Dimension reduction 1: Principal component analysis

Ryan Tibshirani
Data Mining: 36-462/36-662

February 5 2013

Optional reading: ISL 10.2, ESL 14.5
We’ve thought about clustering observations, given features. But in many situations, we can actually cluster the observations or the features or both. E.g.,

(From Makretsov et al. (2004), “Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma”)

If we cluster the features using K-means or hierarchical clustering, then we could replace the features by cluster centers. This would reduce the dimension of our feature space
What is dimension reduction?

Dimension reduction: the task of transforming our data set to one with less features. A new feature can be one of the old features, or it can be a some linear or nonlinear combination of old features. We want this transformation to preserve the *main structure* that is present in the feature space.

This is a broader goal than that of clustering. It is often the first step in an analysis, to be followed by, e.g., *visualization*, clustering, regression, classification.

We’re going to start with linear dimension reduction. This means: looking for straight lines in the feature space along which the data exhibit an interesting trend.

Specifically, we’re going to interpret “interesting” to mean *high variance*.
Review: projections onto unit vectors

A vector \(v \in \mathbb{R}^p \) with \(\|v\|_2^2 = v^T v = 1 \) is said to have unit norm. The projection of \(x \in \mathbb{R}^p \) onto (the direction of) \(v \) is \((x^T v)v \). Think of this as \(c \cdot v \), with a coefficient or "score" of \(c = x^T v \).

Consider a matrix \(X \in \mathbb{R}^{n \times p} \). and consider projecting each row \(x_i \in \mathbb{R}^p \) onto \(v \). The entries of \(Xv = \begin{pmatrix} x_1^T v \\ x_2^T v \\ \cdots \\ x_n^T v \end{pmatrix} \in \mathbb{R}^n \) are the scores, and the rows of \(Xvv^T \in \mathbb{R}^{n \times p} \) are the projected vectors.
Example: projections onto unit vectors

Example: \(X \in \mathbb{R}^{50 \times 2}, v_1, v_2 \in \mathbb{R}^2 \)
Review: projections onto orthonormal vectors

Vectors \(v_1, v_2 \in \mathbb{R}^p \) are orthogonal if \(v_1^T v_2 = 0 \), and \(v_1, \ldots v_k \in \mathbb{R}^p \) are orthogonal if \(v_i^T v_j = 0 \) for any \(i, j \). Vectors \(v_1, \ldots v_k \in \mathbb{R}^p \) are orthonormal if they are orthogonal and each \(v_j \) has unit norm.

The projection of \(x \in \mathbb{R}^p \) onto (the space spanned by) orthonormal vectors \(v_1, \ldots v_k \in \mathbb{R}^p \) is \(\sum_{j=1}^{k} (x^T v_j) v_j \). The score along the \(j \)th direction is \(x^T v_j \).

Write the collection \(v_1, \ldots v_k \in \mathbb{R}^p \) as a matrix \(V \in \mathbb{R}^{p \times k} \), where each \(v_j \) is a column. Consider a data matrix \(X \in \mathbb{R}^{n \times p} \), we want to project rows of \(X \) onto columns of \(V \). The scores are given by \(XV \in \mathbb{R}^{n \times k} \), with \(j \)th column \(Xv_j = \begin{pmatrix} x_1^T v_j \\ x_2^T v_j \\ \vdots \\ x_n^T v_j \end{pmatrix} \in \mathbb{R}^n \), which contains the scores from projecting \(X \) onto \(v_j \). The projections are the rows of \(XVV^T \in \mathbb{R}^{n \times p} \).
Example: projections onto orthonormal vectors

Example: $X \in \mathbb{R}^{2000 \times 3}$, and $v_1, v_2, v_3 \in \mathbb{R}^3$ are the unit vectors parallel to the coordinate axes

Not all linear projections are equal! What makes a good one?
Review: sample statistics (in vector notation)

Given a vector \(x \in \mathbb{R}^n \) of \(n \) observations

Sample mean: \(\bar{x} = \frac{1}{n} x^T \mathbf{1} \in \mathbb{R} \), where \(\mathbf{1} \in \mathbb{R}^n \) is the vector of 1s

Sample variance: \(\frac{1}{n} (x - \bar{x} \mathbf{1})^T (x - \bar{x} \mathbf{1}) \in \mathbb{R} \)

Given a matrix \(X \in \mathbb{R}^{n \times p} \), of \(n \) observations by \(p \) features

Sample mean vector: \(\bar{X} = \frac{1}{n} X^T \mathbf{1} \in \mathbb{R}^p \)

Sample covariance matrix: \(\frac{1}{n} (X - \mathbf{1} \bar{X}^T)^T (X - \mathbf{1} \bar{X}^T) \in \mathbb{R}^{p \times p} \)

