Classification with Confidence

BY JING LEI

Department of Statistics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15215, U.S.A
jinglei@andrew.cmu.edu

SUMMARY

A framework of classification is developed with a notion of confidence. In this framework, a classifier consists of two tolerance regions in the predictor space with a specified coverage level for each class. The classifier also produces an ambiguous region where the classification needs further investigation. Theoretical analysis reveals interesting structures of the confidence-ambiguity trade-off, and characterizes the optimal solution by extending the Neyman–Pearson lemma. We provide general estimating procedures, with rates of convergence, based on estimates of the conditional probabilities. The method can be easily implemented with good robustness, as illustrated through theory, simulation and a data example.

Some key words: Classification; Confidence level; Consistency; Neyman–Pearson lemma; Level set

1. INTRODUCTION

In the binary classification problem, the data consist of independent pairs of random variables \((Y_i, X_i) \in \{0, 1\} \times \mathcal{X} (i = 1, \ldots, n)\) from a common distribution \(P\), where \(\mathcal{X}\) is usually a subset of \(\mathbb{R}^d\). The classical inference task is to find a mapping \(f: \mathcal{X} \mapsto \{0, 1\}\) with small misclassification probability \(\text{pr}\{f(X) \neq Y\}\). The misclassification probability is minimized by the Bayes classifier \(f_{\text{Bayes}}(x) = 1_{\{\eta(x) \geq 1/2\}}\), where \(\eta(x) = \text{pr}(Y = 1 | X = x)\) and \(1_{\cdot}\) is the indicator function. While the misclassification probability serves as a good assessment of the overall performance, it does not directly provide confidence for a classification decision on each observation, and classification results near the boundary can be much worse than elsewhere.

In this work we develop a new framework of classification with the notion of confidence and efficiency. Let \(P_j\) be the conditional distribution of \(X\) given \(Y = j\), for \(j = 0, 1\). Given \(\alpha_0, \alpha_1 \in (0, 1)\), we look for classification regions \(C_0\) and \(C_1\) such that \(\mathcal{X} = C_0 \cup C_1\), and \(P_j(C_j) \geq 1 - \alpha_j, (j = 0, 1)\). Here \(\alpha_j\), chosen by the user, is the tolerated noncoverage rate for class \(j\). Now \(C_0\) and \(C_1\) may overlap and give an ambiguous region \(C_{01} \equiv C_0 \cap C_1\). The sets \(C_0\) and \(C_1\) define a set-valued classifier

\[
h(x) = \begin{cases}
\{1\}, & x \in C_1 \setminus C_{01}, \\
\{0\}, & x \in C_0 \setminus C_{01}, \\
\{0, 1\}, & x \in C_{01}.
\end{cases}
\]

We measure the efficiency of \(h\) by \(\text{pr}(X \in C_{01})\), which is called the ambiguity of \(h\). A good classifier can be found by solving the optimization problem

\[
\begin{align*}
\text{minimize} & \quad \text{pr}(X \in C_0 \cap C_1) \\
\text{subject to} & \quad C_0 \cup C_1 = \mathcal{X}, \quad P_j(C_j) \geq 1 - \alpha_j, \quad j = 0, 1.
\end{align*}
\]
The quality of a classifier is measured by the coverage and ambiguity. There is a trade-off between these two competing quantities.

The proposed framework allows customized error control for both classes, which can be useful in many applications, especially when the cost of misclassification is high in one class or both. For example, in medical screening, a misclassification may result in missed medical care or a waste of resources (Hanczar & Dougherty, 2008; Nadeem et al., 2010). In gene expression studies for biomarker identification, it is important to control the level of false negatives, which is hard to achieve using conventional methods because true biomarkers are rare. Definitive classifiers, such as Neyman–Pearson classification (Scott & Nowak, 2005; Han et al., 2008; Rigollet & Tong, 2011; Tong, 2013), usually cannot guarantee accuracy for both classes.

Set-valued classifiers with an associated level of confidence were considered by Shafer & Vovk (2008) and Vovk et al. (2009). The relationship between several notions of confidence is discussed in Vovk (2013) and Lei & Wasserman (2014). The novel parts of our framework include the notion of ambiguity as a measure of statistical efficiency, formulating the problem by minimizing ambiguity with a confidence guarantee, and deriving optimal solutions and estimation methods.

Another related topic is classification with a reject option, where the classifier may not output a definitive classification. Chow (1970) considered this under a decision-theoretic framework. Herbei & Wegkamp (2006) and Yuan & Wegkamp (2010) studied plug-in methods and empirical risk minimization. In our framework, the ambiguous region corresponds to the cases where the classifier does not give definitive output. Despite this similarity, classification with reject option still aims at minimizing an overall misclassification risk, while our framework allows the user to customize the desired level of confidence for each class.

2. THE FRAMEWORK

2.1. Class-specific coverage

Assume that P_j, the distribution of X given $Y = j$, is continuous with density function p_j for $j = 0, 1$. Let $\pi_j = \Pr(Y = j)$, $(j = 0, 1)$. Then

$$\eta(x) = \Pr(Y = 1 \mid X = x) = \frac{\pi_1 p_1(x)}{\pi_0 p_0(x) + \pi_1 p_1(x)}.$$

We assume that $\eta(X)$ is a continuous random variable, and that π_0, π_1 are positive constants. See Remark 2 for the case that $\eta(X)$ is not continuous. For any C_0, C_1, the ambiguity is

$$P(C_0 \cap C_1) = \pi_0 P_0(C_{01}) + \pi_1 P_1(C_{01}) \leq \pi_0 P_0(C_1) + \pi_1 P_1(C_0).$$

According to the Neyman–Pearson lemma, the set C_0 that minimizes $P_1(C_0)$ subject to $P_0(C_0) \leq \alpha_0$ is a level set of η, and a similar result holds for C_1, where C_0^c denotes the complement of C_0. The following theorem says that C_0 and C_1 constructed from the level sets of η are indeed optimal for problem (2). It can be viewed as an extension of the Neyman–Pearson lemma.

Theorem 1. Fix $0 < \alpha_0, \alpha_1 < 1$. A solution to the optimization problem (2) is

$$C_0 = \{x : \eta(x) \leq t_0\}, \quad C_1 = \{x : \eta(x) \geq t_1\} \cup C_0^c,$$

where $t_0 = t_0(\alpha_0)$, $t_1 = t_1(\alpha_1)$ are chosen such that $P_0(\eta(X) \leq t_0) = 1 - \alpha_0$ and $P_1(\eta(X) \geq t_1) = 1 - \alpha_1$.

Remark 1. If α_0 and α_1 are small, then we expect that $t_1 < t_0$ and all sets C_0 and C_1 satisfying the constraints in (2) must overlap. In this paper we focus on the case $t_1 < t_0$ and $C_0 \cup C_1 = \mathcal{X}$.
When \(t_1 > t_0 \), the solution to (2) is not unique, and the additional part \(C_0^- \) is included in the definition of \(C_1 \) in Theorem 1 so that \(C_0 \cup C_1 = \mathcal{X} \). If \(t_1 > t_0 \), one may change the optimization problem to minimize \(P(C_0 \cup C_1) \), subject to \(P_j(C_j^-) \leq \alpha_j \) (\(j = 0, 1 \)) and \(C_{01} = \emptyset \). It follows from the proof of Theorem 1 that the unique optimal solution to this new problem is \(C_0 = \{ x : \eta(x) \leq t_0 \}, C_1 = \{ x : \eta(x) \geq t_1 \} \). Now \(\mathcal{X}\backslash(C_0 \cup C_1) \neq \emptyset \), which corresponds to a region of empty classification, indicating instances that are atypical in both classes and may even suggest a new, unseen class.

