Previously...

- Writing our own functions
- Dividing labor with multiple functions
- Refactoring to create higher-level operations
- Using `apply`, `sapply`, etc., to avoid iteration

Agenda

- Functions are objects, and can be arguments to other functions
- Functions are objects, and can be returned by other functions
- Example: `surface`

Reading: Sections 7.5, 7.11 and 7.13 of Matloff

Optional Recommended Reading: Chapter 3 of Chambers

Functions as Objects

- In R, functions are objects, just like everything else
- This means that they can be passed to functions as arguments and returned by functions as outputs as well

Functions of Functions: Computationally

- We often want to do very similar things to many different functions
- The procedure is the same, only the function we’re working with changes
- Write one function to do the job, and pass the function as an argument
- Because R treats a function like any other object, we can do this simply: invoke the function by its argument name in the body
- We have already seen examples

R Functions That Take Functions as Arguments

- `apply()`, `sapply()`, etc.: Take this function and use it on all of these objects
- `nlm()`: Take this function and try to make it small, starting from here
- `ks.test()`: Compare these data to this cumulative distribution function
- `curve()`: Evaluate this function over that range, and plot the results
Some R Syntax Facts About Functions

- Typing a function’s name, without parentheses, in the terminal gives you its source code:

```r
sample
```

```r
## function (x, size, replace = FALSE, prob = NULL)
## {
##   if (length(x) == 1L && is.numeric(x) && x >= 1) {
##     if (missing(size))
##       size <- x
##     sample.int(x, size, replace, prob)
##   } else {
##     if (missing(size))
##       size <- length(x)
##     x[sample.int(length(x), size, replace, prob)]
##   }
## }
## <bytecode: 0x10698da98>
## <environment: namespace:base>
```

Some R Syntax Facts About Functions

- Functions are their own **class** in R:

```r
class(sin)
```

```r
## [1] "function"
```

```r
class(sample)
```

```r
## [1] "function"
```

```r
resample <- function(x) { sample(x, size=length(x), replace=TRUE) }
class(resample)
```

```r
## [1] "function"
```

Some R Syntax Facts About Functions

- Functions can be put into lists or even arrays
- A call to `function` returns a function object
 - body executed; access with `body(foo)`
 - arguments required: access with `formals(foo)`
 gives argument list of `foo`: names are argument names, values are expressions for defaults (if any)
 - parent environment: access with `environment(foo)`
Some R Syntax Facts About Functions

- R has separate types for built-in functions and for those written in R:

```r
typeof(resample)
```

```r
## [1] "closure"
```

```r
typeof(sample)
```

```r
## [1] "closure"
```

```r
typeof(sin)
```

```r
## [1] "builtin"
```

Why closure for written-in-R functions? Because expressions are “closed” by referring to the parent environment.

There’s also a 2nd class of built-in functions called primitive.

Anonymous Functions

- `function()` returns an object of class `function`
 - So far we’ve assigned that object to a name
 - If we don’t have an assignment, we get an anonymous function
 - Usually part of some larger expression:

```r
sapply((-2):2,function(log.ratio){exp(log.ratio)/(1+exp(log.ratio))})
```

```r
## [1] 0.1192 0.2689 0.5000 0.7311 0.8808
```

Anonymous Functions

- Often handy when connecting other pieces of code
 - especially in things like `apply` and `sapply`
 - Won’t cluttering the workspace
 - Can’t be examined or re-used later

Example: `grad()`

- Problems in stats. come down to optimization
 - So do lots of problems in econ., physics, CS, bio, ...

