Statistical Computing (36-350)
Lecture 14: Simulation I: Generating Random Variables

Cosma Shalizi

14 October 2013
Agenda

- The basic random-variable commands
- Transforming uniform random variables to other distributions
 - The quantile method
 - The rejection method
- Where the uniform random numbers come from

Required Reading: Matloff, chapter 8
R Cookbook, chapter 8

Optional reading: Chambers, section 6.10
Stochastic Simulation

Why simulate?
Stochastic Simulation

Why simulate?

- We want to see what a probability model actually does
Why simulate?

- We want to see what a probability model actually does
- We want to understand how our procedure works on a test case
Stochastic Simulation

Why simulate?

- We want to see what a probability model actually does
- We want to understand how our procedure works on a test case
- We want to use a partly-random procedure
Why simulate?

- We want to see what a probability model actually does
- We want to understand how our procedure works on a test case
- We want to use a partly-random procedure

All of these require drawing random variables from distributions
runif, rnorm, rbinom, rpois, rexp, etc. etc.
First argument is always n, number of variables to generate
Subsequent arguments are parameters to distribution, and vary with the distribution
Many Distributions at Once

Parameters are recycled:

```r
> rnorm(n=4,mean=c(-1000,1000),sd=1)
[1]  -999.3637 1000.4710 -1000.4449 1000.1040
```

Each of the n draws can get its own parameters
sample

sample(x, size, replace=FALSE, prob=NULL)

draw random sample of size points from x, optionally with replacement and/or weights
x can be anything where length() makes sense, basically
sample(x, size, replace=FALSE, prob=NULL)

draw random sample of size points from x, optionally with replacement and/or weights
x can be anything where length() makes sense, basically sample(x) does a random permutation
```r
sample(x, size, replace=FALSE, prob=NULL)

draw random sample of size points from x, optionally with replacement and/or weights
x can be anything where length() makes sense, basically sample(x) does a random permutation
If x is a single number, treat it like 1:x

> sample(5)
[1] 1 4 3 2 5
```
Why Would We Want to Do a Random Permutation?

```r
sample(cats$Sex) # Randomly shuffle sexes among cats
```

```r
diff.in.means <- function(m.or.f) {
  mean.male <- mean(cats$Hwt[m.or.f=="M"])
  mean.female <- mean(cats$Hwt[m.or.f=="F"])
  return(mean.male-mean.female)
}

> (obs.diff <- diff.in.means(cats$Sex))
[1] 2.120553

> null.diffs <- replicate(1000,diff.in.means(sample(cats$Sex))

> summary(null.diffs)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.363000 -0.274400 0.010620 0.008788 0.307500 1.122000

> mean(null.diffs > obs.diff)
[1] 0
```
Why Would We Want to Do a Random Permutation?

```r
sample(cats$Sex) # Randomly shuffle sexes among cats

diff.in.means <- function(m.or.f) {
  mean.male <- mean(cats$Hwt[m.or.f=="M"])
  mean.female <- mean(cats$Hwt[m.or.f=="F"])
  return(mean.male-mean.female)
}
```

```r
> (obs.diff <- diff.in.means(cats$Sex))
[1] 2.120553

> null.diffs <- replicate(1000,diff.in.means(sample(cats$Sex)))

> summary(null.diffs)
            Min. 1st Qu.  Median        Mean 3rd Qu.       Max.     

> mean(null.diffs > obs.diff)
[1] 0
```

