Now we consider doing inference without assuming a parametric model. This is called *nonparametric inference*. Some examples we consider are:

1. Estimate the cdf F.
2. Estimate a density function $p(x)$.
3. Estimate a functional $T(P)$ of a distribution P for example $T(P) = \mathbb{E}(X) = \int x p(x) dx$.

1 The cdf

Given $X_1, \ldots, X_n \sim F$ where $X_i \in \mathbb{R}$ we use,

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq x)$$

to estimate F. We saw earlier that

$$\mathbb{P}\left(\sup_x |\hat{F}(x) - F(x)| > \epsilon \right) \leq 2e^{-2n\epsilon^2}. $$

Hence,

$$\sup_x |\hat{F}(x) - F(x)| \overset{P}{\rightarrow} 0$$

and

$$\sup_x |\hat{F}(x) - F(x)| = O_P\left(\sqrt{\frac{1}{n}} \right).$$

It can be shown that this is the minimax rate of convergence. Also, we have a nonparametric confidence band:

$$\mathbb{P}(L_n(x) \leq F(x) \leq U_n(x) \text{ for all } x \geq 1 - \alpha)$$

where $L_n(x) = \hat{F}_n(x) - \epsilon_n$, $U_n(x) = \hat{F}_n(x) - \epsilon_n$ and

$$\epsilon_n = \sqrt{\frac{1}{2n} \log(2/\alpha)}.$$
2 Density Estimation

X_1, \ldots, X_n are iid with density p where $X_i \in \mathbb{R}$. What happens if we try to do maximum likelihood? The likelihood is

$$L(p) = \prod_{i=1}^{n} p(X_i).$$

We can make this as large as we want by making p highly peaked at each X_i. So $\sup_p L(p) = \infty$ and the mle is the density that puts infinite spikes at each X_i. Thus likelihood is not very helpful here.

To proceed, we will need to put some restriction on p. For example

$$p \in \mathcal{P} = \left\{ p : p \geq 0, \int p = 1, \int |p''(x)|^2 dx \leq C \right\}.$$

The most commonly used nonparametric density estimator is probably the histogram. Another common estimator is the kernel density estimator. A kernel K is a symmetric density function with mean 0. The estimator is

$$\hat{p}_n(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K \left(\frac{x - X_i}{h} \right)$$

where $h > 0$ is called the bandwidth.

The bandwidth controls the smoothness of the estimator. Larger h makes \hat{p}_n smoother. As a loss function we will use

$$L(p, \hat{p}) = \int (p(x) - \hat{p}(x))^2 dx.$$

The risk is

$$R = \mathbb{E}(L(p, \hat{p})) = \int \mathbb{E}(p(x) - \hat{p}(x))^2 dx = \int (b^2(x) + v(x)) dx$$

where

$$b(x) = \mathbb{E}(\hat{p}(x)) - p(x)$$

is the bias and

$$v(x) = \text{Var}(\hat{p}(x)).$$

Theorem 1 Suppose that $h \to 0$ as $n \to \infty$. The risk satisfies

$$R_n = C_1 h^4 + \frac{C_2}{nh} + O \left(h^4 + \frac{1}{nh} \right)$$

for constants $C_1, C_2 > 0$. If $nh \to \infty$ as $n \to \infty$ then $R_n \to 0$. The risk is minimized by setting $h = Cn^{-1/5}$ for some $C > 0$. In this case $R_n = O(n^{-4/5})$.

