Statistical Computing (36-350)
Lecture 9: Functions as Objects

Cosma Shalizi

25 September 2013
Functions are objects, and can be arguments to other functions

- Example: curve
- Example: gradient and gradient.descent

Functions as return values

- Example: Linear predictor
- Example: the gradient operator

Example: surface

READING: Sections 7.5, 7.11 and 7.13 of Matloff

OPTIONAL RECOMMENDED READING: Chapter 3 of Chambers

CODE FROM THIS LECTURE: At class website, with comments
In R, functions are objects, just like everything else
Functions as Objects

In R, functions are objects, just like everything else. This means that they can be passed to functions as arguments and returned by functions as outputs as well.
In R, functions are objects, just like everything else. This means that they can be passed to functions as arguments and returned by functions as outputs as well. Both ideas can be understood from your experience with calculus.
Maximum, and location of the maximum: takes f, gives number

$$\text{max}_xf(x), \text{argmax}_xf(x)$$
Maximum, and location of the maximum: takes f, gives number

$$\max_{x} f(x), \ \text{argmax}_{x} f(x)$$

Derivative of f at x_0: takes a function and a point, gives a number

$$\frac{df}{dx}(x_0) \equiv \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
Maximum, and location of the maximum: takes f, gives number

$$\max_{x} f(x), \arg\max_{x} f(x)$$

Derivative of f at x_0: takes a function and a point, gives a number

$$\frac{df}{dx}(x_0) \equiv \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Definite integral of f over $[a, b]$: takes a function and two points, gives a number

$$\int_{a}^{b} f(x)dx \equiv \lim_{n \to \infty} \sum_{i=0}^{n-1} \left(\frac{b - a}{n} \right) f \left(a + i \frac{b - a}{n} \right)$$
Mathematical view cont’d.

Functions of functions which return numbers sometimes are sometimes called **functionals**, e.g., expectation values:

$$\mathbb{E}[f(X)] \equiv \int_{\text{all } x} f(x)p(x)dx$$
Functions of functions which return numbers sometimes are sometimes called functionals, e.g., expectation values:

$$\mathbb{E}[f(X)] \equiv \int_{\text{all } x} f(x)p(x)dx$$

$$\nabla f(x_0)$$ takes \(f\) and \(x_0\), gives vector: not strictly a functional
Functions of functions which return numbers sometimes are sometimes called **functionals**, e.g., expectation values:

\[\mathbb{E}[f(X)] \equiv \int_{\text{all } x} f(x)p(x)dx \]

\(\nabla f(x_0)\) takes \(f\) and \(x_0\), gives vector: not strictly a functional

\(\nabla f\) is another, vector-valued function
Functions of functions which return numbers sometimes are sometimes called functionals, e.g., expectation values:

$$\mathbb{E}[f(X)] \equiv \int_{\text{all } x} f(x)p(x)dx$$

$$\nabla f(x_0)$$ takes \(f\) and \(x_0\), gives vector: not strictly a functional

$$\nabla f$$ is another, vector-valued function

\(\nabla\) takes a function and returns a function
Functions of functions which return numbers sometimes are sometimes called functionals, e.g., expectation values:

\[\mathbb{E}[f(X)] \equiv \int_{\text{all } x} f(x)p(x)dx \]

\(\nabla f(x_0) \) takes \(f \) and \(x_0 \), gives vector: not strictly a functional
\(\nabla f \) is another, vector-valued function
\(\nabla \) takes a function and returns a function
\(\nabla \) is an operator, not a functional
Mathematically

Something which takes a function in and gives a function back is an operator.
Mathematically

Something which takes a function in and gives a function back is an **operator**

Differentiation: the operator d/dx takes f and gives a new function
Mathematically

Something which takes a function in and gives a function back is an **operator**
Differentiation: the operator $\frac{d}{dx}$ takes f and gives a new function
Gradient: the operator ∇ takes f and gives a new function
similarly $\nabla \cdot$, $\nabla \times$, …
Something which takes a function in and gives a function back is an **operator**

- **Differentiation:** the operator \(d/dx \) takes \(f \) and gives a new function.
- **Gradient:** the operator \(\nabla \) takes \(f \) and gives a new function.
 - Similarly, \(\nabla \cdot \), \(\nabla \times \), …
- **Indefinite integration:** \(\int_{-\infty}^{x} f(u)\,du \) takes \(f \) and gives a new function.
- **Fourier transform:** takes \(f \) and gives a new function \(\tilde{f}(\omega) = \int_{-\infty}^{\infty} f(x) e^{2\pi i \omega x} \,dx \).
Something which takes a function in and gives a function back is an operator.