Remark 2. When the distribution of \(\eta(X) \) is not continuous at \(t_0 \) or \(t_1 \), define \(L(t) \equiv \{ x : \eta(x) \leq t \}, L(t^-) \equiv \{ x : \eta(x) < t \} \), and let \(t_0 = \inf\{ t : P_0(L(t)) \geq 1 - \alpha_0 \} \). If \(P_0(L(t_0^-)) < 1 - \alpha_0 < P_0(L(t_0)) \), we can choose any \(C_0 \) such that \(L(t_0^-) \subseteq C_0 \subseteq L(t_0) \) and \(P_0(C_0) = 1 - \alpha_0 \), provided that \(X \) is continuous on \(L(t_0) \backslash L(t_0^-) \). When \(X \) is not continuous on \(L(t_0) \backslash L(t_0^-) \), we can use randomized rules to achieve exact coverage. The set \(C_1 \) can be constructed similarly.

2.2. Overall coverage

When the overall coverage is of interest, the optimization problem becomes

\[
\begin{align*}
\text{minimize} & \quad P(C_0 \cap C_1) \\
\text{subject to} & \quad C_0 \cup C_1 = \mathcal{X}, \quad \pi_0 P_0(C_0) + \pi_1 P_1(C_1) \geq 1 - \alpha.
\end{align*}
\]

(3)

We assume that \(\alpha < \min(\pi_0, \pi_1) \), otherwise one can classify everything to the majority class to achieve the desired coverage with no ambiguity.

For \((\alpha_0, \alpha_1) \in (0, 1)^2 \), let \(\nu(\alpha_0, \alpha_1) \) be the optimal value in problem (2), which is the minimum ambiguity. The next lemma, proved in Appendix A.1, characterizes the solution to (3).

Lemma 1. Suppose that \((C_0^*, C_1^*)\) achieves the minimum of problem (3). Then \((C_0^*, C_1^*)\) is a minimizer of problem (2) with \((\alpha_0, \alpha_1) = (\alpha_0^*, \alpha_1^*)\), where \((\alpha_0^*, \alpha_1^*)\) solves the optimization problem

\[
\begin{align*}
\text{minimize} & \quad \nu(\alpha_0, \alpha_1), \quad \text{subject to} \quad 0 \leq \alpha_0, \alpha_1 \leq 1, \quad \pi_0 \alpha_0 + \pi_1 \alpha_1 = \alpha.
\end{align*}
\]

(4)

According to Lemma 1 and Theorem 1, a strategy to solve (3) is to first obtain \((\alpha_0^*, \alpha_1^*)\) by solving (4), and then solve (2) with \((\alpha_0^*, \alpha_1^*)\). How do we solve (4)? For any \(\alpha_0 \in (0, \alpha/\pi_0) \), the constraint requires \(\alpha_1 = \alpha_1(\alpha_0) = (\alpha - \pi_0 \alpha_0) / \pi_1 \), so the objective function \(\nu \) is a function of \(\alpha_0 \). The next lemma shows that \(\nu \) is a convex function when \(\eta(X) \) has a continuous distribution. It confirms the intuition that the best \(\alpha_0 \) must balance errors from both classes and the ambiguity will first decrease and then increase as \(\alpha_0 \) varies from 0 to \(\alpha / \pi_0 \). It also lays the foundation of our algorithm to solve (4), because strong convexity enables us to approximate \(\alpha_0^* \) by minimizing \(\nu(\cdot) \), a good approximation to \(\nu(\cdot) \).

Lemma 2. Let \(\nu(\alpha_0) = \nu(\alpha_0, \alpha_1(\alpha_0)) \). If the distributions of \(\eta(X) \) under \(P_0 \) and \(P_1 \) are continuous, then \(\nu(\alpha_0) \) is a convex function.

The proof of Lemma 2 in Appendix A.1 gives explicit expressions for \(\nu'(\alpha_0) \) and \(\nu''(\alpha_0) \). Moreover, if \(\eta(X) \) has positive density on its support, then \(\lim_{\alpha_0 \downarrow 0} \nu'(\alpha_0) < 0 \) and \(\lim_{\alpha_0 \uparrow (\alpha/\pi_0)} \nu'(\alpha_0) > 0 \), and there is an \(\alpha_0^* \in (0, \alpha/\pi_0) \) that minimizes \(\nu(\alpha_0) \). Finally, if \(\nu(\alpha_0) > 0 \) for all \(\alpha_0 \in (0, \alpha/\pi_0) \) then \(\nu \) is strictly convex and the minimizer \(\alpha_0^* \) is unique.
3. Estimation procedures

3.1. Estimation with class-specific coverage

Let \{(X_i, Y_i) : 1 \leq i \leq n\} be a random sample from \(P\). Recall that \(\mathbb{I}(\cdot)\) is the indicator function. For \(j \in \{0, 1\}\), let \(n_j = \#\{i : Y_i = j\}\) and define

\[
\hat{\pi}_j = \frac{n_j}{n}, \quad \hat{P}_j(C) = \frac{n_j^{-1}}{n} \sum_{i : Y_i = j} \mathbb{I}(X_i \in C).
\]

For \(j = 0, 1\), let \(X_{j,1}, \ldots, X_{j,n_j}\) be the sample predictors in class \(j\). Given \(\alpha_j \in (0, 1)\) and any estimate \(\hat{\eta}(x)\) of \(\eta(x) = \text{pr}(Y = 1 \mid X = x)\), the classification region \(C_j\) is estimated by

\[
\hat{C}_0 = \{x : \hat{\eta}(x) \leq \hat{t}_0(\alpha_0)\}, \quad \hat{C}_1 = \{x : \hat{\eta}(x) \geq \hat{t}_1(\alpha_1)\},
\]

where \(\hat{t}_0(\alpha_0)\) is the \([n_0\alpha_0]\)th largest value in \(\{\hat{\eta}(X_{0,1}), \ldots, \hat{\eta}(X_{0,n_0})\}\), and \(\hat{t}_1(\alpha_1)\) is the \([n_1\alpha_1]\)th smallest value in \(\{\hat{\eta}(X_{1,1}), \ldots, \hat{\eta}(X_{1,n_1})\}\). Here \(\hat{t}_j(\alpha_j)\) is an empirical version of \(t_j\) given in Theorem 1. The performance of \(\hat{C}_0\) and \(\hat{C}_1\) depends on the accuracy of \(\hat{\eta}\) and the regularity of \(P_0, P_1\). We will assume that \(\hat{\eta}\) satisfies the following accuracy property.

Definition 1. An estimator \(\hat{\eta}\) is \((\delta_n, \rho_n)\)-accurate if \(\text{pr}(\|\hat{\eta} - \eta\|_\infty \geq \delta_n) \leq \rho_n\).

As we will see from examples in Section 3.3, many common estimators \(\hat{\eta}\) are \((\delta_n, \rho_n)\)-accurate with \(\delta_n \to 0\) and \(\rho_n \to 0\).

For the regularity of \(P_j\), let \(G_j\) be the cumulative distribution function of \(\eta(X)\) under \(P_j\). Then we have \(t_0 = G_0^{-1}(1 - \alpha_0)\) and \(t_1 = G_1^{-1}(\alpha_1)\). We consider the following margin condition.

(MA) There exist positive constants \(b_1, b_2, \epsilon_0, \gamma\) such that for \(j = 0, 1\) and all \(\epsilon \in [-\epsilon_0, \epsilon_0]\),

\[
b_1|\epsilon|^\gamma \leq |G_j(t_j + \epsilon) - G_j(t_j)| \leq b_2|\epsilon|^\gamma.
\]

Condition (MA) characterizes the steepness of \(G_j\) near the cut-off levels. Similar margin conditions have been used in the estimation of density level sets (Polonik, 1995; Tsybakov, 1997), and classification (Audibert & Tsybakov, 2007; Tong, 2013). Compared with other versions of margin condition in the literature, condition (MA) has an extra lower bound part, because our method does not assume any knowledge of the cut-off value \(t_j\) and must estimate it from the data.