2
Proof. Let
\[Y_i = \frac{1}{h} K \left(\frac{x - X_i}{h} \right). \]
Then \(\hat{p}_h(x) = n^{-1} \sum_{i=1}^{n} Y_i \) and
\[
\mathbb{E}(\hat{p}(x)) = \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} Y_i \right) = \mathbb{E}(Y_i) = \mathbb{E}\left(\frac{1}{h} K \left(\frac{X_i - x}{h} \right) \right)
\]
\[
= \int \frac{1}{h} K \left(\frac{u - x}{h} \right) p(u) du
\]
\[
= \int K(t)p(x + ht) dt \quad \text{where } u = x + ht
\]
\[
= \int K(t) \left(p(x) + htp'(x) + \frac{h^2 t^2}{2} p''(x) + o(h^2) \right) dt
\]
\[
= p(x) \int K(t) dt + h p'(x) \int tK(t) dt + \frac{h^2}{2} p''(x) \int t^2 K(t) dt + o(h^2) dt
\]
\[
= (p(x) \times 1) + (hp'(x) \times 0) + \frac{h^2}{2} p''(x) \kappa + o(h^2)
\]
where \(\kappa = \int t^2 K(t) dt \). So \(\mathbb{E}(\hat{p}(x)) \approx p(x) + \frac{h^2}{2} p''(x) \kappa \) and
\[
b(x) \approx \frac{h^2}{2} p''(x) \kappa.
\]
Thus
\[
\int b^2(x) dx = \frac{h^4}{4} \kappa^2 \int (p''(x))^2 dx = C_1 h^4.
\]
Now we compute the variance. We have
\[
v(x) = \text{Var}\left(\frac{1}{n} \sum_{i=1}^{n} Y_i \right) = \frac{\text{Var}Y_i}{n} = \frac{\mathbb{E}(Y_i^2) - (\mathbb{E}(Y_i))^2}{n}.
\]
Now
\[
\mathbb{E}(Y_i^2) = \mathbb{E}\left(\frac{1}{h^2} K^2 \left(\frac{X_i - x}{h} \right) \right)
\]
\[
= \int \frac{1}{h^2} K^2 \left(\frac{u - x}{h} \right) p(u) du
\]
\[
= \frac{1}{h} \int K^2(t)p(x + ht) dt \quad u = x + ht
\]
\[
\approx \frac{p(x)}{h} \int K^2(t) dt = \frac{p(x) \xi}{h}
\]
where $\xi = \int K^2(t)dt$. Now

$$(\mathbb{E}(Y_i))^2 \approx \left(p(x) + \frac{h^2}{2} p''(x)\kappa \right)^2 = p^2(x) + O(h^2) \approx p^2(x).$$

So

$$v(x) = \frac{\mathbb{E}(Y_i^2) - (\mathbb{E}(Y_i))^2}{n} \approx \frac{p(x)}{nh} + p^2(x) = \frac{p(x)\xi}{nh} + o\left(\frac{1}{nh}\right) \approx \frac{p(x)\xi}{nh}$$

and

$$\int v(x)dx \approx \frac{C_2}{nh}.$$

Finally,

$$R \approx \frac{h^4}{4} \kappa^2 \int (p''(x))^2dx + \frac{\xi}{nh} = C_1 h^4 + \frac{C_2}{nh}.$$

Note that

$$h \uparrow \rightarrow \text{bias} \uparrow, \text{variance} \downarrow$$

$$h \downarrow \rightarrow \text{bias} \downarrow, \text{variance} \uparrow.$$

If we choose $h = h_n$ to satisfy

$$h_n \to 0, \quad nh_n \to \infty$$

then we see that $\hat{p}_n(x) \xrightarrow{p} p(x)$.

If we minimize over h we get

$$h = \left(\frac{\xi}{4nC}\right)^{1/5} = O\left(\frac{1}{n}\right)^{1/5}.$$

This gives

$$R = \frac{C_1}{n^{4/5}}$$

for some constant C_1.

Can we do better? The answer, based on minimax theory, is no.

Theorem 2 Let

$$\mathcal{P} = \left\{ p : \int |p''(x)|^2dx < M \right\}.$$

There is a constant a such that

$$\inf_{\hat{p}} \sup_{p \in \mathcal{P}} R(p, \hat{p}) \geq \frac{a}{n^{4/5}}.$$

We prove this in 10/36-702. So the kernel estimator achieves the minimax rate of convergence. The histogram converges at the sub-optimal rate of $n^{-2/3}$. There are many practical questions such as: how to choose h in practice, how to extend to higher dimensions etc. These are also discussed in 10/36-702.
3 Functionals

Let $X_1, \ldots, X_n \sim F$. Let \mathcal{F} be all distributions. A map $T : \mathcal{F} \to \mathbb{R}$ is called a **statistical functional**. We write $\theta = T(F)$. We also write $\theta = T(P)$ where P is the distribution.

Notation. Let F be a distribution function. Let f denote the probability mass function if F is discrete and the probability density function if F is continuous. The integral $\int g(x)dF(x)$ is interpreted as follows:

\[
\int g(x)dF(x) = \begin{cases}
\sum_j g(x_j)p(x_j) & \text{if } F \text{ is discrete} \\
\int g(x)p(x)dx & \text{if } F \text{ is continuous}
\end{cases}
\]

A statistical functional $T(F)$ is any function of the cdf F. Examples include the mean $\mu = \int x dF(x)$, the variance $\sigma^2 = \int (x - \mu)^2 dF(x)$, the median $m = F^{-1}(1/2)$, and the largest eigenvalue of the covariance matrix Σ.