Differentiation: the operator \(\frac{d}{dx} \) takes \(f \) and gives a new function.

Gradient: the operator \(\nabla \) takes \(f \) and gives a new function similarly \(\nabla \cdot, \nabla \times, \ldots \).

Indefinite integration: \(\int_{-\infty}^{x} f(u) \, du \) takes \(f \) and gives a new function.

Fourier transform: takes \(f \) and gives a new function

\[
\tilde{f}(\omega) = \int_{-\infty}^{\infty} f(x) e^{2i\pi \omega x} \, dx
\]
We often want to do very similar things to many different functions. The procedure is the same, only the function we’re working with changes.
We often want to do very similar things to many different functions. The procedure is the same, only the function we’re working with changes.

∴ Write one function to do the job, and pass the function as an argument.
We often want to do very similar things to many different functions. The procedure is the same, only the function we’re working with changes.

∴ Write one function to do the job, and pass the function as an argument.

Because R treats functions as objects like any other, we can do this simply.
We often want to do very similar things to many different functions. The procedure is the same, only the function we’re working with changes. ∴ Write one function to do the job, and pass the function as an argument.
Because R treats functions as objects like any other, we can do this simply. We have already seen an example: `apply` takes a function as one of its arguments.
A call to `function` returns a function object
A call to `function` returns a function object

- body executed; access with `body(foo)`
- arguments required: access with `formals(foo)`
 gives argument list of `foo`: names are argument names, values are expressions for defaults (if any)
- parent environment: access with `environment(foo)`

User-defined and built-in R functions are both of class `function`

User functions are of class `closure`, built-ins are either `builtin` or `special` (don’t ask)
A call to `function` returns a function object

- body executed; access with `body(foo)`
- arguments required: access with `formals(foo)`
 gives argument list of `foo`: names are argument names, values are expressions for defaults (if any)
- parent environment: access with `environment(foo)`

User-defined and built-in R functions are both of class `function`

User functions are of class `closure`, built-ins are either `builtin` or `special` (don’t ask)

Typing a function’s name at the prompt gives the code (like `body`)
A call to `function` returns a function object

- body executed; access with `body(foo)`
- arguments required: access with `formals(foo)`
 gives argument list of `foo`: names are argument names, values are expressions for defaults (if any)
- parent environment: access with `environment(foo)`

User-defined and built-in R functions are both of class `function`

User functions are of class `closure`, built-ins are either `builtin` or `special` (don’t ask)

Typing a function’s name at the prompt gives the code (like `body`)

Functions can be put into lists or arrays
A call to `function` returns a function object

- body executed; access with `body(foo)`
- arguments required: access with `formals(foo)`
 gives argument list of `foo`: names are argument names, values are expressions for defaults (if any)
- parent environment: access with `environment(foo)`

User-defined and built-in R functions are both of class `function`

User functions are of class `closure`, built-ins are either `builtin` or `special` (don’t ask)

Typing a function’s name at the prompt gives the code (like `body`)

Functions can be put into lists or arrays
Example: curve

You learned to use curve in the first week
You learned to use curve in the first week
(because you did all of the assigned reading, including section 2.3.3 of the textbook)
A call to curve looks like this:

```
curve(expr, from = a, to = b, ...)
```

`expr` is some expression involving a variable called `x`
which is swept from the value `a` to the value `b`
... are other plot-control arguments
curve presumes that the expression can take a vector of `x` values and
return a vector of numerical values, e.g.,

```
curve(x^2 * sin(x))
```

is fine
Using curve with your own functions

If we have defined a function already, we can use it in curve:

\[
\text{psi <- function}(x, c=1) \{ \text{ifelse}(\text{abs}(x) > c, 2*c*abs(x) - c^2, x^2) \}\]

\[
\text{curve(psi}(x, c=10), \text{from}=-20, \text{to}=20)\]

Try this! Also try

\[
\text{curve(psi}(x=10, c=x), \text{from}=-20, \text{to}=20)\]

and explain it to yourself
If our function doesn’t take vectors to vectors, curve becomes unhappy