Most basic possible permutation test; get much trickier.
Why Would We Want to Do a Random Permutation?

```r
sample(cats$Sex) # Randomly shuffle sexes among cats

diff.in.means <- function(m.or.f) {
  mean.male <- mean(cats$Hwt[m.or.f=="M"])
  mean.female <- mean(cats$Hwt[m.or.f=="F"])
  return(mean.male-mean.female)
}

> (obs.diff <- diff.in.means(cats$Sex))
[1] 2.120553
> null.diffs <- replicate(1000,diff.in.means(sample(cats$Sex)))
> summary(null.diffs)
     Min. 1st Qu.  Median      Mean 3rd Qu.     Max.
-1.363000 -0.274400  0.010620  0.008788  0.307500  1.122000
> mean(null.diffs > obs.diff)
[1] 0
```
Why Would We Want to Do a Random Permutation?

```r
sample(cats$Sex) # Randomly shuffle sexes among cats

diff.in.means <- function(m.or.f) {
  mean.male <- mean(cats$Hwt[m.or.f=="M"])
  mean.female <- mean(cats$Hwt[m.or.f=="F"])
  return(mean.male-mean.female)
}

> (obs.diff <- diff.in.means(cats$Sex))
[1] 2.120553
> null.diffs <- replicate(1000,diff.in.means(sample(cats$Sex)))
> summary(null.diffs)
     Min.  1st Qu.   Median      Mean   3rd Qu.     Max.  
-1.363000 -0.274400  0.010620  0.008788  0.307500  1.122000
> mean(null.diffs > obs.diff)
[1] 0

Most basic possible **permutation test**; get much trickier
```
Resampling

Define:

```r
resample <- function(x) { sample(x, size=length(x), replace=TRUE) }
```
Define:

\[
\text{resample} \leftarrow \text{function}(x) \{ \text{sample}(x, \text{size}=\text{length}(x), \text{replace}=\text{TRUE}) \} \\
\]

Resample a data vector:

\[
\text{resample}(\text{cats$Hwt})
\]
Resampling

Define:

```
resample <- function(x) { sample(x, size=length(x), replace=TRUE) }
```

Resample a data vector:

```
resample(cats$Hwt)
```

Resample the rows of a data frame:

```
cats[resample(1:nrow(cats),]
```
Resampling

Define:

```r
resample <- function(x) { sample(x, size=length(x), replace=TRUE) }
```

Resample a data vector:

```r
resample(cats$Hwt)
```

Resample the rows of a data frame:

```r
cats[resample(1:nrow(cats),]
```

Exercise: write an improved `resample` that works on vectors or data frames
Why Resample the Data?

diff.in.means2 <- function(df) {
 mean(df[df$Sex=="M","Hwt"]) - mean(df[df$Sex=="F","Hwt"])
}

resample.diffs <- replicate(1000,diff.in.means2(cats[resample(1:nrow(cats)),]))
Why Resample the Data?

diff.in.means2 <- function(df) {
 mean(df[df$Sex=="M","Hwt"])) - mean(df[df$Sex=="F","Hwt"])
}

resample.diffs <- replicate(1000,diff.in.means2(cats[resample(1:nrow(cats)),]))

> sd(resample.diffs)
[1] 0.316297
> quantile(resample.diffs,probs=c(0.025,0.975))
2.5% 97.5%
1.459805 2.700566
Why Resample the Data?

diff.in.means2 <- function(df) {
 mean(df[df$Sex=="M","Hwt"])) - mean(df[df$Sex=="F","Hwt"])
}

resample.diffs <- replicate(1000,diff.in.means2(cats[resample(1:nrow(cats)),]))

> sd(resample.diffs)
[1] 0.316297
> quantile(resample.diffs,probs=c(0.025,0.975))
 2.5% 97.5%
1.459805 2.700566

Very close to t-test formulas...
Why Resample the Data?

diff.in.means2 <- function(df) {
 mean(df[df$Sex=="M","Hwt"])) - mean(df[df$Sex=="F","Hwt"])
}

resample.diffs <- replicate(1000,diff.in.means2(cats[resample(1:nrow(cats)),]))

> sd(resample.diffs)
[1] 0.316297
> quantile(resample.diffs,probs=c(0.025,0.975))
 2.5% 97.5%
1.459805 2.700566

Very close to t-test formulas...
Bootstrap standard error and confidence limits
Again, gets much more sophisticated
Biased Coins

Given: uniform random variable U, success probability p
Wanted: A Bernoulli(p) random variable
Given: uniform random variable U, success probability p
Wanted: A Bernoulli(p) random variable
Return 1 if $U \leq p$, else return 0
Biased Coins