Theorem 2. If \(\hat{\eta}\) is \((\delta_n, \rho_n)\)-accurate, and (MA) holds, then for each \(r > 0\) there exists a positive constant \(c\) such that with probability at least \(1 - \rho_n - n^{-r}\),

\[
P_j(\hat{C}_j \triangle C_j) \leq c \left\{ \delta_n^\gamma + \left(\frac{\log n}{n}\right)^{\frac{1}{2}} \right\}, \quad j = 0, 1.
\]

The proof is given in Appendix A.2. Compared with related results in density level set estimation, for example, Rigollet & Vert (2009), Theorem 2 has an extra \((\log n/n)^{1/2}\) term because we need to estimate the cut-off value \(t_j\). A large value of \(\gamma\) means that \(P_j\) has little mass near the contour \(\{x : \eta(x) = t_j\}\), so estimating \(t_j\) is difficult and the convergence rate will be dominated by \((\log n/n)^{1/2}\). We further discuss the sharpness of Theorem 2 in Example 1 below. Some related results in the study of tolerance regions can be found in Cadre et al. (2013) and Lei et al. (2013).
3.2. Estimation with total coverage

Now consider overall coverage control as described in Section 2.2. First let \(\hat{\pi}_j = n_j/n \) for \(j = 0, 1 \) and \(\hat{\alpha} = \alpha/\hat{\pi}_0 \). For all \(\alpha_0 \in [0, \hat{\alpha}] \), let \(\hat{\alpha}_1 = \alpha_1(\alpha_0) = (\alpha - \pi_0 \alpha_0)/\hat{\pi}_1 \), and construct \(\hat{C}_0, \hat{C}_1 \) with class-specific coverages \(1 - \alpha_0 \) and \(1 - \hat{\alpha}_1 \), respectively, using the method given in Section 3.1. Let \(\hat{\nu}(\alpha_0) = n^{-1} \sum_i \mathbb{I}(X_i \in \hat{C}_0) \) be the empirical ambiguity, and \(\hat{\alpha}_0 = \arg \min_{\alpha_0 \in [0, \hat{\alpha}]} \hat{\nu}(\alpha_0) \), where \([\alpha, \hat{\alpha}] \subset (0, \alpha/\hat{\pi}_0) \) is an interval to be chosen by the user. The estimated classification sets \(\hat{C}_0, \hat{C}_1 \) are those corresponding to \(\alpha_0 = \hat{\alpha}_0^* \). The reason for not searching over the entire range \([0, \alpha/\hat{\pi}_0] \) is to avoid complicated conditions on the function \(G_j \) near 0 and 1. In practice one can choose \([\alpha, \hat{\alpha}] = [0.01\alpha/\hat{\pi}_0, 0.99\alpha/\hat{\pi}_0] \).

Theorem 3. Assume that \(0 < b_1 \leq G'_j(t_j) \leq b_2 < \infty \) for all \(\alpha_0 \) in an open interval containing \([\alpha, \hat{\alpha}] \), that \(\alpha_0^* \in [\alpha, \hat{\alpha}] \) with \(\nu''(\alpha_0^*) > 0 \), and that \(\hat{\eta} \) is \((\delta_n, \rho_n) \)-accurate. Then for any \(r > 0 \), there exists constant \(c > 0 \) such that \(|\hat{\alpha}_0^* - \alpha_0^*| \leq c \delta_n^{1/2} + (\log n/n) \rho_n^{1/4} \) with probability at least \(1 - \rho_n - n^{-r} \) for \(n \) large enough. Moreover, with same probability, the resulting \(\hat{C}_j \) \((j = 0, 1) \) satisfy \(P_j (\hat{C}_j \Delta C^*_j) \leq c \delta_n^{1/2} + (\log n/n) \rho_n^{1/4} \) for another constant \(\delta \).

The bound on \(G'_j \) is equivalent to assuming that (MA) holds with \(\gamma = 1 \) for all \(t_j \) as \(\alpha_0 \) ranges from \(\alpha \) to \(\hat{\alpha} \). The condition \(\nu''(\alpha_0^*) > 0 \) is satisfied when \(\nu''(\alpha_0) > 0 \) for all \(\alpha_0 \), as implied by Lemma 2. The rate is slower than that in Theorem 2, because the optimal \(\alpha_0^* \) is unknown and needs to be estimated first.

3.3. Examples

We consider two examples of \(\hat{\eta} \): local polynomial regression (Audibert & Tsybakov, 2007), and \(\ell_1 \)-penalized logistic regression (van de Geer, 2008).

Example 1. Assume that \(\mathcal{X} = [-1, 1]^d \). For any \(s = (s_1, ..., s_d) \in (\mathbb{Z}^+)^d \), where \(\mathbb{Z}^+ \) is the set of nonnegative integers, and \(z \in \mathbb{R}^d \), define \(s^z = s_1^z \times \cdots \times s_d^z \) and \(|s| = \sum_{j=1}^d |s_j| \). Let \(K \) be a kernel function and \(\tau > 0 \) a bandwidth. The local polynomial estimator (Tsybakov, 2009) is based on the intuition of approximating \(\hat{\eta}(\cdot) \) at \(x \) using a polynomial of order \(\ell \),

\[
\eta_x(z) = \sum_{s:|s|\leq \ell} v_{s,x} \left(\frac{z-x}{\tau} \right)^s.
\]

The local coefficients \((v_{s,x})_{|s|\leq \ell} \) are estimated by weighted least squares,

\[
(\hat{v}_{s,x})_{|s|\leq \ell} = \arg \min_v \sum_{i=1}^n \left(Y_i - \sum_{s:|s|\leq \ell} v_s \left(\frac{X_i-x}{\tau} \right)^s \right)^2 K \left(\frac{X_i-x}{\tau} \right),
\]

and the local polynomial estimator \(\hat{\eta}(x) \) is the value of \(\hat{\eta}_x(z) \) evaluated at \(z = x \),

\[
\hat{\eta}(x) = \hat{v}_{0,x}.
\]

Proposition 1. In the setting of Example 1, assume that (a) the marginal density of \(X \) is bounded and bounded away from zero, and (b) \(\eta(\cdot) \) belongs to a Hölder class with smoothness parameter \(\beta \). Then there exist choices of kernel \(K \) and bandwidth \(\tau = \tau_n \) such that for any \(r > 0 \), the local polynomial estimator \(\hat{\eta} \) given in equation (8) is \((\delta_n, \rho_n) \)-accurate with

\[
\delta_n = c \left(\frac{\log n}{n} \right)^{\beta/(2\beta+d)}, \quad \rho_n = n^{-r},
\]
where \(c \) is a positive constant depending on \(r \).

Despite its familiar form (Stone, 1982; Tsybakov, 2009), we could not find a proof of this result in the literature. For completeness, we give more details of Proposition 1, including a proof, in the Supplementary Material.

Combining Proposition 1 and Theorem 2, if (MA) holds with \(\gamma = 1 \), then with probability at least \(1 - 2n^{-r} \) we have

\[
P_j(\hat{C}_j \Delta C_j) \leq c \left(\frac{\log n}{n} \right)^{\beta/(2\beta+d)}, \quad j = 0, 1.
\]

When \(P_1 \) has uniform density and \(P_0 \) has bounded density, estimating \(C_0 \) is equivalent to a density level set problem, where the cut-off density level is implicitly determined by \(\alpha_0 \). In this case, our upper bound on \(P_0(\hat{C}_0 \Delta C_0) \) matches the minimax rate of density level set estimation given by Rigollet & Vert (2009). A related rate of convergence has been obtained for the excess risk of plug-in rules in Neyman–Pearson classification in a recent paper (Tong, 2013).

Example 2. Let \(X = [-1, 1]^d \) and \(\text{var}\{X(k)\} = \sigma^2 \) for all \(1 \leq k \leq d \), where \(X(k) \) is the \(k \)th coordinate of \(X \). Assume that \(\eta(X)/\{1 - \eta(X)\} = \exp(X^T \theta^*) \) for some \(\theta^* \in \mathbb{R}^d \). The coefficient \(\theta^* \) and function \(\eta(\cdot) \) can be estimated by first estimating \(\theta \) using the \(\ell_1 \)-penalized logistic regression

\[
\hat{\theta} = \arg\min_n n^{-1} \sum_{i=1}^n \left[-Y_iX_i^T \theta + \log\{1 + \exp(X_i^T \theta)\}\right] + \lambda_n\|\theta\|_1.
\]

Such regression is typically used when \(d \) is large, and the number of true signals, \(\|\theta^*\|_0 \), is relatively small. The convergence of \(\ell_1 \)-penalized logistic regression has been extensively studied. The following result is a consequence of Example 1 in van de Geer (2008).