Total sample variance: \(\text{trace}\left(\frac{1}{n} (X - \mathbf{1} \bar{X}^T)^T (X - \mathbf{1} \bar{X}^T) \right) \in \mathbb{R} \)

(where the trace is simply the sum of the diagonal entries, i.e., for \(A \in \mathbb{R}^{p \times p} \), \(\text{trace}(A) = \sum_{i=1}^{p} A_{ii} \))
Centering vectors and matrices

To center \(x \in \mathbb{R}^n \) means to replace it by \(\tilde{x} = x - \bar{x}1 \in \mathbb{R}^n \). The new \(\tilde{x} \) has sample mean zero, but its sample variance is the same as before:
\[
\frac{1}{n} \tilde{x}^T \tilde{x} = \frac{1}{n} (x - \bar{x}1)^T (x - \bar{x}1)
\]

To center (or column-center) \(X \in \mathbb{R}^{n \times p} \) means to replace it by \(\tilde{X} = X - \bar{X}^T \in \mathbb{R}^{n \times p} \). Each column of \(\tilde{X} \) now has sample mean zero, but the sample covariance of \(\tilde{X} \) is the same as before:
\[
\frac{1}{n} \tilde{X}^T \tilde{X} = \frac{1}{n} (X - 1 \bar{X}^T)^T (X - 1 \bar{X}^T)
\]

Assume that the columns of \(X \in \mathbb{R}^{n \times p} \) have been centered (drop the tilde notation). Then \(Xv \in \mathbb{R}^n \) has sample mean zero for any vector \(v \in \mathbb{R}^p \) (Homework 2), therefore the sample variance of \(Xv \) is
\[
\frac{1}{n} (Xv)^T (Xv) = \frac{1}{n} \|Xv\|_2
\]

(Centering makes the math cleaner!)
Principal component analysis

Principal component analysis (PCA) is nearly as old as statistics itself. Because it has been widely studied, you will hear it being called different things in different fields.

We are given a data matrix \(X \in \mathbb{R}^{n \times p} \), meaning that we have \(n \) observations (row vectors) and \(p \) features (column vectors). We assume that the columns of \(X \) have been centered. (Is this going to change the structure that we’re interested in?)
The first principal component direction of X is the unit vector $v_1 \in \mathbb{R}^p$ that maximizes the sample variance of $Xv_1 \in \mathbb{R}^n$ when compared to all other unit vectors.

For any $v \in \mathbb{R}^p$, the vector $Xv \in \mathbb{R}^n$ has sample mean zero and sample variance $\frac{1}{n}(Xv)^T(Xv)$ (recall that we column centered X). Hence the first principal component direction $v_1 \in \mathbb{R}^p$ is

$$v_1 = \arg \max_{\|v\|_2=1} (Xv)^T(Xv)$$

The vector $Xv_1 \in \mathbb{R}^n$ is called the first principal component score of X, and $u_1 = (Xv_1)/d_1 \in \mathbb{R}^n$ is the normalized first principal component score. Here $d_1 = \sqrt{(Xv_1)^T(Xv_1)}$, and d_1^2/n is the amount of variance explained by v_1.
Example: first principal component direction and score

Same example data as earlier: \(X \in \mathbb{R}^{50 \times 2} \)

![First principal component direction](image)

First principal component score
\[Xv_1 = d_1 u_1 \]
Beyond the first direction and score

What happens next? The idea is to successively find orthogonal directions of the highest variance.

Why orthogonal? Because we’ve already explained the variance in X along v_1, and now we want to look at variance in a different direction. Any direction not orthogonal to v_1 would necessarily have some overlap with v_1, i.e., it would create some redundancy in explaining the variance in X.

(Plus, it makes the math easier!)
Second principal component direction and score

Given the first principal component direction \(v_1 \in \mathbb{R}^p \), we define the second principal component direction \(v_2 \in \mathbb{R}^p \) to be the unit vector, with \(v_2^T v_1 = 0 \), that makes \(X v_2 \in \mathbb{R}^n \) have maximal sample variance over all unit vectors orthogonal to \(v_1 \). This is

\[
v_2 = \arg \max_{\|v\|_2 = 1} (Xv)^T (Xv) \quad \text{subject to} \quad v^T v_1 = 0
\]

The vector \(X v_2 \in \mathbb{R}^n \) is called the second principal component score of \(X \), and \(u_2 = (X v_2) / d_2 \in \mathbb{R}^n \) is the normalized second principal component score. Here \(d_2 = \sqrt{(X v_2)^T (X v_2)} \), and \(d_2^2 / n \) is the amount of variance explained by \(v_2 \).
Example: second principal component direction and score