- Lots of optimization problems require the gradient of the objective function

- Gradient of f at x:

$$\nabla f(x) = \left[\frac{\partial f}{\partial x_1} \left|_x \right. \ldots \left|_x \right. \frac{\partial f}{\partial x_p} \right]$$
Example: grad()

- We do the same thing to get the gradient of \(f \) at \(x \) no matter what \(f \) is:

 find the partial derivative of \(f \) with respect to each component of \(x \)
 return the vector of partial derivatives

- It makes no sense to re-write this every time we change \(f \)!
- \(\therefore \) write code to calculate the gradient of an arbitrary function
- We could write our own, but there are lots of tricky issues
 - Best way to calculate partial derivative
 - What if \(x \) is at the edge of the domain of \(f \)?
- Fortunately, someone has already done this

Example: grad()

From the package numDeriv

```r
grad(func, x, ...) # Plus other arguments
```

- Assumes \(func \) is a function which returns a single floating-point value
- Assumes \(x \) is a vector of arguments to \(func \)
 - If \(x \) is a vector and \(func(x) \) is also a vector, then it’s assumed \(func \) is vectorized and we get a vector of derivatives
- Extra arguments in \(...\) get passed along to \(func \)
- Other functions in the package for the Jacobian of a vector-valued function, and the matrix of 2nd partials (Hessian)

Example: grad()

- Does it work as advertised?

```r
require("numDeriv")

# Loading required package: numDeriv

just_a_phase <- runif(n=1,min=-pi,max=pi)
all.equal(grad(func=cos,x=just_a_phase),-sin(just_a_phase))

# [1] TRUE
```
phases <- runif(n=10, min=-pi, max=pi)
all.equal(grad(func=cos, x=phases), -sin(phases))

[1] TRUE

grad(func=function(x){x[1]^2+x[2]^3}, x=c(1,-1))

[1] 2 3

Note: grad is perfectly happy with func being an anonymous function!

gradient.descent()

Now we can use this as a piece of a larger machine:

gradient.descent <- function(f, x, max.iterations, step.scale, stopping.deriv, ...) {
 for (iteration in 1:max.iterations) {
 gradient <- grad(f, x, ...)
 if(all(abs(gradient) < stopping.deriv)) { break() }
 x <- x - step.scale*gradient
 }
 fit <- list(argmin=x, final.gradient=gradient, final.value=f(x, ...), iterations=iteration)
 return(fit)
}

• Works equally well whether f is mean squared error of a regression, ψ error of a regression, (negative log) likelihood, cost of a production plan, ...

Cautions

• Scoping f takes values for all names which aren’t its arguments from the environment where it was defined, not the one where it is called (e.g., not from inside grad or gradient.descent)

• Debugging If f and g are both complicated, avoid debugging g(f) as a block; divide the work by writing very simple f.dummy to debug/test g, and debug/test the real f separately

Returning Functions: A trivial example

Functions can be return values like anything else

make.noneuclidean <- function(ratio.to.diameter=pi) {
 circumference <- function(d) { return(ratio.to.diameter*d) }
 return(circumference)
}
Returning Functions: A trivial example (cont’d.)

```
try(circumference(10))
kings.i <- make.noneuclidean(3)
try(kings.i(10))

## [1] 30
formals(kings.i)

## $d
body(kings.i)

## {
##   return(ratio.to.diameter * d)
## }
environment(kings.i)

## <environment: 0x100fa9178>
try(circumference(10))
```

A Less Trivial Example

Create a linear predictor, based on sample values of two variables

```
make.linear.predictor <- function(x,y) {
  linear.fit <- lm(y~x)
  predictor <- function(x) {
    return(predict(object=linear.fit,newdata=data.frame(x=x))
  }
  return(predictor)
}
```

The predictor function persists and works, even when the data we used to create it is gone

A Less Trivial Example

```
library(MASS); data(cats)
vet_predictor <- make.linear.predictor(x=cats$Bwt,y=cats$Hwt)
rm(cats)       # Data set goes away
vet_predictor(3.5) # My cat's body mass in kilograms

## 1
## 13.76
```
A more mathematical example

- Instead of finding $\nabla f(x)$, find the function ∇f:

```r
nabla <- function(f,...) {
    require("numDeriv")
    g <- function(x,...) { grad(func=f,x=x,...) }
    return(g)
}
```

Exercise: Write a test case!