> mse <- function(y0,a,Y=gmp$pcgmp,N=gmp$pop) {
+ mean((Y - y0*(N^a))^2)
+ }
> curve(mse(a=x,y0=6611),from=0.10,to=0.15)
Error in curve(mse(a = x, y0 = 6611), from = 0.1, to = 0.15) :
 'expr' did not evaluate to an object of length 'n'
In addition: Warning message:
In N^a : longer object length is not a multiple of shorter object length

How do we solve this?
apply applies the same function to every row or column of an array
sapply applies the same function to every element of an array or vector, and tries to simplify the result down to an array

```r
> sapply(seq(from=0.10,to=0.15,by=0.01),mse,y0=6611)
[1] 154701953 102322975 68755655 64529167 104079528 207057513
> mse(6611,0.10)
[1] 154701953
```

Now (try it!):

```r
mse.plottable <- function(a,...){ return(sapply(a,mse,...)) } curve(mse.plottable(a=x),from=0.10,to=0.15) curve(mse.plottable(a=x,y0=5100),from=0.10,to=0.20)
```

Later, we will see many more related tricks for splitting up problems and applying the same function repeatedly
Lots of statistical problems come down to optimization

Example: gradient

Lots of optimization problems require finding the gradient of some objective function. We do the same thing to get the gradient of f at x no matter what f is: find the partial derivative of f with respect to each component of x, return the vector of partial derivatives. It makes no sense to re-write this every time we change f! So write code to calculate the gradient of an arbitrary function:

```r
gradient <- function(f,x,deriv.steps) {
  # not real code
  evaluate the function at x and at x+deriv.steps
  take slopes to get partial derivatives
  return the vector of partial derivatives
}
```
Lots of statistical problems come down to optimization
Lots of optimization problems require finding the gradient of some objective function

Example: gradient

```r
gradient <- function(f,x,deriv.steps) {
    # not real code
    evaluate the function at x and at x+deriv.steps
    take slopes to get partial derivatives
    return the vector of partial derivatives
}
```
Lots of statistical problems come down to optimization
Lots of optimization problems require finding the gradient of some objective function
We do the same thing to get the gradient of f at x no matter what f is:

find the partial derivative of f with respect to each component of x
return the vector of partial derivatives
Lots of statistical problems come down to optimization
Lots of optimization problems require finding the gradient of some \textbf{objective function}
We do the same thing to get the gradient of f at x no matter what f is:

\begin{itemize}
 \item find the partial derivative of f with respect to each component of x
 \item return the vector of partial derivatives
\end{itemize}

It makes no sense to re-write this every time we change f!
Lots of statistical problems come down to optimization
Lots of optimization problems require finding the gradient of some
objective function
We do the same thing to get the gradient of f at x no matter what f is:

find the partial derivative of f with respect to each component of x
return the vector of partial derivatives

It makes no sense to re-write this every time we change f!
∴ write code to calculate the gradient of an arbitrary function

```r
gradient <- function(f,x,deriv.steps) {
    # not real code
    evaluate the function at x and at x+deriv.steps
    take slopes to get partial derivatives
    return the vector of partial derivatives
}
```
A naive implementation would use a for loop

gradient <- function(f,x,deriv.steps,...) {
 p <- length(x)
 stopifnot(length(deriv.steps)==p)
 f.old <- f(x,...)
 gradient <- vector(length=p)
 for (coordinate in 1:p) {
 x.new <- x
 x.new[coordinate] <- x.new[coordinate]+deriv.steps[coordinate]
 f.new <- f(x.new,...)
 gradient[coordinate] <- (f.new - f.old)/deriv.steps[coordinate]
 }
 return(gradient)
}

Works, but it’s so repetitive!
Better: use matrix manipulation and apply

```r
gradient <- function(f,x,deriv.steps,...) {
  p <- length(x)
  stopifnot(length(deriv.steps)==p)
  x.new <- matrix(rep(x,times=p),nrow=p) + diag(deriv.steps,nrow=p)
  f.new <- apply(x.new,2,f,...)
  gradient <- (f.new - f(x,...))/deriv.steps
  return(gradient)
}
```

(clearer, and half as long)

Presumes that `f` takes a vector and returns a single number

Any extra arguments to `gradient` will get passed to `f`

Check: Does this work when `f` is a function of a single number?
How can gradient be improved?