Proposition 2. Under the conditions in Example 2, assume that the smallest eigenvalue of \(E(XX^T) \) is bounded away from zero by a constant. Let \(\hat{\eta}(x) = \exp(x^T \hat{\theta})/\{1 + \exp(x^T \hat{\theta})\} \) with \(\hat{\theta} \) given by (9). Then one can choose \(\lambda_n \) such that \(\hat{\eta} \) satisfies \((\delta_{n,d}, \rho_{n,d}) \)-accuracy with

\[
\delta_{n,d} \leq c_1 \left(\frac{\log d}{n} \right)^{\frac{1}{3}}, \quad \rho_{n,d} \leq c_2 \left\{ \frac{1}{d} + \left(\frac{\log d}{n} \right)^{\frac{1}{2}} \|\theta^*\|_0 \right\}
\]

for positive constants \(c_1, c_2 \).

In the setting of Example 2, assume that the conditions of Proposition 2 hold and that (MA) holds with \(\gamma = 1 \). Let \(\hat{\eta} \) and \(\hat{C}_j \) be the output of \(\ell_1 \)-penalized regression with appropriate choice of \(\lambda_n \). We can choose \(r \) large enough in Theorem 2, so that

\[
P_j(\hat{C}_j \Delta C_j) \leq c_1 \left\{ \left(\frac{\log d}{n} \right)^{\frac{1}{4}} + \left(\frac{\log n}{n} \right)^{\frac{1}{2}} \right\}, \quad j = 0, 1
\]

with probability at least \(1 - c_2\{d^{-1} + (\log d/n)^{1/2}\|\theta^*\|_0\} \), for some constants \(c_1, c_2 \).

4. **Robustness and tuning parameter selection**

4.1. **Robust error control**

The theoretical results presented in Theorems 2 and 3 presuppose that \(\hat{\eta} \) is an accurate approximation to \(\eta \). In practice, such an assumption can be violated, for example, when local polynomial
estimation is applied to a non-smooth distribution, or when the logistic regression model is not a good approximation to the truth. The method described in Section 3 can be easily modified such that the coverage is controlled on average in the sense that

\[E \left\{ P_j(\hat{\mathcal{C}}_j) \right\} \geq 1 - \alpha_j, \quad (10) \]

for any distribution \(P \) and any estimator \(\hat{\eta} \).

The modified method uses sample splitting. First the index set \(\{1, \ldots, n\} \) is randomly split into two parts, \(I_1 \) and \(I_2 \). Then \(\hat{\eta} \) is estimated from the fitting subsample \(\{(Y_i, X_i) : i \in I_1\} \), and evaluated on the ranking subsample \(\{X_i : i \in I_2\} \), yielding \(\mathcal{Z}_j = \{\hat{\eta}(X_i) : i \in I_2, Y_i = j\}, \)

\(j = 0, 1 \). Let \(\hat{t}_j \) be the \(\lfloor |\mathcal{Z}_j|/\alpha_j \rfloor \)th largest or smallest value in \(\mathcal{Z}_j \), according to \(j = 0 \) or 1. The estimator is \(\hat{C}_0 = \{x : \hat{\eta}(x) \leq \hat{t}_0\} \), \(\hat{C}_1 = \{x : \hat{\eta}(x) \geq \hat{t}_1\} \). The extension to total coverage is straightforward.

Proposition 3. For \(j = 0, 1 \), let \(\hat{\mathcal{C}}_j \) be given by the sample splitting procedure. If \((Y_i, X_i)_{i=1}^n \) are independent and identically distributed, then the corresponding set-valued classifier satisfies (10).

Proposition 3 is based on a result in conformal prediction (Vovk et al., 2005). A proof can be found in Lemma 2.1 of Lei et al. (2014). The only assumptions are independence and identical distribution. Proposition 3 requires no assumption on the estimator \(\hat{\eta} \) or the underlying distribution. When the class proportion \(\Pr(Y = 0) \) is different in the training and testing sample, the class-specific error control in eq. (10) still holds as long as the distribution \(P_j \) remains the same. Theorems 2 and 3 hold for \(\hat{\mathcal{C}}_j \) obtained by the sample splitting procedure when \(|I_1| \) and \(|I_2| \) are lower bounded by a constant fraction of \(n \).

4.2. Cross-validated ambiguity

In our examples, the local polynomial estimator involves two tuning parameters: the polynomial degree and the bandwidth; and penalized logistic regression depends crucially on \(\lambda_\alpha \). These tuning parameters must be chosen in a data-driven manner. A natural idea is to choose a tuning parameter that minimizes the empirical ambiguity. To avoid overfitting, we can split the sample and use one part to find \(\hat{\eta} \) and the other to choose the tuning parameter. Let \(\Lambda = \{\lambda_1, \ldots, \lambda_T\} \) be the set of candidate tuning parameters. For each \(\lambda \in \Lambda \), we can fit \(\hat{\eta}_\lambda \) using the first subsample and compute \((\hat{C}_0, \hat{C}_1) \) and empirical ambiguity \(\hat{A}(\lambda) \) from the second subsample. Then we choose \(\hat{\lambda}^* = \arg \min \hat{A}(\lambda) \). This procedure can also be modified to a V-fold cross validation. As shown in Section 6, the sample splitting approach gives good empirical performance.

The output of the sample splitting procedure introduced here is an optimal \(\hat{\lambda}^* \), which is then used to obtain \(\hat{\eta} = \hat{\eta}_{\lambda^*} \). Such a sample splitting for tuning parameter selection should not be confused with that introduced in Section 4.1. Theoretically speaking, in order to perform tuning parameter selection and achieve finite sample coverage, one needs to split the training sample into a fitting subsample and a ranking subsample as in Section 4.1, and further split the fitting subsample to obtain an estimate of \(\hat{\eta} \) using a data driven tuning parameter. However, in practice splitting into two subsamples usually works well enough, where the ranking subsample is used for both selecting tuning parameters and estimating cut-off values.
Table 1. Coverage (%) and ambiguity (%) under a Gaussian mixture model.

<table>
<thead>
<tr>
<th></th>
<th>spar = 1 Noncover 0</th>
<th>5.00</th>
<th>spar = 1 Noncover 1</th>
<th>5.00</th>
<th>spar = 0.5 Noncover 0</th>
<th>5.00</th>
<th>spar = 0.5 Noncover 1</th>
<th>5.00</th>
<th>Ambiguity</th>
<th>31.1</th>
<th>Ambiguity</th>
<th>31.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>5.00</td>
<td>5.00</td>
<td>31.1</td>
<td></td>
<td>5.00</td>
<td>5.00</td>
<td>31.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method 1</td>
<td>4.83 (0.10)</td>
<td>4.76 (0.20)</td>
<td>34.1 (0.65)</td>
<td>5.74 (0.12)</td>
<td>8.55 (0.21)</td>
<td>26.8 (0.46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method 2</td>
<td>4.55 (0.17)</td>
<td>4.19 (0.28)</td>
<td>39.1 (1.15)</td>
<td>4.44 (0.17)</td>
<td>4.43 (0.22)</td>
<td>46.9 (1.03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method 3</td>
<td>0.87 (0.04)</td>
<td>9.24 (0.29)</td>
<td>34.1 (0.68)</td>
<td>1.82 (0.07)</td>
<td>13.5 (0.26)</td>
<td>26.4 (0.46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage of coverage and ambiguity for different methods under a Gaussian mixture model:

$$(X | Y = 0) \sim N(-1, 1), (X | Y = 1) \sim N(1, 1), \pi_0 = 0.75, \pi_1 = 0.25.$$

Method 1: classification with confidence; Method 2: classification with confidence and robust implementation; Method 3: classification with rejection. Reported are the average numbers in percentage over 100 independent samples, with estimated standard error in parenthesis. spar = 1 corresponds to cross validation tuning, and spar = 0.5 is chosen for illustration.