Example: `curve()`

- You learned to use `curve` in the first week (because you did all of the assigned reading, including section 2.3.3 of the textbook)
- A call to `curve` looks like this:

```r
curve(expr, from = a, to = b, ...)
```

`expr` is some expression involving a variable called `x`
which is swept from the value `a` to the value `b`
... are other plot-control arguments

- `curve` feeds the expression a vector `x` and expects a numeric vector back, e.g.

```r
curve(x^2 * sin(x))
```

is fine

Using `curve()` with our own functions

- If we have defined a function already, we can use it in `curve`:

```r
psi <- function(x,c=1) { ifelse(abs(x)>c,2*c*abs(x)-c^2,x^2) }
curve(psi(x,c=10),from=-20,to=20)
```

Try this! Also try

```r
curve(psi(x=10,c=x),from=-20,to=20)
```

and explain it to yourself

Using `curve()` with our own functions

- If our function doesn’t take vectors to vectors, `curve` becomes unhappy
mse <- function(y0, a, Y = gmp$pcgmp, N = gmp$pop) {
 mean((Y - y0*(N^a))^2)
}

> curve(mse(a=x, y0=6611), from=0.10, to=0.15)
Error in curve(mse(a = x, y0 = 6611), from = 0.1, to = 0.15) :
 'expr' did not evaluate to an object of length 'n'
In addition: Warning message:
 In N^a : longer object length is not a multiple of shorter object length

How do we solve this?

Using curve() with our own functions

- Define a new, vectorized function, say with sapply:

```r
sapply(seq(from=0.10, to=0.15, by=0.01), mse, y0=6611)
```

```r
## [1] 154701953 102322974  68755654  64529166  104079527  207057513
```

```r
mse(6611, 0.10)
```

```r
## [1] 154701953
```

```r
mse.plottable <- function(a,...) {
  return(sapply(a, mse, ...))
}
mse.plottable(seq(from=0.10, to=0.15, by=0.01), y0=6611)
```

```r
## [1] 154701953 102322974  68755654  64529166  104079527  207057513
```

Using curve() with our own functions

```r
curve(mse.plottable(a=x, y0=6611), from=0.10, to=0.20, xlab="a", ylab="MSE")
curve(mse.plottable(a=x, y0=5100), add=TRUE, col="blue")
```
Using curve() with our own functions

- Alternate strategy: Vectorize() returns a new, vectorized function

```r
mse.vec <- Vectorize(mse, vectorize.args=c("y0","a"))
mse.vec(a=seq(from=0.10, to=0.15, by=0.01), y0=6611)
```

```r
## [1] 154701953 102322974 68755654 64529166 104079527 207057513
```

```r
mse.vec(a=1/8, y0=c(5000, 6000, 7000))
```

```r
## [1] 134617132 74693733 63732256
```

Using curve() with our own functions

```r
curve(mse.vec(a=x, y0=6611), from=0.10, to=0.20, xlab="a", ylab="MSE")
curve(mse.vec(a=x, y0=5100), add=TRUE, col="blue")
```
Example: surface()

- curve takes an expression and, as a side-effect, plots a 1-D curve by sweeping over x
- Suppose we want something like that but sweeping over two variables
- Built-in plotting function contour:

  ```
  contour(x, y, z, [[other stuff]])
  ```

 x and y are vectors of coordinates, z is a matrix of the corresponding shape (see help(contour) for graphical options)

- Strategy: surface should make x and y sequences, evaluate the expression at each combination to get z, and then call contour

First attempt at surface()

