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Introduction to Hierarchical Models

One of the important features of a Bayesian approach is the relative ease
with which hierarchical models can be constructed and estimated using Gibbs
sampling. In fact, one of the key reasons for the recent growth in the use of
Bayesian methods in the social sciences is that the use of hierarchical models
has also increased dramatically in the last two decades.

Hierarchical models serve two purposes. One purpose is methodological;
the other is substantive. Methodologically, when units of analysis are drawn
from clusters within a population (communities, neighborhoods, city blocks,
etc.), they can no longer be considered independent. Individuals who come
from the same cluster will be more similar to each other than they will be
to individuals from other clusters. Therefore, unobserved variables may in-
duce statistical dependence between observations within clusters that may
be uncaptured by covariates within the model, violating a key assumption
of maximum likelihood estimation as it is typically conducted when indepen-
dence of errors is assumed. Recall that a likelihood function, when observations
are independent, is simply the product of the density functions for each ob-
servation taken over all the observations. However, when independence does
not hold, we cannot construct the likelihood as simply. Thus, one reason for
constructing hierarchical models is to compensate for the biases—largely in
the standard errors—that are introduced when the independence assumption
is violated. See Ezell, Land, and Cohen (2003) for a thorough review of the
approaches that have been used to correct standard errors in hazard model-
ing applications with repeated events, one class of models in which repeated
measurement yields hierarchical clustering.

In addition to the methodological need for hierarchical models, substan-
tively we may believe that there are differences in how predictors in a regres-
sion model influence an outcome of interest across clusters, and we may wish
to model these differences. In other words, the influence of predictors may
be context-dependent, a notion that is extremely important and relevant to a
social scientific—especially sociological—understanding of the world. For ex-
ample, the emergence of hierarchical modeling in education research occurred
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because there is a natural nesting of students within classes (and classes within
schools, schools within communities, and so on), and grades, test performance,
etc. may be dependent on teacher quality, making students in one class dif-
ferent from those in another class. In other words, student performance may
be dependent on the teacher—the environmental context of classes.

In this chapter, I discuss simple hierarchical models in general as well as hi-
erarchical linear regression models. I conclude the chapter with a brief discus-
sion of terminological issues that make hierarchical modeling seem mysterious
and complicated. I recommend Gelman et al. (1995) for an in-depth exposi-
tion of the Bayesian approach to a variety of hierarchical models, both the
simple hierarchical models discussed in the next section as well as hierarchical
regression models discussed later in the chapter. I recommend Raudenbush
and Bryk (2002) and Snijders and Bosker (1999) for thorough coverage of the
classical approach to hiearchical linear regression models.

9.1 Hierarchical models in general

Hierarchical models are models in which there is some sort of hierarchical
structure to the parameters and potentially to the covariates if the model is
a regression model. I begin by discussing the simpler case in which the model
of interest is not a regression model with covariates, but rather is simply
hierarchical in the parameters.

Recall that Bayes’ Theorem is often expressed as:

p(θ | data)
︸ ︷︷ ︸

∝ p(data | θ)
︸ ︷︷ ︸

× p(θ)
︸︷︷︸

posterior ∝ likelihood × prior

This equation itself reveals a simple hierarchical structure in the parameters,
because it says that a posterior distribution for a parameter is equal to a
conditional distribution for data under the parameter (first level) multiplied
by the marginal (prior) probability for the parameter (a second, higher, level).
Put another way, the posterior distribution is the prior distribution weighted
by the observed information.

This hierarchical structure of the parameters need not stop at one higher
level; instead, the conditioning structure in theory can continue ad infini-

tum. For instance, suppose we have a model that contains an added layer
of hierarchy. Suppose we have J observations within each of G groups:
y11, . . . , yJ1, y12, . . . , yJ2, . . . , y1G, . . . , yJG, and we assume that the data are
distributed within groups according to some distribution Q with parameter
θ, but that each group has its own parameter (θg). Thus:

yig ∼ Q(θg).
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Suppose we assume further that these parameters θg arise from a common dis-
tribution W with parameter γ (this parameter is called a “hyperparameter”).
So:

θg ∼W (γ).

