}"\text{talk.politics.misc/176845.txt}\text{"}) \]

and then extract the component by

\[\text{politics.176845}[57] \]

To count the number of times “the” appears, you can use

\[\text{sum(politics.176845 == }"\text{the}\text{"})} \]

or

\[\text{table(politics.176845)[}"\text{the}\text{"}]} \]

I’m sure there are other ways as well.

(b) Give the commands you would use to construct a bag-of-words data-frame from the document vectors for the talk.politics.misc and talk.religion.misc posts.

Answer: Something like this would work.

\[\text{pol.rel.list} = \text{list(politics.176845, politics.176846, politics.176851, politics.176856, politics.176858, politics.176859, politics.176860, politics.176862, religion.82757, religion.82759, religion.82762, religion.82764, religion.82765, religion.82775, religion.82777, religion.82778)} \]

\[\text{pol.rel.names} = \text{c(}"\text{politics.176845","politics.176846","politics.176851","politics.176856","politics.176858","politics.176859","politics.176860","politics.176862","religion.82757","religion.82759","religion.82762","religion.82764","religion.82765","religion.82775","religion.82777","religion.82778\text{")}\]

\[\text{pol.rel} = \text{make.BoW.frame(}\text{pol.rel.list, row.names=}\text{pol.rel.names, remove.singletons=}\text{FALSE})\]

Note that the row names are optional, but do help to keep track.

(c) Create distance matrices from this data frame for (a) the straight Euclidean distance, (b) the distance with sum-of-entries scaling and (c) the distance with vector-length scaling, and then for all three again with inverse-document-frequency weighting. Give the commands you use.

Answer:
(d) For each of the six different difference measures, what is the average distance between posts in the same newsgroup and between posts in different newsgroups? (Include the R command you use to compute this — don’t do it by hand!)

Answer: First, create an array which gives the class labels. We have 16 documents, the first eight of which are about politics, followed by 8 on religion.

```r
doc.class.labels = c("politics","politics","politics","politics","politics","politics","politics","politics","religion","religion","religion","religion","religion","religion","religion")
```

Now create a matrix which says whether or not two documents belong to different classes.

```r
ndocs = length(doc.class.labels)
are.different = (matrix(doc.class.labels,nrow=ndocs,ncol=ndocs,byrow=TRUE) != matrix(doc.class.labels,nrow=ndocs,ncol=ndocs))
```

The first `matrix()` command makes a square array where each row repeats the class labels; the second one creates a square array where the columns repeat the class labels. The comparison `!=` checks whether the matrices are the same term by term, so it gives us back a matrix whose \([i,j]\) entry is `TRUE` if documents \(i\) and \(j\) belong to different classes. Now we can get the average distances between documents in different classes:

```r
mean(pol.rel.dist[are.different])
mean(pol.rel.dist.sum[are.different])
mean(pol.rel.dist.len[are.different])
mean(pol.rel.idf.dist[are.different])
mean(pol.rel.idf.dist.sum[are.different])
mean(pol.rel.idf.dist.len[are.different])
```

We also need a matrix which says whether two distinct documents belong to the same class.

```r
are.same = ! are.different
diag(are.same) = FALSE
```

We then compute the average within-class distance by using `are.same` in place of `are.different`
Create multidimensional scaling plots for the different distances, and describe what you see. Include the code you used, the plots, and explanations for the code.

Answer: I’ll use the basic command `cmdscale()`, which returns a matrix whose columns give the new coordinates. I write a little function to plot the points from the two classes in two different colors.

```r
plot.cmdscale <- function(distances, labels, class.colors = c("red","blue"), ...) {
  # Should really check that the size of distances = (length of labels)^2
  # and that both arguments make sense
  # What are the different labels?
  label.values = unique(labels)
  num.labels = length(label.values)
  # Re-cycle the colors if need be
  if (length(class.colors) < num.labels) {
    class.colors = rep(class.colors, length.out = num.labels)
  }
  # Make it so that we can access colors by the corresponding labels
  names(class.colors) = label.values
  # Make a vector giving the class colors in order
  cols.vec = class.colors[labels]
  # Get the MDS coordinates
  mds.coords = cmdscale(distances)
  # Plot the points: by using a vector for the color argument, we control the
  # color for each point
  plot(mds.coords, col = cols.vec, ...)
  return(invisible(mds.coords))
}
```
4. Comment the `sq.Euc.dist` function — that is, go over it and explain, in English, what each line does, and how the lines work together to calculate the function.