5. SIMULATION

We present a simulation study to illustrate the difference between the proposed framework and classification with rejection, and to demonstrate the finite sample performance of the robust implementation introduced in Section 4.1.

To highlight the main idea, we consider a simple Gaussian mixture model:

$$(X | Y = 0) \sim N(-1, 1), (X | Y = 1) \sim N(1, 1), \pi_0 = 3/4, \pi_1 = 1/4.$$

The target coverage is $\alpha_0 = \alpha_1 = 0.05$. The conditional probability function η is estimated using the R function smooth.spline. Three plug-in methods are compared: classification with confidence, the robust implementation described in Section 4, and classification with rejection; all are based on the same estimated $\hat{\eta}$. In our notation, an estimate given by the classification with rejection approach is

$$\hat{C}_0 = \{x : \hat{\eta}(x) \leq 0.5 + k\}, \hat{C}_1 = \{x : \hat{\eta}(x) \geq 0.5 - k\} \text{ for some } k \in [0, 0.5).$$

In our simulation k is chosen such that $\hat{C}_0 \cap \hat{C}_1$ contains the same number of sample points as in the ambiguous region in the classification with confidence approach.

The R function smooth.spline requires a smoothness tuning parameter spar. We use two values of spar: 1 and 0.5, with a sample size of $n = 500$. In this case, spar = 1 is a reasonably good choice of smoothing parameter. The median value of cross-validated spar over 100 simulations is 1.006. In the second estimate, we intentionally use a bad value of tuning parameter spar = 0.5 to illustrate the finite sample coverage guarantee of the robust implementation. The simulation is repeated 100 times and the results are summarized in Table 1.

The simulation results reveal a fundamental difference between the proposed framework and classification with rejection. When the two methods are set to have ambiguous regions of similar size, the proposed method approximately achieves the target class-wise coverage levels, while classification with rejection tends to have imbalanced performance between classes. When the smoothness parameter is chosen inappropriately, the proposed method no longer has the asymptotic coverage guarantee. One can still use the robust implementation, which gives correct coverage on average, at the expense of having a larger ambiguous region.

6. DATA EXAMPLE

6.1. The hand-written zip code data

In this section we illustrate our method on the zip code data. The data consists of 16×16 pixel images of hand-written digits. Each image has a label in $\{0, 1, ..., 9\}$. This data set has been used to test pattern recognition (Le Cun et al., 1990) and classification algorithms (Hastie
Table 2. Coverage (%) and ambiguity (%) in zip code data.

<table>
<thead>
<tr>
<th></th>
<th>Noncover 0</th>
<th>Noncover 1</th>
<th>Total Noncover</th>
<th>Ambiguity</th>
<th>$\lambda_n \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1-Logistic</td>
<td>1.4</td>
<td>11.4</td>
<td>3.3</td>
<td>0</td>
<td>1.84</td>
</tr>
<tr>
<td>Class-specific coverage</td>
<td>5.5</td>
<td>6.0</td>
<td>5.6</td>
<td>1.9</td>
<td>1.49</td>
</tr>
<tr>
<td>Overall coverage</td>
<td>0.9</td>
<td>10.08</td>
<td>2.8</td>
<td>3.3</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Performance summary of classification with confidence, with comparison to the standard ℓ_1-penalized logistic regression. $\alpha_0 = \alpha_1 = 0.05$ for class-specific error control; $\alpha = 0.03$ for overall error control.

Fig. 1. Ambiguous images in the ranking subsample (18 out of 1014). Class-specific coverage $\alpha_0 = \alpha_1 = 0.05$.

et al., 2009). Examples of the images can be found in Le Cun et al. (1990). We choose this data example because the ambiguous cases are easy to interpret visually.

In order to make an imbalanced binary classification problem, we use the subset of data containing digits \{0, 6, 8, 9\}, which are digits with circles. Images corresponding to digits 0, 6, and 9 are labeled as class 0, and those of digit 8 are labeled as class 1. The training sample contains 3044 images, with 542 in class 1. The test sample contains 872 images, with 166 in class 1.

6.2. Class-specific coverage

We apply ℓ_1-penalized logistic regression on the training data set with $\alpha_0 = \alpha_1 = 0.05$. The robust implementation is carried out by using two-thirds of training data as the fitting subsample, and the remainder as the ranking subsample. The tuning parameter λ_n is selected by minimizing the empirical ambiguity in the ranking subsample. The resulting set-valued classifier \hat{h} is then validated on the testing data.

Table 2 summarizes the performance of our method and compares it with the ordinary binary classifier given by the ℓ_1-penalized logistic regression using standard 5-fold cross-validation. We look at four measurements: noncoverage for class 0; noncoverage for class 1; total noncoverage; ambiguity.

Although ordinary binary classification gives a small overall mis-classification rate with no ambiguity, the mis-classification rate for class 1 is much higher. Our procedure gives noncoverage rates near the nominal levels for both classes, with a small ambiguity. Figure 1 displays the 18 ambiguous images in the ranking subsample. Many of these images exhibit some pattern of abnormal hand-writing. They are hard to classify by algorithm but can be classified visually.

Figure 2 provides some further insights into the performance of our procedure, supporting the theory developed earlier. The empirical coverage is close to the nominal level for almost the entire range of λ_n. This agrees with Proposition 3. In the right panel, the empirical ambi-
Fig. 2. Effects of tuning parameter on non-coverage rates and ambiguity using class-specific coverage with $\alpha_0 = \alpha_1 = 0.05$. Left panel: non-coverage rate as a function of $\log(\lambda)$ for class 0 (solid) and class 1 (dash). The grey line marks the nominal noncoverage rate of 0.05. Right panel: empirical ambiguity as a function of $\log(\lambda)$ for training sample (solid) and test sample (dash). The grey line indicates the value of $\log(\lambda)$ that minimizes empirical ambiguity in the training sample.

guilty curves calculated from the test and training data are very close, because in both cases the empirical ambiguity is evaluated using a random sample independent of $\hat{\eta}$.

6-3. Overall coverage

In controlling overall coverage as discussed in Sections 2.2 and 3.2, we choose $\alpha = 0.03$. The method described in Section 3.2 is applied to find \hat{C}_0 and \hat{C}_1 by searching for the best $\hat{\alpha}_0^*$ that minimizes the empirical ambiguity in the ranking subsample. The tuning parameter is selected by minimizing estimated ambiguity with the same data split as described in the previous subsection. The result is summarized in the bottom row of Table 2, where the overall error rate is bounded by the nominal level.

Figure 3 shows the test data noncoverage rate and ambiguity as a function of λ_0. The tuning parameter has little effect on noncoverage rates, as claimed in Proposition 3, but does affect the ambiguity. The ambiguity is systematically higher in the test sample than in the training sample, because we choose $\hat{\alpha}_0^*$ by minimizing empirical ambiguity in the ranking subsample, which is then plugged in for the test sample without searching for a new $\hat{\alpha}_0^*$. Nevertheless, minimizing empirical ambiguity still leads to a reasonable choice of λ_0. In the right panel of Figure 3, the plotted curve does reflect a convex shape with a unique minimum.

7. Discussion

The confidence level of classification is quite similar to the significance level in statistical hypothesis testing. Such a connection between classification and testing has appeared in the literature. The proof of Lemma 2 of this paper uses ideas in Sun & Cai (2007, 2009), where the multiple testing problem is formulated via a classification problem.