Acts badly if f is only defined on a limited domain and we ask for the gradient somewhere near a boundary. Forces the user to choose deriv.steps. Uses the same deriv.steps everywhere. Imagine $f(x) = x^2 \sin x$. . . and so on through much of a first course in numerical analysis (or at least §5.7 of *Numerical Recipes*). If it really matters, use the grad function in the numDeriv package.
How can gradient be improved?

- Acts badly if f is only defined on a limited domain and we ask for the gradient somewhere near a boundary.
How can gradient be improved?

- Acts badly if f is only defined on a limited domain and we ask for the gradient somewhere near a boundary
- Forces the user to choose `deriv.steps`
How can gradient be improved?

- Acts badly if f is only defined on a limited domain and we ask for the gradient somewhere near a boundary
- Forces the user to choose `deriv.steps`
- Uses the same `deriv.steps` everywhere, imagine $f(x) = x^2 \sin x$

If it really matters, use the `grad` function in the `numDeriv` package.
How can gradient be improved?

- Acts badly if \(f \) is only defined on a limited domain and we ask for the gradient somewhere near a boundary
- Forces the user to choose \texttt{deriv.steps}
- Uses the same \texttt{deriv.steps} everywhere, imagine \(f(x) = x^2 \sin x \)

 …and so on through much of a first course in numerical analysis (or at least §5.7 of \textit{Numerical Recipes})
How can gradient be improved?

- Acts badly if f is only defined on a limited domain and we ask for the gradient somewhere near a boundary
- Forces the user to choose `deriv.steps`
- Uses the same `deriv.steps` everywhere, imagine $f(x) = x^2 \sin x$

...and so on through much of a first course in numerical analysis (or at least §5.7 of *Numerical Recipes*)
If it really matters, use the `grad` function in the `numDeriv` package
Now we can use this as a piece of a larger machine:

```r
gradient.descent <- function(f,x,max.iterations,step.scale,
    stopping.deriv,...) {
  for (iteration in 1:max.iterations) {
    grad <- gradient(f,x,...)
    if(all(abs(grad) < stopping.deriv)) { break() }
    x <- x - step.scale*grad
  }
  fit <- list(argmin=x,final.gradient=grad,final.value=f(x,...),
    iterations=iteration)
  return(fit)
}
```

(As written, we need to specify `deriv.steps` when calling this, but that’s not an argument. (How can you tell? Why make this choice?))
Now we can use this as a piece of a larger machine:

```r
gradient.descent <- function(f,x,max.iterations,step.scale,
    stopping.deriv,...) {
    for (iteration in 1:max.iterations) {
        grad <- gradient(f,x,...)
        if(all(abs(grad) < stopping.deriv)) { break() } 
        x <- x - step.scale*grad 
    }
    fit <- list(argmin=x,final.gradient=grad,final.value=f(x,...),
        iterations=iteration)
    return(fit)
}
```

(As written, we need to specify `deriv.steps` when calling this, but that's not an argument. (How can you tell? Why make this choice?))

Works equally well whether f is mean squared error of a regression, ψ error of a regression, (negative log) likelihood, cost of a production plan, ...
gradient.descent presumes \(f \) takes a vector
\(\text{mse} \) takes two scalars
What to do?

1. Put a wrapper around \(\text{mse} \):

   ```r
   \text{mse}.\text{for.optimization} <- \text{function}(\text{param},...) \text{return}(\text{mse}(y0=\text{param}[1],a=\text{param}[2],...))
   ```

 `gradient.descent(f=\text{mse}.\text{for.optimization}, \text{blah}\ \text{blah}\ \text{blah})`

2. Use an anonymous function:

   ```r
   \text{gradient.descent(f=\text{function}(\text{param},...) \text{return}(\text{mse}(y0=\text{param}[1],a=\text{param}[2],...)), \text{blah}\ \text{blah}\ \text{blah})}
   ```

 (in fact the \(f= \) is optional here)

Anonymous functions work because the return value of \text{function} is a function object
Anonymous functions don't clutter your workspace, but they don't stick around for you to examine later
gradient.descent presumes \(f \) takes a vector
\(\text{mse} \) takes two scalars
What to do?