Finally, assume γ has some vague distribution like a uniform:

γ ∼ U(−100, 100).

A posterior distribution for all unknown parameters would then be (after
substituting the densities Q and W into the conditional structure below):

p(γ, θ|y) ∝ p(y | θ, γ)p(θ | γ)p(γ).

To see how this hierarchical structure “works,” notice that the last two terms
here [p(θ | γ)p(γ)], when multiplied together, yield a joint distribution for γ
and θ [p(θ , γ)]. Thus, we are left with a marginal joint distribution for the
two parameters, which is then multiplied by a sampling density for the data
[p(y | θ , γ)]. Bayes’ theorem tells us that the multiple of this marginal joint
density for the parameters and the sampling density for the data, given the
parameters, yields a posterior density for all of the parameters.

Ultimately we might not be interested much in the posterior distributions
for the group level parameters (θg), but rather in the posterior distribution
for the hyperparameter γ that structures the distribution of the group level
parameters. In other words, we may be interested only in the marginal distri-
bution for γ:

p(γ|y) ∝
∫

p(y|θ, γ)p(θ|γ)p(γ)dθ.

As we have discussed throughout the last several chapters, this integration is
performed stochastically via MCMC methods as we sample from the condi-
tional posterior distributions for each parameter.

This result demonstrates the simplicity with which a Bayesian approach
can handle hierarchical structure in data or parameters. We could very easily,
if desired, add subsequent layers to the structure, and we can also break each
layer of the structure into regression components.

9.1.1 The voting example redux

In Chapter 3, I illustrated Bayes’ Theorem with a voting example from 2004
pre-election polls. In that example, we considered the posterior probability
that Kerry would win the election in Ohio using the most recent poll as
the current data and data from three previous polls as prior information.
We assumed a binomial likelihood function/sampling density for the current
polling data (x) given the proportion of voters who would vote for Kerry (K),
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and we used a beta distribution as the prior for K, with the number of votes
for Kerry and Bush in the previous polls being represented by the parameters
α and β, respectively. To summarize, our posterior density was:

p(K|α, β,X) ∝ K556(1−K)511
︸ ︷︷ ︸

K941(1−K)1007
︸ ︷︷ ︸

.

current data previous poll data
(likelihood) (prior)

In the original example I noted that, although the four polls we used
appeared to show some trending, complete data from all available polls from
various polling organizations did not suggest any trending, justifying our com-
bination of the previous pollng data into a single prior distribution for α and
β. As an alternative approach, without trending, the polls could be considered
as separate samples drawn from the same population, each one providing con-
ditionally independent information regarding the parameters α and β. In that
case, we could consider that each poll’s results were the result of a unique,
poll-specific parameter Ki, with the Ki being random realizations from the
beta distribution with hyperparameters α and β. This approach recasts the
voting example as a hierarchical model with the following structure:

p(α, β,K|X) ∝ p(X|K)
︸ ︷︷ ︸

p(K|α, β)
︸ ︷︷ ︸

p(α, β)
︸ ︷︷ ︸

.

likelihood prior hyperprior

Here, and throughout the remainder of the chapter, I suppress notation in
the conditional distributions when a particular quantity does not directly
depend on a higher level parameter. For example, the likelihood function here
ultimately depends on the hyperparameters α and β; however, it only depends
on these parameters through the prior for K, and so, I do not spell out the
complete likelihood as p(X|K,α, β).

The likelihood portion of the model is the product of the sampling densities
for the four polls:

p(X|K) ∝
4∏

i=1

Kxi

i (1−Ki)
ni−xi .

The prior densities for each K (K1 . . .K4) are beta densities; their product is
the full prior density:

p(K|α, β) ∝
4∏

i=1

(
Γ (α+ β)

Γ (α)Γ (β)

)

Kα−1
i (1−Ki)

β−1.

Finally, we must establish hyperpriors for the hyperparameters α and β. How-
ever, before we consider the form of the hyperprior, let’s consider the full
expression for the posterior density:
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p(α, β,K|x) ∝
(
∏4
i=1K

xi

i (1−Ki)
ni−xi

)(
∏4
i=1

(
Γ (α+β)
Γ (α)Γ (β)

)

Kα−1
i (1−Ki)

β−1
)

p(α, β).