Although the optimal solution depends on ranking and thresholding $\eta(x)$, our framework is applicable in more general settings. For example, many popular classification methods, such as
Classification with Confidence

Fig. 3. Total coverage control for zip code data with $\alpha = 0.03$. Left panel: total error as a function of $\log(\lambda)$. The grey line marks the nominal noncoverage rate of 0.03. Middle panel: empirical ambiguity as a function of $\log(\lambda)$ for training data (solid) and test data (dash). The grey line marks the value of $\log(\lambda)$ that minimizes the empirical ambiguity in the training sample. Right panel: empirical ambiguity as a function of α_0 with $\lambda_0 = 1.49 \times 10^{-3}$. The grey line marks the value of α_0 that minimizes the empirical ambiguity.

empirical risk minimization, are based on thresholding a function $\hat{f}(x)$. Most of the arguments developed in this paper are still applicable when f, the population version of \hat{f}, is roughly a monotone function of η in a neighborhood of the cut-off points.

There are interesting extensions in both theory and methodology. First, it would be interesting to ask what would happen to the ambiguity if a good approximation to the ideal procedure is not available. For example, naive Bayes classifiers have been shown to give competitive performance (Bickel & Levina, 2004) but are also known to be biased except under a naive Bayes model. The same question could also be asked for classifiers with other ranking scores, such as data depth (Li et al., 2012).

Another extension is the multi-class case. In a k-class problem, the optimal procedure shall be based on the vector $\eta(x) = \{\eta_\ell(x) : 1 \leq \ell \leq k\}$ with $\eta_\ell(x) = \Pr(Y = \ell \mid X = x)$. One can define the ambiguity of a set-valued classifier in different ways. For example, both $A(h) = \Pr(|h(X)| \geq 2)$ (Vovk et al., 2005, Section 3) and $A(h) = E\{|h(X)|\}$ agree with the definition used in this work when $k = 2$. It is an open problem to find the corresponding ideal classifiers and consistent estimates. Moreover, the option of $h(x) = \emptyset$ for certain values of x is interesting for both practical and theoretical concerns. An example of possible applications is clinical decision-making such as dynamic treatment regimes (Laber et al., 2014).

ACKNOWLEDGEMENT

This research was partially supported by the U.S. National Science Foundation and the U.S. National Institutes of Health. The author is grateful to the editor, associate editor, and three reviewers for insightful comments that helped improving this paper. The author thanks Professor Larry Wasserman for many inspiring discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material available online includes a proof of Proposition 1.
According to Corollary 1 of Sun & Cai (2009),

\[
\frac{g_1(t)}{g_0(t)} = \frac{t - \pi_0}{1 - t \pi_1},
\]

so \(\mu(\alpha_0) \) is convex on the interval \([0, \alpha/\pi_0]\). The claimed result follows by realizing that \(\nu(\alpha_0) = \max\{\mu(\alpha_0), 0\} \) is also convex.
Let \(\hat{G}_j \) be the empirical cumulative distribution function of \(\eta(X_{j,1}), \ldots, \eta(X_{j,n_j}) \). Throughout this subsection we will focus on the event

\[
E_r = \left\{ \| \hat{\eta} - \eta \|_{\infty} \leq \delta_n, |\hat{\eta}_j - \eta_j| \leq c(\log n_j/n_j)^{1/2}, \sup_t |G_j(t) - \hat{G}_j(t)| \leq c(\log n_j/n_j)^{1/2} \right\},
\]

which has probability at least \(1 - \rho_n - n^{-r} \) for some constant \(c \) depending on \(r \) only. To see this, using Hoeffding’s inequality, \(\Pr\{|\hat{\eta}_j - \eta_j| \geq c(\log n_j/n_j)^{1/2}\} \leq n^{-r}/2 \). Then using the result of Massart (1990), we have \(\Pr\{\sup_t |G_j(t) - \hat{G}_j(t)| \geq c(\log n_j/n_j)^{1/2}\} \leq n^{-r}/2 \). In both cases \(c \) depends on \(r \) only. The value of constant \(c \), as well as \(c_1, c_2 \) below, may vary from one line to another.

The following lemma shows that \(\hat{t}_j \) is a good approximation to \(t_j \).

Lemma A1. On \(E_r \), the \(\hat{t}_j(\alpha_j) \) (\(j = 0, 1 \)) used in eq. (5) satisfy, for \(n \) large enough,

\[
|\hat{t}_j(\alpha_j) - t_j| \leq c\left\{ \delta_n + \left(\frac{\log n}{n} \right)^{\frac{1}{2}} \right\}.
\]

Proof. We prove the result for \(j = 1 \). The argument for \(j = 0 \) is the same.

Let \(\hat{P}_1 \) be the empirical probability distribution that assigns probability \(1/n_1 \) at each \(X_{1,i} \) for \(i = 1, \ldots, n_1 \). Denote \(L^t(t) = \{ x \in \mathcal{X} : \eta(x) \leq t \} \), and \(\hat{L}^t(t) = \{ x \in \mathcal{X} : \hat{\eta}(x) \leq t \} \). Then

\[
\hat{P}_1\{\hat{L}^t(t)\} \leq \hat{P}_1\{L^t(t + \delta_n)\} \leq G_1(t + \delta_n) \leq G_1(t + \delta_n) + c\left(\frac{\log n_1}{n_1} \right)^{1/2}, \quad t \in [0, 1].
\]

Let \(t_1 = t_1 - \delta_n - \{2cb_1^{-1}(\log n_1/n_1)^{1/2}\}^{1/\gamma} \), where \(b_1 \) is the constant in (MA). For \(n \) and \(n_1 \) large enough we have \(n_1^{-1} < c(\log n_1/n_1)^{1/2} \), and \(\delta_n + \{2cb_1^{-1}(\log n_1/n_1)^{1/2}\}^{1/\gamma} \leq \varepsilon_0 \), with \(\varepsilon_0 \) defined in (MA). Then

\[
\hat{P}_1\{\hat{L}^t(t_1)\} \leq G_1\left[t_1 - \{2cb_1^{-1}(\log n_1/n_1)^{1/2}\}^{1/\gamma} \right] + c\left(\frac{\log n_1}{n_1} \right)^{1/2} \leq G_1(t_1) - c(\log n_1/n_1)^{1/2}
\]

\[
= \alpha_1 - c(\log n_1/n_1)^{1/2} < \alpha_1 - n_1^{-1} \leq \alpha_1 n_1^{-1} \leq \hat{P}_1\{\hat{L}^t(t_1)\}.
\]

where the second last step uses (MA). Therefore,

\[
\hat{t}_1 \geq t_1 - \delta_n - \{2cb_1^{-1}(\log n_1/n_1)^{1/2}\}^{1/\gamma}.
\]

Similarly, one can show that \(\hat{t}_1 \leq t_1 + \delta_n + \{2cb_1^{-1}(\log n_1/n_1)^{1/2}\}^{1/\gamma} \). The claimed result follows by picking a larger constant \(c \) so that \(n_1 \) can be replaced by \(n \).

Proof. (Theorem 2) We give the proof for \(j = 1 \). Under assumptions in the theorem, and according to Lemma 1, we have, on event \(E_r \),

\[
P_1(\hat{G}_1 \setminus C_1) = P_1\{\hat{\eta}(X) \geq \hat{t}_1, \eta(X) < \hat{t}_1\} \leq P_1\left\{ t_1 - 2\delta_n - c\left(\frac{\log n}{n} \right)^{1/2} \leq \eta(X) < t \right\}
\]

\[
\leq b_2 \left\{ 2\delta_n + c\left(\frac{\log n}{n} \right)^{1/2} \right\}^{\gamma} \leq 2^{\gamma}b_2 \left\{ 2\gamma\delta_n^{\gamma} + c\gamma\left(\frac{\log n}{n} \right)^{1/2} \right\},
\]

where the last inequality comes from condition (MA) and holds when \(n \) is large enough so that \(2\delta_n + c(\log n/n)^{1/2} \leq \varepsilon_0 \). The other parts can be argued similarly.