1. Put a wrapper around \(\text{mse} \):

   ```r
   \text{mse}.\text{for}.\text{optimization} \leftarrow \text{function}(\text{param},...) \{
   \text{return}(\text{mse}(y0=\text{param}[1],a=\text{param}[2],...))
   \}
   \text{gradient}.\text{descent}(f=\text{mse}.\text{for}.\text{optimization}, \text{blah} \text{ blah} \text{ blah})
   ```
gradient.descent presumes f takes a vector
mse takes two scalars
What to do?

1. Put a wrapper around mse:

   ```r
   mse.for.optimization <- function(param,...) {
       return(mse(y0=param[1],a=param[2],...))
   }
   
   gradient.descent(f=mse.for.optimization, blah blah blah)
   ```

2. Use an anonymous function:

   ```r
   gradient.descent(f=function(param,...) {mse(y0=param[1],
       a=param[2],...)},blah blah blah)
   ```

 (in fact the f= is optional here)
Wrappers and Anonymous Functions

gradient.descent presumes f takes a vector
mse takes two scalars
What to do?

1. Put a wrapper around mse:
   ```r
   mse.for.optimization <- function(param,...) {
       return(mse(y0=param[1],a=param[2],...))
   }
   gradient.descent(f=mse.for.optimization, blah blah blah)
   ```

2. Use an anonymous function:
   ```r
   gradient.descent(f=function(param,...) {mse(y0=param[1],
       a=param[2],...)},blah blah blah)
   ```
 (in fact the f= is optional here)

Anonymous functions work because the return value of function is a function object
Anonymous functions don’t clutter your workspace, but they don’t stick around for you to examine later
Scoping \(f \) takes values for all names which aren’t its arguments from the environment where it was defined, not the one where it is called (e.g., not from inside `gradient` or `gradient.descent`.)
Cautions

Scoping \(f \) takes values for all names which aren’t its arguments from the environment where it was defined, not the one where it is called (e.g., not from inside `gradient` or `gradient.descent`)

Debugging If \(f \) and \(g \) are both complicated, avoid debugging \(g(f) \) as a block; divide the work by writing `very simple f.0` to debug/test \(g \), and debug/test the real \(f \) separately
Returning Functions: A trivial example

Functions can be return values like anything else

```r
make.noneuclidean <- function(ratio.to.diameter=pi) {
circumference <- function(d) { return(ratio.to.diameter*d) }
return(circumference)
}
Define make.noneuclidean but don't run it yet
```
Returning Functions: A trivial example

Functions can be return values like anything else

```r
make.noneuclidean <- function(ratio.to.diameter=pi) {
  circumference <- function(d) { return(ratio.to.diameter*d) }
  return(circumference)
}
```

Define `make.noneuclidean` but don’t run it yet

```r
> circumference(10)
Error: could not find function "circumference"
> kings.i <- make.noneuclidean(3)
> kings.i(10)
[1] 30
> formals(kings.i)
$d
> body(kings.i)
{
  return(ratio.to.diameter * d)
}
> environment(kings.i)
<environment: 0xe43d64>
> circumference(10)
Error: could not find function "circumference"
```
Create a linear predictor, based on sample values of two variables
Create a linear predictor, based on sample values of two variables

```r
make.linear.predictor <- function(x,y) {
  linear.fit <- lm(y~x)
  predictor <- function(x) {
    return(predict(object=linear.fit,newdata=data.frame(x=x)))
  }
  return(predictor)
}
```

The predictor function persists and works, even when the data we used to create it is gone.
Create a linear predictor, based on sample values of two variables

```
make.linear.predictor <- function(x,y) {
  linear.fit <- lm(y~x)
  predictor <- function(x) {
    return(predict(object=linear.fit,newdata=data.frame(x=x)))
  }
  return(predictor)
}
```

The predictor function persists and works, even when the data we used to create it is gone.
> library(MASS); data(cats)
> vet_predictor <- make.linear.predictor(x=cats$Bwt, y=cats$Hwt)
> rm(cats) # Data set goes away
> vet_predictor(4.0) # My cat’s body mass in kilograms
 1
15.77959 # Predicted mass of my cat’s heart in grams
A more mathematical example