We can simplify this posterior distribution by combining like products as
follows:

p(α, β,K|x) ∝
(

Γ (α+β)
Γ (α)Γ (β)

)4 (∏4
i=1K

xi+α−1
i (1−Ki)

ni−xi+β−1
)

p(α, β).

(9.1)

The key difference between the current approach and as it was presented in
the original example in Chapter 3 is that the current data were assumed to
be simply the most recent polling data, and the previous three polls were
combined and assumed to be fixed quantities representing the values of α
and β. Under the current approach, in contrast, the previous polling data—
rather than being treated as fixed prior information—are also considered to
arise from a random process governed by the hyperparameters α and β. When
these parameters were assumed to be fixed, the posterior density only involved
the single parameter K. Now, however, the full posterior involves each Ki in
addition to α and β. Before, the leading expression involving the gamma
function [Γ (α+ β)/(Γ (α)Γ (β))] could be dropped as a normalizing constant,
because α and β were, in fact, constant. However, under the hierarchical
approach they are now considered random variables, and terms involving them
cannot simply be dropped. Indeed, although the individual K parameters are
still of interest, interest centers primarily on α and β, which are thought to
be the population parameters governing the proportion of voters who would
vote for Kerry and which drive each individual poll result.

A Gibbs sampling strategy, then, should involve sampling the α, β, and
each K from their conditional posterior distributions. The conditional pos-
terior distributions for each K, after eliminating terms in the posterior in
Equation 9.1 that do not involve them, are easily seen to be beta distribu-
tions with parameters A = xi + α and B = ni − xi + β:

p(Ki|α, β, xi) ∝ Kxi+α−1
i (1−Ki)

ni−xi+β−1.

The conditional posterior distributions for α and β are not as simple. Con-
sider the posterior for α. If we eliminate terms not involving α, the posterior
for α is:

(
Γ (α+ β)

Γ (α)Γ (β)

)4 4∏

i=1

Kxi+α−1
i p(α, β).

This posterior can be simplified considerably if we use a “trick” to allow the
combination of the exponents. If we take the log and exponentiate simultane-
ously, we obtain:
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(
Γ (α+ β)

Γ (α)Γ (β)

)4

exp

{

ln

(
4∏

i=1

Kxi+α−1
i

)}

p(α, β).

The exponents can be brought down in front of the logarithm, the product of
the logs become sums, and we obtain:

(
Γ (α+ β)

Γ (α)Γ (β)

)4

exp

{
4∑

i=1

(xi + α− 1) lnKi

}

p(α, β).

At this point, we can expand the summation, distribute the three terms in
front of the logarithms, and group like terms. We can also again remove terms
that do not involve α. We are left with:

p(α|β,K, x) ∝
(
Γ (α+ β)

Γ (α)Γ (β)

)4

exp

{

α

(
4∑

i=1

lnKi

)}

p(α, β).

A similar strategy reveals that the posterior density for β is:

p(β|α,K, x) ∝
(
Γ (α+ β)

Γ (α)Γ (β)

)4

exp

{

β

(
4∑

i=1

ln(1−Ki)

)}

p(α, β).

What remains is the specification of the prior density p(α, β). Ideally, we
may like a prior that is relatively noninformative. However, in this particular
example, we must be careful, because these conditional posterior densities are
not of known forms and, with too vague of a prior, will not be proper.

Recall that the hyperparameters α and β of the beta distribution can be
viewed as prior successes and failures, respectively, and are therefore con-
strained to be nonnegative. In the example in Chapter 3, we fixed these pa-
rameters at constants to represent the successes/failures from the first three
surveys in Ohio. Now, in contrast, we want to specify distributions for them.
An appropriate distribution that would constrain these parameters to be non-
negative is the gamma distribution, which itself has two parameters, say C
and D. If we assume that α and β have independent prior distributions, then
p(α, β) = p(α)p(β), and we can assign each a gamma distribution prior:

p(α) ∝ αCα−1 exp (−Dαα)

p(β) ∝ βCβ−1 exp (−Dββ) .