Given: uniform random variable U, success probability p
Wanted: A Bernoulli(p) random variable
Return 1 if $U \leq p$, else return 0

$\text{ifelse}(\text{runif}(n) =< p, 1, 0)$

or just

$r\text{binom}(n, size=1, prob=p)$
Categorical or Discrete Variables

Given: uniform U, category probabilities p_1, p_2, \ldots, p_k
Wanted: a categorical random variable with that p.m.f.
Categorical or Discrete Variables

Given: uniform U, category probabilities $p_1, p_2, \ldots p_k$
Wanted: a categorical random variable with that p.m.f.
If $U \leq p_1$, return 1
else if $U \leq p_1 + p_2$, return 2
etc.
Categorical or Discrete Variables

Given: uniform U, category probabilities p_1, p_2, \ldots, p_k

Wanted: a categorical random variable with that p.m.f.

If $U \leq p_1$, return 1
else if $U \leq p_1 + p_2$, return 2
etc.

```
min(which(u < cumsum(p)))
```

(needs some thought to vectorize)
Categorical or Discrete Variables

Given: uniform U, category probabilities p_1, p_2, \ldots, p_k
Wanted: a categorical random variable with that p.m.f.
If $U \leq p_1$, return 1
else if $U \leq p_1 + p_2$, return 2
etc.

\[
\text{min}(\text{which}(u < \text{cumsum}(p)))
\]

(needs some thought to vectorize)

\[
\text{rmultinoulli} <- \text{function}(n,\text{prob}) \{
\text{return}(\text{sample}(1: \text{length}(\text{prob}), \text{replace=TRUE}, \text{size}=n, \text{prob}=\text{prob}))
\}
\]

(rmultinom gives counts, not a sequence)
The Quantile Transform Method

Given: uniform random variable U, CDF F
Claim: $X = F^{-1}(U)$ is a random variable with CDF F
The Quantile Transform Method

Given: uniform random variable U, CDF F
Claim: $X = F^{-1}(U)$ is a random variable with CDF F
Proof:

$$
\mathbb{P}(X \leq a) = \mathbb{P}(F^{-1}(U) \leq a) = \mathbb{P}(U \leq F(a)) = F(a)
$$

F^{-1} is the quantile function
∴ if we can generate uniforms and we can calculate quantiles, we can generate non-uniforms.
To turn U into a coin-toss with bias p: is $U \leq p$ or not?
To turn U into a coin-toss with bias p: is $U \leq p$ or not?
To turn U into a binomial: start with $X = 0$; if $U \leq F(X)$, stop, otherwise add 1 to X and check again
To turn U into a coin-toss with bias p: is $U \leq p$ or not?

To turn U into a binomial: start with $X = 0$; if $U \leq F(X)$, stop, otherwise add 1 to X and check again.

Tedious do this iteratively.

No next value for continuous random variables.
Less Mathematically

To turn U into a coin-toss with bias p: is $U \leq p$ or not?
To turn U into a binomial: start with $X = 0$; if $U \leq F(X)$, stop,
otherwise add 1 to X and check again
Tedious do this iteratively
No next value for continuous random variables
Quantiles solve both difficulties
Quantile functions often don’t have closed form, and don’t have nice numerical solutions
But we know the probability density function — can we use that?
Suppose the pdf f is zero outside an interval $[c, d]$, and $\leq M$ on the interval.
Draw the rectangle $[c, d] \times [0, M]$, and the curve f.
Area under the curve $= 1$.
Area under curve and $x \leq a$ is $F(a)$.
How can we uniformly sample area under the curve?
M <- 3.3; curve(dbeta(x,5,10),from=0,to=1,ylim=c(0,M))
We sample uniformly from the *box*, and take the points under the curve
We sample uniformly from the box, and take the points under the curve:

\[R \sim \text{Unif}(c, d) \]
\[U \sim \text{Unif}(0, 1) \]

If \(MU \leq f(R) \) then \(X = R \), otherwise try again.
Base R commands

Transforming Uniform Random Numbers

Where Do the Uniforms Come From?

