1. Let Θ be a finite set. Let $L(\theta, \hat{\theta}) = 0$ if $\theta = \hat{\theta}$ and $L(\theta, \hat{\theta}) = 1$ otherwise. Show that the posterior mode is the Bayes estimator.

2. Let $X \sim N(\theta, 1)$. Suppose that $\theta \in \Theta = [-C, C]$ where $C = 1/2$. Assume squared error loss.

 (a) Verify that $\hat{\theta} = C \tanh(CX)$ is minimax. Hint: Show that $\hat{\theta}$ is the Bayes estimator under the prior $\pi = (1/2)\delta_{-C} + (1/2)\delta_{C}$ where δ_a denotes a distribution that puts probability 1 at a. You may assume that $R(\theta, \hat{\theta})$ has the following properties: it is continuous, symmetric about 0 and increasing on $[0, c]$.

 (b) Find the mle (maximum likelihood estimator) $\hat{\theta}$.

 (c) Find the risk of the mle.

 (d) Plot the risk functions of these two estimators.

3. Let $X \sim \text{Binomial}(n, \theta)$.

 (a) Find a minimax estimator. Hint: Consider a Bayes estimator based on a beta prior.

 (b) Plot the risk of the the minimax estimator, the mle and the Bayes estimator using a flat prior, for $n = 5, 50, 100$.

4. In class, we outlined the proof that X is minimax when $X \sim N(\theta, 1)$ and $\theta \in \mathbb{R}$. Fill in the details.

5. This question will help you explore the differences between Bayesian and frequentist inference. Let X_1, \ldots, X_n be a sample from a multivariate Normal distribution with mean $\mu = (\mu_1, \ldots, \mu_p)^T$ and covariance matrix equal to the identity matrix I. Note that each X_i is a vector of length p.

The following facts will be helpful. If \(Z_1, \ldots, Z_k \) are independent \(N(0, 1) \) and \(a_1, \ldots, a_k \) are constants, then we say that \(Y = \sum_{j=1}^{p} (Z_j + a_j)^2 \) has a non-central \(\chi^2 \) distribution with \(k \) degrees of freedom and noncentrality parameter \(||a||^2 \). The mean and variance of \(Y \) are
\[k + ||a||^2 \text{ and } 2k + 4||a||^2. \]

(a) Find the posterior under the improper prior \(\pi(\mu) = 1 \).

(b) Let \(\theta = \sum_{j=1}^{p} \mu_j^2 \). Our goal is to learn \(\theta \). Find the posterior for \(\theta \). Express your answers in terms of noncentral \(\chi^2 \) distributions. Find the posterior mean \(\bar{\theta} \).

(c) The usual frequentist estimator is \(\hat{\theta} = ||X_n||^2 - p/\sqrt{n} \). Show that, for any \(n \),
\[\frac{E_\theta ||\theta - \bar{\theta}||^2}{E_\theta ||\theta - \bar{\theta}||^2} \rightarrow \infty \]
as \(p \rightarrow \infty \).

(d) Repeat the analysis with a \(N(0, \tau^2 I) \) prior.

(e) Set \(n = 10, p = 1000, \theta = (0, \ldots, 0)^T \). Simulate (in R) data \(N \) times, with \(N = 1000 \). Draw a histogram of the Bayes estimator (with flat prior) and the frequentist estimator.

(e) Interpret your findings.

6. The following is a list of some loss functions commonly used for large-margin classification algorithms. For each loss function \(\phi(x) \) determine whether \(\phi \) is a convex function, then calculate and plot its conjugate \(\phi^* \) (together with \(\phi \)).

(a) Exponential loss: \(\phi(x) = \exp(-x) \)

(b) Truncated quadratic loss: \(\phi(x) = [\max(1 - x, 0)]^2 \)

(c) Hinge loss: \(\phi(x) = \max(1 - x, 0) \)

(d) Sigmoid loss: \(\phi(x) = 1 - \tanh(\kappa x) \), for fixed \(\kappa > 0 \)