This hyperprior yields the following conditional posterior for α:

p(α|β,K, x,Cα, Dα) ∝
(
Γ (α+ β)

Γ (α)Γ (β)

)4

αCα−1 exp

{

α

(
4∑

i=1

lnKi −Dα

)}

.
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A comparable result can be obtained for β. All that remains is to specify
values for C and D in each hyperprior.

Given parameters C and D, the mean of a gamma distribution is equal
to C/D, and the variance is equal to C/D2. We may choose to set these pa-
rameters at values that reflect our prior knowledge. Numerous previous polls
throughout the country had showed the race to be virtually a dead heat, and
so, we may choose comparable values of C and D for both prior distributions.
The typical poll conducted throughout the fall by different polling organiza-
tions consisted of about 500 or so potential voters, roughly half of which were
expected to vote for Kerry. So, we may choose values of C and D such that
C/D = 250. We can capture prior uncertainty in this estimate by specify-
ing the variance to be large. For example, if we choose a standard deviation
to be equal to 100, then C/D2 = 10, 000, and so C = 6.25 and D = .025.
To evaluate the influence of the hyperparameter specification, I varied these
parameters and conducted several runs of the Gibbs sampler, as discussed
below.

Below is a hybrid Gibbs sampler/MH algorithm for simulating the param-
eters of the model. Although the K parameters, conditional on the data and
values for α and β, can be drawn directly from beta distributions, the α and β
hyperparameters are not known forms and must therefore be simulated using
MH steps:

#MCMC algorithm for hierarchical beta-binomial model

a=matrix(10,100000);b=matrix(10,100000); acca=0; accb=0

y=matrix(c(556,346,312,284),4); n=matrix(c(1067,685,637,628),4)

k=matrix((y)/n,m,4,byrow=T)

apost<-function(f,g,k){

post=4*(lgamma(f+g)-lgamma(f)-lgamma(g)) + f * sum(log(k))

post=post+(6.25-1)*log(f)-(f*.025)

return(post)

}

bpost<-function(f,g,k){

post=4*(lgamma(f+g)-lgamma(f)-lgamma(g)) + g * sum(log(1-k))

post=post+(6.25-1)*log(g)-(g*.025)

return(post)

}

for(i in 2:100000){

#draw a

a[i]=a[i-1]+rnorm(1,0,20)

if(a[i]>0){

acca=acca+1

newpost=apost(a[i],b[i-1],k[i-1,])

oldpost=apost(a[i-1],b[i-1],k[i-1,])

if(log(runif(1,min=0,max=1))>(newpost-oldpost))
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{a[i]=a[i-1]; acca=acca-1}

}

if(a[i]<0){a[i]=a[i-1]}

#draw b

b[i]=b[i-1]+rnorm(1,0,20)

if(b[i]>0){

accb=accb+1

newpost=bpost(a[i],b[i],k[i-1,])

oldpost=bpost(a[i],b[i-1],k[i-1,])

if(log(runif(1,min=0,max=1))>(newpost-oldpost))

{b[i]=b[i-1]; accb=accb-1}

}

if(b[i]<0){b[i]=b[i-1]}

#draw k from beta distributions

k[i,]=rbeta(4,(y+a[i]),(n-y+b[i]))

if(i%%10==0){print(c(i,a[i],b[i],acca/i,accb/i))}

}

This program is fairly straightforward. First, matrices are established for
the α and β parameters, and acceptance rate variables are also constructed
for monitoring the MH steps used to simulate them. Next, the data, including
votes for Kerry (y), poll sizes (n), and proportions favoring Kerry (k), are
established. The next two program blocks are functions that evaluate the
conditional log-posterior densities for α and β, respectively, given values of
these parameters, the previous value for the observed sample proportions, and
a prior distribution (the second line of each function is the hyperprior).