Proof. (Theorem 3) Recall that on \(E_r \), we have, for some \(c_1, c_2 \),

\[
|\hat{t}_0 - t_0| \leq c_1\{\delta_n + (\log n/n)^{1/2}\}, \quad a_0 \in [a, \bar{a}],
\]

(A2)
and $|\hat{\pi}_0 - \pi_0| \leq c_2 (\log n/n)^{1/2}$. Then for n large enough, Lemma 1 implies that
\[
|\hat{t}_1(\hat{\alpha}_1) - t_1| \leq |\hat{t}_1(\hat{\alpha}_1) - t_1(\bar{\alpha}_1)| + |G_{T}^{-1}(\alpha_1) - G_{T}^{-1}(\bar{\alpha}_1)|
\leq c_1 \{ \delta_n + (\log n/n)^{1/2} \} + c_2 (\log n/n)^{1/2}, \quad \alpha_0 \in [\underline{\alpha}, \bar{\alpha}]
\] (A3)

where the first part follows from that (MA) holds with $\gamma = 1$, and the second part follows from that G_{T}^{-1} is Lipschitz as implied by (MA).

Let P_n be the empirical marginal distribution of X. Then for n large enough we have, on E_r,
\[
\hat{\nu}(\alpha_0) - \nu(\alpha_0) = P \{ \hat{t}_1(\hat{\alpha}_1) \leq \hat{\eta}(X) \leq \hat{t}_0(\alpha_0) \} - P \{ t_1 \leq \eta(X) \leq t_0 \}
\leq P \{ \hat{t}_1(\hat{\alpha}_1) - \delta_n \leq \eta(X) \leq \hat{t}_0(\alpha_0) + \delta_n \} - P \{ t_1 \leq \eta(X) \leq t_0 \}
= P \{ \hat{t}_1(\hat{\alpha}_1) - \delta_n \leq \eta(X) \leq \hat{t}_0(\alpha_0) + \delta_n \} - P \{ \hat{t}_1(\hat{\alpha}_1) - \delta_n \leq \eta(X) \leq \hat{t}_0(\alpha_0) + \delta_n \}
+ P \{ \hat{t}_1(\hat{\alpha}_1) - \delta_n \leq \eta(X) \leq \hat{t}_0(\alpha_0) + \delta_n \} - P \{ t_1 \leq \eta(X) \leq t_0 \}
\leq c \{ \delta_n + (\log n/n)^{1/2} \},
\]

where in the last inequality, the first part is bounded, up to a constant factor, by $(\log n/n)^{1/2}$ using standard empirical process theory, and the second part is bounded by $\delta_n + (\log n/n)^{1/2}$ using (A2), (A3), and the assumption that G_{T} has bounded density. The other direction $-\hat{\nu}(\alpha_0) + \nu(\alpha_0)$ can be treated similarly. The first claim follows from strong convexity and uniform approximation of $\hat{\nu}$ to ν.

Next we prove the second part for C_{0}^{*}. The proof for C_{1}^{*} is similar. On the event in the first claim, $\hat{\alpha}_0 \in [\underline{\alpha}, \bar{\alpha}]$. By the assumptions, the claim of Lemma 1 holds uniformly for all $\alpha_0 \in [\underline{\alpha}, \bar{\alpha}]$. Thus
\[
P_{0}(\hat{C}_{0}^{*} \Delta C_{0}^{*}) \leq P_{0}(\hat{C}_{0}^{*} \Delta C_{0}(\alpha_0^{*})) + P_{0}(C_{0}(\hat{\alpha}_0^{*}) \Delta C_{0}^{*})
\leq c \{ \delta_n + (\log n/n)^{1/2} \} + |\hat{\alpha}_0 - \alpha_0^{*}| \leq c \delta_n^{1/2} + (\log n/n)^{1/4}.
\]

REFERENCES

Classification with Confidence

1. Background of Local Polynomial Estimator

Assume $X = [-1, 1]^d$. For any $s = (s_1, ..., s_d) \in (\mathbb{Z}^+)^d$, where \mathbb{Z}^+ is the set of nonnegative integers, and $z \in \mathbb{R}^d$, define $|s| = \sum_{1 \leq k \leq d} s_k$ and $z^d = z_1^{s_1} \cdots z_d^{s_d}$. Let K be a kernel function and $\tau > 0$ a bandwidth. The local polynomial estimator for $\eta(x)$ is

$$\hat{\eta}(x) = \hat{v}_0(x),$$

where

$$\hat{v}_0(x) = \arg \min_v \sum_{i=1}^n \left\{ Y_i - \sum_{s:|s| \leq \ell} v_s \frac{(X_i - x)^s}{\tau^{|s|}} \right\}^2 K \left(\frac{X_i - x}{\tau} \right).$$

To prove consistency of $\hat{\eta}(x)$, we assume that $\eta(x) = \text{pr}(Y = 1 | X = x)$ belongs to a Hölder class $\Sigma(\beta, L)$, and that K is a valid kernel function. The following definitions are commonly used in nonparametric statistics (Tsybakov, 2009).

For any sufficiently smooth function $f : \mathbb{R}^d \mapsto \mathbb{R}$, define D^s to be the differential operator:

$$D^s f = \frac{\partial^{|s|}}{\partial x_1^{s_1} \cdots \partial x_d^{s_d}} (x_1, ..., x_d).$$

Given $\beta > 0$, for any function f that is $[\beta]$ times differentiable, denote its Taylor expansion of degree $[\beta]$ at x_0 by

$$f(x) = \sum_{|s| \leq \beta} \frac{(x - x_0)^s}{s!^{s_1} \cdots s_d!} D^s f(x_0).$$

Definition 1. For constants $\beta > 0$, $L > 0$, define the Hölder class $\Sigma(\beta, L)$ to be the set of $[\beta]$-times differentiable functions on \mathbb{R}^d such that,

$$|f(x) - f(x_0)| \leq L \|x - x_0\|^\beta.$$ \hspace{1cm} (2)

A standard condition on the kernel is the notion of β-valid kernels.

Definition 2. For any $\beta > 0$, function $K : \mathbb{R}^d \mapsto \mathbb{R}^1$ is a β-valid kernel if (a) K is supported on $[-1, 1]^d$; (b) $\int K = 1$; (c) $\int |K|^r < \infty$ for all $r \geq 1$; (d) $\int y^s K(y) dy = 0$ for all $1 \leq |s| \leq \beta$.

Remark 1. The assumption that $X = [0, 1]^d$ can be generalized to the (r_0, c_0)-regularity condition used in Audibert & Tsybakov (2007).
2. \textbf{Sup-norm error bound for local polynomial estimator}

\textsc{Theorem 1.} Assume that $\eta \in \Sigma(\beta, L)$, and that K is a valid kernel function of order β. Let $\hat{\eta}$ be the order $[\beta]$ local polynomial estimator using kernel function K and bandwidth τ. If the marginal density function p_X of X is uniformly bounded and bounded away from zero on $\mathcal{X} = [-1, 1]^d$, then for any $r > 0$, there exists a constant c such that

$$\Pr\left[\sup_x |\hat{\eta}(x) - \eta(x)| \leq c \left(\frac{\log n}{n\tau^d}\right)^{1/2} + \tau^\beta\right] \geq 1 - n^{-r}.$$

\textit{Proof.} Let $U(z) = (z^s)_{s:|s| \leq \ell}$ for all $z \in \mathbb{R}^d$, where $\ell = [\beta]$. Let M be the length of $U(z)$. The local polynomial estimator can be written as

$$\hat{\eta}(x) = U^T(0)H^{-1}_{nx}A_{nx}Y,$$

where

$$H_{nx}(s, s') = \frac{1}{n\tau^d} \sum_{i=1}^{n} \left(\frac{X_i - x}{\tau}\right)^s K\left(\frac{X_i - x}{\tau}\right),$$

$$A_{nx}(s, i) = \frac{1}{n\tau^d} \left(\frac{X_i - x}{\tau}\right)^s K\left(\frac{X_i - x}{\tau}\right),$$

$$Y = (Y_1, \ldots, Y_n)^T.$$

By the reproducing property of local polynomial estimators, if $Q_n = \{q(X_1), \ldots, q(X_n)\}^T$ with q an order ℓ polynomial, then we have

$$U^T(0)H^{-1}_{nx}A_{nx}Q_n = q(x).$$

Then we have the following bias-variance decomposition of the estimation error:

$$\hat{\eta}(x) - \eta(x) = U^T(0)H^{-1}_{nx}A_{nx}\{Y - \eta(x)e_n\}$$

$$= U^T(0)H^{-1}_{nx}A_{nx}\{Y - \eta_n + \eta_n - \eta_{nx} + \eta_{nx} - \eta(x)e_n\}$$

$$= U^T(0)H^{-1}_{nx}A_{nx}(\xi_n + R_{nx}),$$

where e_n is a $n \times 1$ column vector of 1’s, and $\eta_n, \eta_{nx}, \xi_n, R_{nx}$ are vectors such that

$$\eta_n(i) = \eta(X_i), \quad \eta_{nx}(i) = \eta_{x}(X_i), \quad \xi_n = Y - \eta_n, \quad R_{nx} = \eta_n - \eta_{nx},$$

and $\eta_{x}(\cdot)$ is the local polynomial approximation for $\eta(\cdot)$ at x. By the Hölder assumption, $|R_{nx}(i)| \leq L\tau^\beta$ whenever $K\{(X_i - x)/\tau\} \neq 0$. In the last equation we used the reproducing property of the local polynomial estimator. The remainder of the proof consists of three main steps.