Answer: The key observation is that \(\|\vec{x} - \vec{y}\|^2 = \|\vec{x}\|^2 - 2\vec{x} \cdot \vec{y} + \|\vec{y}\|^2 \) for any vectors \(\vec{x} \) and \(\vec{y} \). (Exercise: show this!) The function uses this to efficiently compute the squared distance, avoiding explicit iteration loops (which are slow in R) and avoid computing the same \(\|\vec{x}\|^2 \) and \(\|\vec{y}\|^2 \) terms over and over again.

```r
sq.Euc.dist <- function(x,y=x) { # Set default value for second argument
  x <- as.matrix(x) # Convert argument to a matrix to make sure
  # it can be manipulated as such
  y <- as.matrix(y) # Ditto
  nr=nrow(x) # Count the number of rows of the first argument
  # This is the number of rows in the output matrix
  nc=nrow(y) # Count number of rows in the second argument
  # This is the number of COLUMNS in the output
  x2 <- rowSums(x^2) # Find sum of squares for each x vector
  xsq = matrix(x2,nrow=nr,ncol=nc) # Make a matrix where each COLUMN is a copy
  # of x2 --- see help(matrix) for details on
  # "recycling" of arguments --- matrix is
  # sized for output
  y2 <- rowSums(y^2) # Find sum of squares for each y vector
  ysq = matrix(y2,nrow=nr,ncol=nc,byrow=TRUE) # Make a matrix whose [i,j] entry is the dot product of x[i,] and y[j,]
  xy = x %*% t(y) # You should check that this has nr rows and nc columns!
  d = xsq + ysq - 2*xy # Add partial result matrices
  # Remember that for vectors x and y
  # \|x-y\|^2 = |x|^2 - 2x*y + |y|^2
  # writing * for the dot product. So d has as its [i,j] entry the squared
  # norm of x[i,] plus the squared norm of y[j,] minus twice their dot product
  # Make the diagonal EXACTLY zero if the two arguments are the same
  if(identical(x,y)) diag(d) = 0
  # Need to use the identical() function to see if two whole objects are the
  # same --- using "x==y" here would give a MATRIX of Boolean values
  # Distances are >= 0, negative values are presumably from numerical errors in
  # calculating numbers close to zero; fix them
  d[which(d < 0)] = 0
  return(d) # Return the tidied-up matrix of squared distances
}
```

This is more detailed than it strictly needs to be.
5. (a) Explain what the “cosine distance” has to do with cosines.

Answer: From vector algebra, we know that for any vectors \(\vec{x} \) and \(\vec{y} \),

\[
\vec{x} \cdot \vec{y} = \sum_i x_i y_i = \|\vec{x}\| \|\vec{y}\| \cos \theta_{\vec{x}\vec{y}}
\]

where \(\theta_{\vec{x}\vec{y}} \) is the cosine of the angle between the vectors. The cosine distance is the dot product divided by the product of the norms, so it’s that cosine.

(b) Calculate, by hand, the cosine distances between the three vectors in question 2.

Answer: The cosine distance between the first and the third vector is clearly 1, and between either of them and the second vector is \(\approx 0.15 \).

(c) Write a function to calculate the matrix of cosine distances (really, similarities) between all the vectors in a data-frame. Hint: you may want to use the \texttt{distances} function. Check that your function agrees with your answer to the previous part.

Answer: The \texttt{distances} function can take an optional argument which is a function to apply to each pair of vectors from the two matrices. So first let’s define functions which compute the dot product and the cosine distance for a pair of vectors.

\begin{verbatim}
Define functions to compute dot product and cosine distance

dot.product = function(x,y) {
 return(sum(x*y)) # With vectors, * does component-by-component multiplication
}

cosine.dist.pair = function(x,y) {
 dp = dot.product(x,y) # Pass off work to dot.product()
 norm.x = sqrt(sum(x^2)) # Square each component, sum, square root
 norm.y = sqrt(sum(y^2)) # Ditto
 return(dp/(norm.x*norm.y))
}

Define a function to calculate cosine distances for a single vector

cosine.dist.1 = function(x) {
 return(distances(x,fun=cosine.dist.pair))
}

Define a function to calculate cosine distances for a single vector
after dividing each vector by its Euclidean length

cosine.dist.2 = function(x) {
 y = div.by.euc.length(x)
 return(distances(y,fun=dot.product))
}
\end{verbatim}
Exercise: Why does this work? How does this avoid recomputing the norms of the vectors?

