10-702 Statistical Machine Learning: Assignment 1
Due Friday, February 8

Hand in to Diane Stidle, WH 4609 by 3:00. Use R for all numerical computations.

1. (One more question on minimaxity.)
 (a) Let π_n be a sequence of priors and $\tilde{\theta}_n$ the corresponding Bayes estimators. Suppose that
 \[\int R(\theta, \tilde{\theta}_n)\pi_n(\theta)d\theta \to c \]
 for some finite c. Suppose that $\hat{\theta}$ is an estimator such that
 \[\sup_{\theta} R(\theta, \hat{\theta}) \leq c. \]
 Show that $\hat{\theta}$ is minimax.

 (b) Let $X \sim N(\theta, 1)$. Show that $\hat{\theta} = X$ is minimax.
 Hint: Let π_n be $N(0, n)$. Check that
 \[\int R(\theta, \tilde{\theta}_n)\pi_n(\theta)d\theta \to 1. \]
 Next show that $R(\theta, X) = 1$. Conclude from part (a) that X is minimax.

2. The following is a list of some loss functions commonly used for large-margin classification algorithms. For each loss function $\phi(x)$ determine whether ϕ is a convex function, then calculate and its conjugate ϕ^*. Plot ϕ and ϕ^*.
 (a) Exponential loss: $\phi(x) = \exp(-x)$
 (b) Truncated quadratic loss: $\phi(x) = \left[\max(1-x, 0)\right]^2$
 (c) Hinge loss: $\phi(x) = \max(1-x, 0)$
 (d) Sigmoid loss: $\phi(x) = 1 - \tanh(\kappa x)$, for fixed $\kappa > 0$

3. If $f(x, y) = f_1(x) + f_2(y)$, with f_1 and f_2 convex, show that
 \[f^*(x, y) = f_1^*(x) + f_2^*(y) \]
 Does this hold if f_1 and f_2 are not convex?
4. The following is called the **probit regression model**. Suppose \(Y \in \{0, 1\} \) is a random variable given by

\[
Y = \begin{cases}
1 & a^\top X + b + V \leq 0 \\
0 & a^\top X + b + V > 0
\end{cases}
\]

where \(X \in \mathbb{R}^p \) is a vector of explanatory variables and \(V \sim N(0, 1) \) is a latent (unobserved) random variable. Formulate the maximum likelihood estimation problem of estimating \(a \) and \(b \), given data consisting of pairs \((X_i, Y_i)\), \(i = 1, \ldots, n \), as a convex optimization problem.

5. For \(x \in \mathbb{R}^n \) define the \(L_p \) norm

\[
||x||_p = \left(\sum_{j=1}^{n} |x_j|^p \right)^{1/p}
\]

for \(p > 0 \). Let

\[
C = \left\{ x : ||x||_p \leq 1 \right\}.
\]

Show that \(C \) is convex if and only if \(p \geq 1 \).

6. Linear regression in R. Add brief comments to this code, and to the output, to explain what the code does and what the output means.

```r
par(mfrow=c(2,2),bg="cornsilk")
n = 100
sigma = 1
x = rnorm(n)
x = sort(x)
y = 5 + 3*x + rnorm(n,0,sigma)
plot(x,y,col="blue",lwd=3)
out = lm(y ~ x)
summary(out)
abline(out,col="red",lwd=3)
abline(a=5,b=3,col="green",lwd=2)

y = 5 + 3*x + rcauchy(n,0,sigma)
plot(x,y,col="blue",lwd=3)
out = lm(y ~ x)
summary(out)
abline(out,col="red",lwd=3)
abline(a=5,b=3,col="green",lwd=2)
```
nsim = 100
b = rep(0,nsim)
for(i in 1:nsim){
 x = rnorm(n)
 x = sort(x)
 y = 5 + 3*x + rnorm(n,0,sigma)
 out = lm(y ~ x)
 b[i] = out$coef[2]
}
summary(b)
hist(b)
abline(v=3,lwd=3,col="red")
print(mean((b-3)^2))

7. Prove the leave-one-out cross-validation identity:

\[\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_{(-i)})^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \hat{Y}_i}{1 - H_{ii}} \right)^2. \]