The **plug-in estimator** of $\theta = T(F)$ is defined by

\[\hat{\theta}_n = T(\hat{F}_n).\]

A functional of the form $\int a(x)dF(x)$ is called a **linear functional**. The empirical cdf $\hat{F}_n(x)$ is discrete, putting mass $1/n$ at each X_i. Hence, if $T(F) = \int a(x)dF(x)$ is a linear functional then the plug-in estimator for linear functional $T(F) = \int a(x)dF(x)$ is:

\[T(\hat{F}_n) = \int a(x)d\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} a(X_i).\]

Let \hat{se} be an estimate of the standard error of $T(\hat{F}_n)$.

Asymptotic Normality. If the functional F satisfies certain conditions, then

\[
\frac{\hat{\theta}_n - \theta}{\hat{se}} \to N(0, 1).
\]

Thus, $\hat{\theta}_n = T(\hat{F}_n) \approx N(T(F), \hat{se}^2)$. In this case, an approximate $1 - \alpha$ confidence interval for $T(F)$ is then

\[\hat{\theta}_n \pm z_{\alpha/2} \hat{se}.\]

To test $H_0 : \theta = \theta_0$ versus $H_1 : \theta \neq \theta_0$, we can use the nonparametric version of the Wald statistic

\[W = \frac{\hat{\theta}_n - \theta_0}{\hat{se}}.\]

We reject H_0 if $|W| > z_{\alpha/2}$.

5
Example 3 (The mean) Let $\mu = T(F) = \int xdF(x)$. The plug-in estimator is $\widehat{\mu} = \int xd\widehat{F}_n(x) = \bar{X}_n$. The standard error is $\text{se} = \sqrt{\text{Var}(\bar{X}_n)} = \sigma/\sqrt{n}$. If $\widehat{\sigma}$ denotes an estimate of σ, then the estimated standard error is $\widehat{\text{se}} = \widehat{\sigma}/\sqrt{n}$. A Normal-based confidence interval for μ is $\bar{X}_n \pm z_{\alpha/2} \widehat{\sigma}/\sqrt{n}$.

Example 4 (The variance) Let $\sigma^2 = \text{Var}(X) = \int x^2dF(x) - (\int xdF(x))^2$. The plug-in estimator is

$$\widehat{\sigma}^2 = \int x^2d\widehat{F}_n(x) - \left(\int xd\widehat{F}_n(x)\right)^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} X_i\right)^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2.$$ \hspace{1cm} (1)

Example 5 (The skewness) Let μ and σ^2 denote the mean and variance of a random variable X. The skewness — which measures the lack of symmetry of a distribution — is defined to be

$$\kappa = \frac{\mathbb{E}(X-\mu)^3}{\sigma^3} = \frac{\int (x-\mu)^3dF(x)}{\left\{\int (x-\mu)^2dF(x)\right\}^{3/2}}.$$ \hspace{1cm} (2)

To find the plug-in estimate, first recall that $\widehat{\mu} = n^{-1} \sum_{i=1}^{n} X_i$ and $\widehat{\sigma}^2 = n^{-1} \sum_{i=1}^{n} (X_i - \widehat{\mu})^2$. The plug-in estimate of κ is

$$\widehat{\kappa} = \frac{\int (x-\mu)^3d\widehat{F}_n(x)}{\left\{\int (x-\mu)^2d\widehat{F}_n(x)\right\}^{3/2}} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \widehat{\mu})^3/\widehat{\sigma}^3.$$ \hspace{1cm} (3)

Example 6 (Correlation) Let $Z = (X,Y)$ and let $\rho = T(F) = \mathbb{E}(X-\mu_X)(Y-\mu_Y)/(\sigma_x \sigma_y)$ denote the correlation between X and Y, where $F(x,y)$ is bivariate. We can write $T(F) = a(T_1(F), T_2(F), T_3(F), T_4(F), T_5(F))$ where

$$T_1(F) = \int x dF(z) \quad T_2(F) = \int y dF(z) \quad T_3(F) = \int xy dF(z)$$

$$T_4(F) = \int x^2 dF(z) \quad T_5(F) = \int y^2 dF(z)$$

and

$$a(t_1, \ldots, t_5) = \frac{t_3 - t_1 t_2}{\sqrt{(t_4 - t_1^2)(t_5 - t_2^2)}}.$$ \hspace{1cm} (4)