Same example data as earlier: \(X \in \mathbb{R}^{50 \times 2} \)
Further principal component directions and scores

Given the \(k - 1 \) principal component directions \(v_1, \ldots, v_{k-1} \in \mathbb{R}^p \) (note that these are orthonormal), we define the \(k \)th principal component direction \(v_k \in \mathbb{R}^p \) to be

\[
v_k = \arg\max_{\|v\|_2=1} (Xv)^T(Xv) \quad \text{subject to} \quad v^T v_j = 0, \ j = 1, \ldots, k-1
\]

The vector \(Xv_k \in \mathbb{R}^n \) is called the \(k \)th principal component score of \(X \), and \(u_k = (Xv_k)/d_k \in \mathbb{R}^n \) is the normalized \(k \)th principal component score. Here \(d_k = \sqrt{(Xv_k)^T(Xv_k)} \), and \(d_k^2/n \) is the amount of variance explained by \(v_k \).
Properties and representations

For the kth principal component direction $v_k \in \mathbb{R}^p$ and score $u_k \in \mathbb{R}^n$, the entries of $Xv_k = d_k u_k$ are the scores from projecting X onto v_k, and the rows of $Xv_k u_k^T = d_k u_k v_k^T$ are the projected vectors.

The directions v_k and normalized scores u_k are only unique up to sign flips.

How many principal component directions/scores are there? There are p, because if $v_1, \ldots v_p \in \mathbb{R}^p$ are orthonormal, then they are linearly independent\(^1\).

Concise representation: let the columns of $V \in \mathbb{R}^{p \times p}$ be the directions. Scores: columns of $XV \in \mathbb{R}^{n \times p}$. Projections onto V_k (first k columns of V): rows of $XV_k V_k^T \in \mathbb{R}^{n \times p}$

\(^1\)To be precise, here we are assuming that $p \leq n$ and $\text{rank}(X) = p$. In general, there are exactly $r = \text{rank}(X)$ principal component directions
Example: principal component analysis in \mathbb{R}^3

Example: $X \in \mathbb{R}^{2000 \times 3}$. Shown are the three principal component directions $v_1, v_2, v_3 \in \mathbb{R}^3$, and the scores from projecting onto the first two directions.
Example: projecting onto principal component directions

Same example: $X \in \mathbb{R}^{2000 \times 3}$, $v_1, v_2, \ldots v_3 \in \mathbb{R}^3$. What happens if replace X by its projection onto v_1? Onto v_1, v_2? Onto v_1, v_2, v_3?

The third plot looks exactly the same as the original data. Is this a coincidence? No! (Why?)
Proportion of variance explained

Recall that we said: \(d_k^2 / n \) is the amount of variance explained by
the \(k \)th principal component direction \(v_k \)

Two facts (Homework 2):

- The total sample variance of \(X \) is \(\frac{1}{n} \sum_{j=1}^{p} d_j^2 \)
- The total sample variance of \(XV_kV_k^T \) is \(\frac{1}{n} \sum_{j=1}^{k} d_j^2 \) (amount
 of variance explained by \(v_1 \ldots v_k \))

Hence the proportion of variance explained by the first \(k \) principal
component directions \(v_1, \ldots, v_k \) is

\[
\frac{\sum_{j=1}^{k} d_j^2}{\sum_{j=1}^{p} d_j^2}
\]

If this is high for a small value of \(k \), then it means that the main
structure in \(X \) can be explained by a small number of directions
Example: proportion of variance explained

Example: proportion of variance explained as a function of k, for the donut data
Principal component analysis in R

The function `princomp` in the base package computes directions and scores via an eigendecomposition of $X^T X$. E.g.,

```r
pc = princomp(x)
dirs = pc$loadings  # directions
scrs = pc$scores    # scores
```

The function `prcomp` in the base package computes directions and scores via a singular value decomposition of X. E.g.,

E.g.,

```r
pc = prcomp(x)
dirs = pc$rotation
scrs = pc$x
```
Recap: principal component analysis

We reviewed basic projective geometry, and sample statistics in vector/matrix notation

We defined the principal component directions $v_1, \ldots v_p \in \mathbb{R}^p$ of a centered matrix $X \in \mathbb{R}^{n \times p}$, as successively orthogonal unit vectors that maximize the sample variance

We also defined the principal component scores $Xv_1 = d_1 u_1, \ldots$ $Xv_p = d_p u_p \in \mathbb{R}^n$, and the amounts of variance explained by each direction $d_1^2/n, \ldots d_p^2/n$

The proportion of variance explained is a nice way to quantify how much structure is being captured as k varies
Next time: more principal component analysis

How do we actually compute principal component directions and scores? What can we do with them?