Instead of finding $\nabla f(x)$, find the function ∇f:
Instead of finding $\nabla f(x)$, find the function ∇f:

```r
define nabla <- function(f,...) {
    g <- function(x,...) { gradient(f=f,x=x,...) }
    return(g)
}
```

```r
mse.gradient <- nabla(mse.for.optimization)
mse.gradient(c(6611,0.15),deriv.steps=c(1,1e-6))
[1] 1.646082e+05 1.428795e+10
gradient(mse.for.optimization,c(6611,0.15),c(1,1e-6))
[1] 1.646082e+05 1.428795e+10
gradient(mse.for.optimization,c(6611,0.15),c(1,1e-6),Y=2*gmp$pcgmp)
[1] -2.908638e+05 -2.486987e+10
mse.gradient(c(6611,0.15),deriv.steps=c(1,1e-6),Y=2*gmp$pcgmp)
[1] -2.908638e+05 -2.486987e+10
```
Instead of finding $\nabla f(x)$, find the function ∇f:

```r
nabla <- function(f,...) {
  g <- function(x,...) { gradient(f=f,x=x,...) }
  return(g)
}
```

```r
> mse.gradient <- nabla(mse.for.optimization)
> mse.gradient(c(6611,0.15),deriv.steps=c(1,1e-6))
[1] 1.646082e+05 1.428795e+10
> gradient(mse.for.optimization,c(6611,0.15),c(1,1e-6))
[1] 1.646082e+05 1.428795e+10
> gradient(mse.for.optimization,c(6611,0.15),c(1,1e-6),Y=2*gmp$pcgmp)
[1] -2.908638e+05 -2.486987e+10
> mse.gradient(c(6611,0.15),deriv.steps=c(1,1e-6),Y=2*gmp$pcgmp)
[1] -2.908638e+05 -2.486987e+10
```
The simple first-differences method is not so hot, so use the grad function from numDeriv

del <- function(f,...) {
 require(numDeriv)
 g <- function(x,...) { grad(func=f,x=x, ...)}
 return(g)
}

How would you check this?
Example: surface

curve takes an expression and, as a side-effect, plots a 1-D curve by sweeping over x
Suppose we want something like that but sweeping over two variables
curve takes an expression and, as a side-effect, plots a 1-D curve by sweeping over x
Suppose we want something like that but sweeping over two variables
Built-in plotting function contour:

$$\text{contour}(x,y,z, \text{[[other stuff]]})$$

x and y are vectors of coordinates, z is a matrix of the corresponding shape
(see help(contour) for graphical options)
curve takes an expression and, as a side-effect, plots a 1-D curve by sweeping over x
Suppose we want something like that but sweeping over two variables
Built-in plotting function contour:

```
contour(x, y, z, [[other stuff]])
```

x and y are vectors of coordinates, z is a matrix of the corresponding shape
(see `help(contour)` for graphical options)
Strategy: `surface` should make x and y sequences, evaluate the expression at each combination to get z, and then call `contour`
Only works with vector-to-number functions:
First attempt at surface

Only works with vector-to-number functions:

```r
surface.0 <- function(f, from.x=0, to.x=1, from.y=0, to.y=1, n.x=101, n.y=101, ...) {
  x.seq <- seq(from=from.x, to=to.x, length.out=n.x)
  y.seq <- seq(from=from.y, to=to.y, length.out=n.y)
  plot.grid <- expand.grid(x=x.seq, y=y.seq)
  z.values <- apply(plot.grid, 1, f)
  z.matrix <- matrix(z.values, nrow=n.x)
  contour(x=x.seq, y=y.seq, z=z.matrix, ...)
  invisible(list(x=x.seq, y=y.seq, z=z.matrix))
}
```
surface.0(function(p){return(sum(p^3))},from.x=-1,from.y=-1)
curve doesn’t require us to write a function every time — what’s it’s trick?
curve doesn’t require us to write a function every time — what’s it’s trick?
Expressions are just another class of R object, so they can be created and manipulated
curve doesn’t require us to write a function every time — what’s it’s trick?
Expressions are just another class of R object, so they can be created and manipulated
One manipulation is evaluation
curve doesn’t require us to write a function every time — what’s it’s trick?
Expressions are just another class of R object, so they can be created and manipulated
One manipulation is evaluation