Replace F with \widehat{F}_n in $T_1(F), \ldots, T_5(F)$, and take

$$\widehat{\rho} = a(T_1(\widehat{F}_n), T_2(\widehat{F}_n), T_3(\widehat{F}_n), T_4(\widehat{F}_n), T_5(\widehat{F}_n)).$$
We get
\[\hat{\rho} = \frac{\sum_{i=1}^{n}(X_i - \bar{X}_n)(Y_i - \bar{Y}_n)}{\sqrt{\sum_{i=1}^{n}(X_i - \bar{X}_n)^2} \sqrt{\sum_{i=1}^{n}(Y_i - \bar{Y}_n)^2}} \]
which is called the sample correlation.

Example 7 (Quantiles) Let \(F \) be strictly increasing with density \(f \). Let \(T(F) = F^{-1}(p) \) be the \(p \)th quantile. The estimate of \(T(F) \) is \(\hat{T}_n^{-1}(p) \). We have to be a bit careful since \(\hat{F}_n \) is not invertible. To avoid ambiguity we define \(\hat{F}_n^{-1}(p) = \inf\{x : \hat{F}_n(x) \geq p\} \). We call \(\hat{F}_n^{-1}(p) \) the \(p \)th sample quantile.

What if we do not know how to estimate the standard error. Then we use the bootstrap (stay tuned).

4 Nonparametric Confidence Interval For The Median

Suppose we want to find a confidence interval for the median \(\theta \) of a distribution \(F \). Let \(Y_1, \ldots, Y_n \sim F \). Define
\[Z_i = \frac{\text{sign}(Y_i - \theta) + 1}{2}. \]

Note that
\[Z_i = \begin{cases} 1 & \text{if } Y_i > \theta \\ 0 & \text{if } Y_i < \theta. \end{cases} \]

Note that \(\mathbb{P}(Z_i = 1) = 1/2 \). Let \(T = \sum_{i=1}^{n} Z_i \). Hence \(T \sim \text{Binomial}(n, 1/2) \). Also, note that \(T \) is the number of \(Y_i \)'s > \(\theta \).

Let \(k_1 \) and \(k_2 \) be chosen so that
\[\mathbb{P}(k_1 \leq \text{Binomial}(n, 1/2) \leq k_2) \geq 1 - \alpha. \]

Hence,
\[1 - \alpha \leq P(k_1 \leq T \leq k_2) = P(k_1 \leq \text{(the number of } Y_i \text{'s} > \theta \text{)} \leq k_2). \]

Now
\[\text{(the number of } Y_i \text{'s} > \theta \text{)} \geq k_1 \quad \text{iff} \quad \theta < Y_{(n-k_1+1)} \]
and
\[\text{(the number of } Y_i \text{'s} > \theta \text{)} \leq k_2 \quad \text{iff} \quad Y_{(n-k_2)} \leq \theta. \]

So
\[1 - \alpha \leq P(Y_{(n-k_2)} \leq \theta \leq Y_{(n-k_1+1)}). \]

Therefore, \(C_n = [Y_{(n-k_2)}, Y_{(n-k_1+1)}] \) is a nonparametric \(1 - \alpha \) confidence interval for \(\theta \).
We can use Hoeffding’s inequality to get expressions for k_1 and k_2. Let $S \sim \text{Binomial}(n, 1/2)$. Then

\begin{align*}
\mathbb{P}(S \geq k_2) &= \mathbb{P} \left(\frac{S}{n} - \frac{1}{2} \geq \frac{k_2}{n} - \frac{1}{2} \right) \\
&\leq \exp \left(-n \left(\frac{k_2}{n} - 1/2 \right)^2 \right).
\end{align*}

Set this to be less than $\alpha/2$ to get

\[k_2 = \frac{n}{2} + \sqrt{n \log \left(\frac{2}{\alpha} \right)}. \]

By a similar calculation,

\[k_1 = \frac{n}{2} - \sqrt{n \log \left(\frac{2}{\alpha} \right)}. \]