- Only works with vector-to-number functions:

  ```r
  surface.1 <- function(f, from.x=0, to.x=1, from.y=0, to.y=1, n.x=101, n.y=101, ...) {
    x.seq <- seq(from=from.x, to=to.x, length.out=n.x)
    y.seq <- seq(from=from.y, to=to.y, length.out=n.y)
    plot.grid <- expand.grid(x=x.seq, y=y.seq)
    z.values <- apply(plot.grid, 1, f)
    z.matrix <- matrix(z.values, nrow=n.x)
    contour(x=x.seq, y=y.seq, z=z.matrix, ...)
    invisible(list(x=x.seq, y=y.seq, z=z.matrix))
  }
  ```
First attempt at surface()

\[
surface.1(\text{function}(p)\{\text{return}(\text{sum}(p^3))\}, \text{from.x}=-1, \text{from.y}=-1)
\]

Expressions and Evaluation

- `curve` doesn’t require us to write a function every time — what’s it’s trick?
- Expressions are just another class of R object, so they can be created and manipulated
- One manipulation is evaluation

\[
\text{eval(expr, envir)}
\]
evaluates the expression `expr` in the environment `envir`, which can be a data frame or even just a list

- When we type something like \(x^2+y^2\) as an argument to `surface.1`, R tries to evaluate it prematurely
- `substitute` returns the unevaluated expression
- `curve` uses first `substitute(expr)` and then `eval(expr, envir)`, having made the right `envir`

Second attempt at surface()

\[
surface.2 \leftarrow \text{function}(\text{expr}, \text{from.x}=0, \text{to.x}=1, \text{from.y}=0, \text{to.y}=1, n.x=101, n.y=101, \ldots) \{ \\
\text{x.seq} \leftarrow \text{seq}(\text{from}=\text{from.x}, \text{to}=\text{to.x}, \text{length.out}=n.x) \\
\text{y.seq} \leftarrow \text{seq}(\text{from}=\text{from.y}, \text{to}=\text{to.y}, \text{length.out}=n.y) \\
\text{plot.grid} \leftarrow \text{expand.grid}(x=\text{x.seq}, y=\text{y.seq})
\}
\]
unevaluated.expression <- substitute(expr)
z.values <- eval(unevaluated.expression, envir=plot.grid)
z.matrix <- matrix(z.values, nrow=n.x)
contour(x=x.seq, y=y.seq, z=z.matrix, ...)
invisible(list(x=x.seq, y=y.seq, z=z.matrix))
}

Second attempt at surface()

surface.2(abs(x^3)+abs(y^3), from.x=-1, from.y=-1)

Evaluating at Combinations

- Evaluating a function at every combination of two arguments is a really common task
- There is a function to do it for us: outer

Third attempt at surface()

surface.3 <- function(expr, from.x=0, to.x=1, from.y=0, to.y=1, n.x=101,
 n.y=101, ...) {
 x.seq <- seq(from=from.x, to=to.x, length.out=n.x)
y.seq <- seq(from=from.y, to=to.y, length.out=n.y)
unevaluated.expression <- substitute(expr)
z <- function(x,y) {
 return(eval(unevaluated.expression, envir=list(x=x, y=y)))
}
}
z.values <- outer(X=x.seq, Y=y.seq, FUN=z)
z.matrix <- matrix(z.values, nrow=n.x)
contour(x=x.seq, y=y.seq, z=z.matrix,...)
invisible(list(x=x.seq, y=y.seq, z=z.matrix, func=z))
}

Third attempt at surface()

surface.3(x^4-y^4, from.x=-1, from.y=-1)

surface()

surface.3(mse.vec(a=x, y0=y), from.x=0.10, to.x=0.15, from.y=6e3, to.y=7e3, nlevels=20)
Summary

- In R, functions are objects, and can be arguments to other functions
 - Use this to do the same thing to many different functions
 - Separates writing the high-level operations and the first-order functions
 - Use `apply` (etc.), wrappers, anonymous functions as adapters
- Functions can also be returned by other functions
 - Variables other than the arguments to the function are fixed by the environment of creation
 - Manipulating expressions lets us flexibly create functions