`eval(expr, envir)`

evaluates the expression `expr` in the environment `envir`, which can be a data frame or even just a list
curve doesn’t require us to write a function every time — what’s it’s trick?
Expressions are just another class of R object, so they can be created and manipulated
One manipulation is evaluation

eval(expr,envir)

evaluates the expression expr in the environment envir, which can be a data frame or even just a list
When we type something like x^2+y^2 as an argument to surface.0, R tries to evaluate it prematurely
curve doesn’t require us to write a function every time — what’s it’s trick?
Expressions are just another class of R object, so they can be created and manipulated
One manipulation is evaluation

`eval(expr, envir)`

evaluates the expression `expr` in the environment `envir`, which can be a data frame or even just a list
When we type something like `x^2+y^2` as an argument to `surface.0`, R tries to evaluate it prematurely
`substitute` returns the *unevaluated* expression
curve doesn’t require us to write a function every time — what’s it’s trick?
Expressions are just another class of R object, so they can be created and manipulated
One manipulation is evaluation

eval(expr, envir)

evaluates the expression expr in the environment envir, which can be a data frame or even just a list
When we type something like $x^2 + y^2$ as an argument to surface.0, R tries to evaluate it prematurely
substitute returns the unevaluated expression
curve uses first substitute(expr) and then eval(expr, envir), having made the right envir
Second attempt at surface

```r
surface.1 <- function(expr, from.x=0, to.x=1, from.y=0, to.y=1, n.x=101, n.y=101,...) {
  x.seq <- seq(from=from.x, to=to.x, length.out=n.x)
  y.seq <- seq(from=from.y, to=to.y, length.out=n.y)
  plot.grid <- expand.grid(x=x.seq, y=y.seq)
  unevaluated.expression <- substitute(expr)
  z.values <- eval(unevaluated.expression, envir=plot.grid)
  z.matrix <- matrix(z.values, nrow=n.x)
  contour(x=x.seq, y=y.seq, z=z.matrix, ...)
  invisible(list(x=x.seq, y=y.seq, z=z.matrix))
}
```
surface_1(abs(x^3)+abs(y^3),from.x=-1,from.y=-1)
Evaluating a function at every combination of two arguments is a really common task
There is a function to do it for us: outer (seen in lecture 3)

\[
\text{surface.2 <- function(expr, from.x = 0, to.x = 1, from.y = 0, to.y = 1, n.x = 101, n.y = 101, \ldots) }
\]

\[
\text{x.seq <- seq(from = from.x, to = to.x, length.out = n.x)}
\]

\[
y.seq <- \text{seq(from = from.y, to = to.y, length.out = n.y)}
\]

\[
\text{unevaluated.expression <- substitute(expr)}
\]

\[
z \text{ <- function(x, y) }
\]

\[
\text{return(eval(unevaluated.expression, envir = list(x = x, y = y)))}
\]

\[
z.values <- \text{outer(X = x.seq, Y = y.seq, FUN = z)}
\]

\[
z.matrix <- \text{matrix(z.values, nrow = n.x)}
\]

\[
\text{contour(x = x.seq, y = y.seq, z = z.matrix, \ldots)}
\]

\[
\text{invisible(list(x = x.seq, y = y.seq, z = z.matrix))}
\]

Could also include the function as part of the returned list
Evaluating a function at every combination of two arguments is a really common task. There is a function to do it for us: `outer` (seen in lecture 3).

```r
surface.2 <- function(expr, from.x=0, to.x=1, from.y=0, to.y=1, n.x=101, n.y=101, ...) {
  x.seq <- seq(from=from.x, to=to.x, length.out=n.x)
  y.seq <- seq(from=from.y, to=to.y, length.out=n.y)
  unevaluated.expression <- substitute(expr)
  z <- function(x, y) {
    return(eval(unevaluated.expression, envir=list(x=x, y=y)))
  }
  z.values <- outer(X=x.seq, Y=y.seq, FUN=z)
  z.matrix <- matrix(z.values, nrow=n.x)
  contour(x=x.seq, y=y.seq, z=z.matrix, ...)
  invisible(list(x=x.seq, y=y.seq, z=z.matrix))
}
```

could also include the function as part of the returned list.
surface.2(x^4-y^4, from.x=-1, from.y=-1)
In R, functions are objects, and can be arguments to other functions
- Use this to do the same thing to many different functions
- Separates writing the high-level operations and the first-order functions
- Use `sapply` (etc.), wrappers, anonymous functions as adapters

Functions can also be returned by other functions
- Variables other than the arguments to the function are fixed by the environment of creation
- Manipulating expressions lets us flexibly create functions