Categorical Random Variables

Quantile Transform

Rejection Method

\[r \leftarrow \text{runif}(300, \text{min}=0, \text{max}=1); u \leftarrow \text{runif}(300, \text{min}=0, \text{max}=1) \]

\[\text{below} \leftarrow \text{which}(M \cdot u \leq \text{dbeta}(r, 5, 10)) \]

\[\text{points}(r[\text{below}], M \cdot u[\text{below}], \text{pch}="+"); \text{points}(r[-\text{below}], M \cdot u[-\text{below}], \text{pch}="-") \]
Base R commands
Transforming Uniform Random Numbers
Where Do the Uniforms Come From?

Categorical Random Variables
Quantile Transform
Rejection Method

```r
hist(r[below],xlim=c(0,1),probability=TRUE); curve(dbeta(x,5,10),add=TRUE)
points(r[below],M*u[below],pch="+"); points(r[-below],M*u[-below],pch="-")
```
If f doesn’t go to zero outside $[c, d]$, try to find another density ρ where

- ρ also has unlimited support
- $f(a) \leq M\rho(a)$ everywhere
- we can generate from ρ (say by quantiles)

Then $R \sim \rho$, and accept when $MU\rho(R) \leq f(R)$

(Uniformly distributed on the area under ρ)
Need to make multiple “proposals” R for each X
eq, generated 300 for figure, only accepted 78
 Important for efficiency to keep this ratio small
 Ideally: keep the proposal distribution close to the target
Uniform numbers come from finite algorithms, so really only pseudo-random
We want:
- Number of U_i in $[a, b] \subseteq [0, 1]$ is $\propto (b - a)$
- No correlation between successive U_i
- No detectable dependences in larger or longer groupings
Modern pseudo-random generators are now very good at all three
Too involved to go into here, but will show a simpler cousin
Base R commands
Transforming Uniform Random Numbers
Where Do the Uniforms Come From?

```
plot(r, main="100 draws from runif")
plot(hist(r), freq=FALSE, main="Histogram of 100 draws from runif")
plot(r[-100], r[-1], xlab="r[i]", ylab="r[i+1]",
    main="Scatterplot of successive draws from runif")
```
Rotations

Take

\[U_{i+1} = U_i + \alpha \mod 1 \]

If \(\alpha \) is irrational, this never repeats and is uniformly distributed.
If \(\alpha \) is rational but the denominator is very large, the period is very long, and it is uniform on those points.
More Complicated Dynamics

Arnold Cat Map:

\[
U_{t+1} = U_t + \phi_t \mod 1
\]

\[
\phi_{t+1} = U_t + 2\phi_t \mod 1
\]

If we report only \(U_t\), the result is uniformly distributed and hard to predict.
Base R commands
Transforming Uniform Random Numbers
Where Do the Uniforms Come From?

Wikipedia, s.v. “Arnold’s cat map”
Base R commands
Transforming Uniform Random Numbers
Where Do the Uniforms Come From?

successive values from runif vs. Arnold cat map
Similar ideas are built into the random-number generator in R (with more internal dimensions)
Generally: Long periods, rapid divergence of near-by points (unstable), uniform distribution, low correlation
Using the default generator is a very good idea, unless you really know what you are doing
Base R commands
Transforming Uniform Random Numbers
Where Do the Uniforms Come From?

Setting the Seed

The sequence of pseudo-random numbers depends on the initial condition, or **seed**
Stored in `.Random.seed`, a global variable
To reproduce results exactly, set the seed

```r
> old.seed <- .Random.seed # Store the seed
> set.seed(20010805) # Set it to the day I adopted my cat
> runif(2)
[1] 0.1378908 0.7739319
> set.seed(20010805) # Reset it
> runif(2)
[1] 0.1378908 0.7739319
> .Random.seed <- old.seed # Restore old seed

See Chambers, §6.10, for some subtleties about working with external programs
```
Summary

- Unstable dynamical systems give us something very like uniform random numbers
- We can transform these into other distributions when we can compute the distribution function
 - The quantile method when we can invert the CDF
 - The rejection method if all we have is the pdf
- The basic R commands encapsulate a lot of this for us