6. Write a function to find the document which best matches a given query string. You can pick the distance measurement, but you should include inverse document-frequency weighting.

Answer: The easiest way to do this is to use the nearest.points function in the provided code. The one tricky bit is making sure that the query string is turned into a bag-of-words vector using the same dictionary as the documents.

```r
# Return the index of the document which best matches a given query string
# First we convert the query string into a document vector, then into
# a bag of words, and then we remove terms not in the lexicon of the data
# frame storing the bag-of-words vectors for the documents
# Note that these last removed words add the same amount to the (squared)
# distance between the query and any document’s bag of words, so those words
# do not change which document is closest
# Inputs: query (vector of strings), data frame of bag-of-word vectors
# Presumes: a data frame has been created for bag-of-word vectors, column
# names being words
# Calls: strip.text(), get.idf.weight(), nearest.points()
# Output: Index of the document, name of the corresponding row in data frame

query.by.similarity <- function(query, BoW.frame) {
  # Prepare the query BoW vector for comparison with the target documents
  query.vec = strip.text(query) # Turn the query into a vector of words
  query.BoW = table(query.vec) # Turn it into a bag of words
  lexicon = colnames(BoW.frame) # PRESUMES: BoW.frame has been made so words are
  # the column names
  query.vocab = names(query.BoW) # What words appear in the query?
  # Restrict the query to words in the lexicon
  query.lex = query.BoW[intersect(query.vocab, lexicon)]
  # Add zero entries for lexicon words not found in the query
  query.lex[setdiff(lexicon, query.vocab)] = 0
  # query.lex now has all the right entries, but the words are out of order!
  # Why does the following trick work?
  query.lex = query.lex[lexicon]
  # Finally, turn it into a one-row matrix
  q = t(as.matrix(query.lex))

  # Do IDF scaling on the targets AND the query
  # The function idf.weight calculates the weights and re-scales the
  # data-frame but we need the weights to re-scale the query as well so we
  # write our own function get.idf.weights() --- see below
  # Get the weights
  idf = get.idf.weights(BoW.frame)
```
Scale the columns in BoW.frame
BoW = scale.cols(BoW.frame,idf)

Scale the columns in q
q = q * idf

Scale the rows by Euclidean length
BoW = div.by.euc.length(BoW)

Ditto the query
q = q/sqrt(sum(q^2))

Find the closest match between q and BoW.idf
best.index = nearest.points(q,BoW)$which
Use row names from the data for a little extra comprehensibility
best.name = rownames(BoW)[best.index]
return(list(best.index=best.index,best.name=best.name))

Return the vector of IDF weights from a data frame
The core of idf.weight(), but leaving out the actual re-scaling
Input: data frame
Output: weight vector
get.idf.weights <- function(x) {
 doc.freq <- colSums(x>0)
 doc.freq[doc.freq == 0] <- 1
 w <- log(nrow(x)/doc.freq)
 return(w)
}
Euclidean distance, no norming, no IDF
mds.coords[,1]
mds.coords[,2]

Euclidean distance, sum normed, no IDF
mds.coords[,1]
mds.coords[,2]

Euclidean distance, length normed, no IDF
mds.coords[,1]
mds.coords[,2]

Euclidean distance, no norming, with IDF
mds.coords[,1]
mds.coords[,2]

Euclidean distance, sum normed, with IDF
mds.coords[,1]
mds.coords[,2]

Euclidean distance, length normed, with IDF
mds.coords[,1]
mds.coords[,2]

Figure 1: MDS plots. Top row, without IDF. Bottom row, with IDF. Left column, un-normalized vectors. Middle column, normalized by sum. Right column, normalized by Euclidean length. Red indicates politics, blue religion.