In the first step, we provide a uniform lower bound on the smallest eigenvalue of H_{nx}. Let ϕ_H be the smallest eigenvalue of matrix H. Then using Equation 6.3 in Audibert & Tsybakov (2007), there exist constants $c > 0$ and $\mu_0 > 0$, such that

$$\Pr(\phi_{H_{nx}} \leq 2\mu_0) \leq 2M^2 \exp(-cn\tau^d)$$

for all x, and all n large enough, $n\tau^d$ large enough.
Using continuity and differentiation, we can find some constant κ depending on β and K only, such that for all s, s' satisfying $|s|, |s'| \leq \ell$ and all X,

$$
\left| \left(\frac{X - x}{\tau} \right)^{s+s'} K \left(\frac{X - x}{\tau} \right) - \left(\frac{X - x'}{\tau} \right)^{s+s'} K \left(\frac{X - x'}{\tau} \right) \right| \leq \kappa \tau^{-1} \|x - x'\|_\infty, \tag{3}
$$

which implies that

$$
\|H_n x - H_n x'\|_2 \leq \|H_n x - H_n x'\|_F \leq \kappa M \tau^{-(d+1)} \|x - x'\|_\infty. \tag{4}
$$

Given $\delta > 0$, there exists a finite subset $\{x_1, \ldots, x_{N_\delta}\} \subset [0,1]^d$ that covers $[-1,1]^d$ with radius δ in ℓ_∞ norm with $N_\delta \leq 2^d \delta^{-d}$. Now let $\delta = \mu_0 \tau^{d+1}/\kappa M$ where κ is the constant in (3) and (4). Then for any $x \in [0,1]^d$, there exists a j such that $\|H_n x - H_n x_j\|_2 \leq \mu_0$ and hence for n large enough

$$
\Pr\left(\inf_x \lambda_{H_n x} \leq \mu_0 \right) \leq \Pr\left(\text{there exists } 1 \leq j \leq N_\delta : \lambda_{H_n x_j} \leq 2\mu_0 \right)
\leq (\delta/2)^{-d} \exp(-cn\tau^d)
\leq c' \exp\left\{-cn\tau^d - d(d + 1) \log \tau \right\} \leq c' \exp(-cn\tau^d/2). \tag{5}
$$

The second step is to control $\|A_n x \xi_n\|_2$. Let

$$
a_{n x}(s) = \frac{1}{n \tau^d} \sum_{i=1}^n \left(\frac{X_i - x}{\tau} \right)^s K \left(\frac{X_i - x}{\tau} \right) \xi_n(i).
$$

Recall that $\{X_1, \xi_n(1)\}, \ldots, \{X_n, \xi_n(n)\}$ is an independent and identically distributed sample. Let $f_{s,x}(X, \xi) = \tau \{ (X - x)/\tau \}^s K \{ (X - x)/\tau \} \xi$. Then $|f_{s,x}(X, \xi) - f_{s,x}(X, \xi)| \leq \kappa \|x - x'\|_\infty$, by smoothness of K, where κ depends only on β and K. As a result, for any $\delta > 0$, there exists a δ-covering set, with cardinality at most $(2\kappa/\delta)^d$, for the function class $\mathcal{F} = \{f_{s,x} : x \in [0,1]^d\}$ in $L_2(P)$ norm for any probability measure P on $[-1,1]^d \times [-1,1]$. We also have $|f_{s,x}| \leq \tau$, $E(f_{s,x}) = 0$, and $\text{var}(f_{s,x}) \leq c^2 \tau^{d+2}$ for some constant c depending on the distribution of X only.

The function class \mathcal{F} indexed by x satisfies the conditions of Theorem 2.1 and Corollary 2.2 in Giné & Guillou (2002), which give sharp tail probability bounds for the sup-norm of empirical processes. These results are consequences of powerful exponential concentration inequalities due to Talagrand (1994, 1996).

As a result, there exist constants c_1, c_2, c_3 depending only on κ, d, such that for all $c \geq c_1$, we have

$$
\Pr\left\{ \sup_x \left| \frac{1}{n \tau^d} \sum_{i=1}^n \left(\frac{X_i - x}{\tau} \right)^s K \left(\frac{X_i - x}{\tau} \right) \xi_n(i) \right| \geq c \left(\frac{\log n}{n \tau^d} \right)^{1/2} \right\} \leq c_2 n^{-c_3 c}. \tag{6}
$$

Thus with probability at least $1 - c_2 M n^{-c_3 c}$, we have

$$
\|A_n x \xi_n\|_2 \leq c \left(\frac{M \log n}{n \tau^d} \right)^{1/2}. \tag{7}
$$
The third step is to control \(\| A_{nx} R_{nx} \|_2 \). Consider the \(s \)th coordinate of \(A_{nx} R_{nx} \)
\[
| (A_{nx} R_{nx})(s) | = \frac{1}{n \tau^d} \sum_{i=1}^{n} \left(\frac{X_i - x}{\tau} \right)^s K \left(\frac{X_i - x}{\tau} \right) R_{nx}(s)
\]
\[
\leq L \| K \|_{\infty} \tau^d \frac{1}{n \tau^d} \sum_{i=1}^{n} \mathbb{I}(|X_i - x| < \tau),
\]
where \(\mathbb{I}(\cdot) \) is the indicator function. Because the density of \(X \) is bounded by \(\bar{\mu} < \infty \), we have
\[
\sup_x E \{ \mathbb{I}(|X - x| \leq \tau) \} \leq (2\tau)^d \bar{\mu}.
\]

On the other hand, the function class \(\mathcal{F}' = \{ \mathbb{I}(|\cdot - x| < \tau) : x \in [0, 1]^d \} \) also satisfies the sup-norm tail bound conditions mentioned above. Therefore, there exist constants \(c_1, c_2, \) and \(c_3 \) such that when \((n \tau^d / \log n)^{1/2} \geq c_1 \),
\[
\Pr \left\{ \sup_x \frac{1}{n \tau^d} \sum_{i=1}^{n} \mathbb{I}(|X_i - x| < \tau) \geq (\bar{\mu} + 1) \right\} \leq c_2 n^{-c_3 (\frac{n \tau^d}{\log n})^{1/2}}. \tag{8}
\]
As a result, with probability at least \(1 - c_2 n^{-c_3 (n \tau^d / \log n)^{1/2}} \) we have
\[
\| A_{nx} R_{nx} \|_2 \leq L \| K \|_{\infty} M^{1/2}(\bar{\mu} + 1) \tau^d. \tag{9}
\]
Finally, combining (5), (7) and (9), for any given \(r > 0 \) there exists constant \(c \) large enough such that with probability at least \(1 - n^{-r} \)
\[
\sup_x |\hat{\eta}(x) - \eta(x)| \leq c \left\{ \left(\frac{\log n}{n \tau^d} \right)^{1/2} + \tau^d \right\},
\]
as claimed in Theorem 1. \(\square \)

REFERENCES