Functions of Functions: Mathematically

- Maximum, and location of the maximum: takes \(f \), gives number
 \[
 \max_x f(x) \ , \ \operatorname{argmax}_x f(x)
 \]

- Derivative of \(f \) at \(x_0 \): takes a function and a point, gives a number
 \[
 \frac{df}{dx}(x_0) \equiv \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}
 \]

- Definite integral of \(f \) over \([a, b]\): takes a function and two points, gives a number
 \[
 \int_a^b f(x) \, dx \equiv \lim_{n \to \infty} \sum_{i=0}^{n-1} \left(\frac{b - a}{n} \right) f \left(a + \frac{b - a}{n} i \right)
 \]
Mathematical view cont’d.

- Functions of functions which return numbers sometimes are sometimes called functionals, e.g., expectation values:

\[\mathbb{E}[f(X)] \equiv \int_{\text{all } x} f(x)p(x)\,dx \]

- \(\nabla f(x_0) \) takes \(f \) and \(x_0 \), gives vector: not strictly a functional

- \(\nabla f \) is another, vector-valued function
 - \(\nabla \) takes a function and returns a function
 - \(\nabla \) is an operator, not a functional

Mathematically

- Something which takes a function in and gives a function back is an operator

- Differentiation: the operator \(\frac{d}{dx} \) takes \(f \) and gives a new function

- Gradient: the operator \(\nabla \) takes \(f \) and gives a new function
 - similarly \(\nabla \cdot, \nabla \times, \ldots \)

- Indefinite integration: \(\int_{-\infty}^{\infty} f(u)\,du \) takes \(f \) and gives a new function

- Fourier transform: takes \(f \) and gives a new function

\[\tilde{f}(\omega) = \int_{x=-\infty}^{x=\infty} f(x)e^{2i\pi\omega x}\,dx \]

Bonus: Writing Our Own gradient()

- Suppose we didn’t know about the numDeriv package.

- Use the simplest possible method: change \(x \) by some amount, find the difference in \(f \), take the slope

- Start with pseudo-code

```r
gradient <- function(f,x,deriv.steps) {
  # not real code
  evaluate the function at x and at x+deriv.steps
  take slopes to get partial derivatives
  return the vector of partial derivatives
}
```

Bonus Example: gradient()

A naive implementation would use a for loop
gradient <- function(f, x, deriv.steps, ...) {
 p <- length(x)
 stopifnot(length(deriv.steps) == p)
 f.old <- f(x, ...)
 gradient <- vector(length=p)
 for (coordinate in 1:p) {
 x.new <- x
 x.new[coordinate] <- x.new[coordinate] + deriv.steps[coordinate]
 f.new <- f(x.new, ...)
 gradient[coordinate] <- (f.new - f.old) / deriv.steps[coordinate]
 }
 return(gradient)
}

Works, but it’s so repetitive!

Bonus Example: gradient()

Better: use matrix manipulation and `apply`

```r
gradient <- function(f, x, deriv.steps, ...) {
    p <- length(x)
    stopifnot(length(deriv.steps) == p)
    x.new <- matrix(rep(x, times=p), nrow=p) + diag(deriv.steps, nrow=p)
    f.new <- apply(x.new, 2, f, ...)
    gradient <- (f.new - f(x, ...)) / deriv.steps
    return(gradient)
}
```

(clearer, and half as long)

- Presumes that `f` takes a vector and returns a single number
- Any extra arguments to `gradient` will get passed to `f`
- Check: Does this work when `f` is a function of a single number?

Bonus Example: gradient()

- Acts badly if `f` is only defined on a limited domain and we ask for the gradient somewhere near a boundary
- Forces the user to choose `deriv.steps`
- Uses the same `deriv.steps` everywhere, imagine \(f(x) = x^2 \sin x \)

... and so on through much of a first course in numerical analysis (or at least sec. 5.7 of *Numerical Recipes*)