The program then proceeds to simulate 100,000 draws from the posterior
for all the parameters. The α and β parameters are drawn using MH steps.
Candidates are generated from normal proposals with a standard deviation
set to produce an approximate acceptance rate of 50%. Once a candidate
is generated, the log-posterior is evaluated at the candidate values for these
parameters and the previous values. I have structured these blocks so that the
candidate parameter is assumed to be accepted and is evaluated for rejection.
If the candidate is less than 0, or the log of the uniform draw exceeds the ratio
of the log-posterior at the current versus previous values, the current value
of the parameter is reset to the previous value, and the acceptance tally is
reduced by one. Once values of these parameters have been drawn, each Ki

parameter is drawn from the appropriate beta distribution.
The key parameters of interest in the model include the individual survey

proportions (K1 . . .K4) and the population proportion implied by the α and β
parameters, which is equal to α/(α+β). Table 9.1 shows posterior summaries
of these parameters under a variety of specifications for C and D in the
hyperpriors for α and β. The first four columns of the table show the gamma
distribution hyperprior specifications for the α and β parameters of the prior
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distribution. These values for the hyperpriors were chosen to examine how
sensitive the posterior inferences are to prior specification.

The first two columns show the mean and standard deviation of the gamma
hyperprior distribution for α, respectively; the third and fourth columns show
the mean and standard deviation of the hyperprior for β. Recall from above
that the mean of the gamma distribution for α can be considered as previous
votes for Kerry, and the variance/standard deviation of this distribution can
be viewed as a measure of our uncertainty in this number of previous votes.
Similarly, the mean of the gamma distribution for β can be considered as
previous votes for Bush, and its standard deviation reflects our uncertainty
in this number. Thus, the first specification implies that previous polls have
shown an equal—and small—number of votes for both candidates, and the
relatively large standard deviation of each (10) suggests that we are not very
certain of these numbers.

Thus, the first row shows the posterior inference when the prior informa-
tion is fairly weak. That is, this hyperprior specification implies that we have
prior information equivalent to 10 previous votes for Kerry and 10 for Bush,
with a fairly large standard deviation reflecting considerable uncertainty about
these numbers of votes. In contrast, the final hyperprior specification implies
that we have prior information equivalent to 2,500 votes for Kerry and 500
votes for Bush, and that our confidence in these numbers is relatively strong
(standard deviation of only 50, compared with the number of prior votes).

The bottom two rows of the table show the results under two alternative
approaches to the hierarchical approach discussed here. The first row at the
bottom shows the results obtained if the four polls are analyzed independently;
the second shows the results obtained if the data from all polls are pooled and
given a noninformative prior distribution—an equivalent approach to treating
the most recent polling data as the current data and the earlier three polls as
prior information (see Chapter 3).

Overall, all the hyperprior specifications lead to similar posterior inference
for the prior distribution mean α/(α+ β) and for each of the polls, with the
exception of the most informative specification which shows heavy favoritism
for Kerry (2,500 prior votes versus 500). Under that specification, the posterior
mean for the second level beta prior distribution is pulled strongly away from
the mean implied by the polling data and toward the prior.

A couple of comments are warranted regarding these results. First, notice
that pooling the data led to a posterior mean of .497 for Kerry’s proportion
of the vote, and that a similar proportion was obtained using α/(α+β) in the
hierarchical model, except for the final one with the strongest and most un-
balanced hyperprior. However, although the posterior means are comparable,
the posterior standard deviation for this proportion tended to be much larger
under the hierarchical approach. The reason for this result is that, under the
hierarchical approach, the distribution for α/(α+β) captures the range of the
survey specific Ki parameters, each of which contains its own variability. Un-
der the pooled-data approach, on the other hand, three of the Ki are assumed
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Table 9.1. Results of hierarchical model for voting example under different gamma
hyperprior specifications.

Gamma Priors Posterior Inferences
α β

C

D

q

C

D2

C

D

q

C

D2

α

α+β
K1 K2 K3 K4

10 10 10 10 .493(.048) .520(.015) .505(.019) .490(.019) .454(.019)
100 100 100 100 .493(.021) .516(.014) .502(.017) .491(.018) .463(.018)
250 100 250 100 .494(.015) .513(.014) .501(.016) .491(.016) .470(.017)
250 100 100 100 .494(.016) .514(.014) .501(.016) .491(.017) .469(.017)
2500 50 500 50 .586(.008) .572(.010) .574(.010) .572(.010) .567(.010)

Separate Models NA .521(.015) .505(.019) .490(.020) .452(.020)
Pooled Data .497(.009) NA NA NA NA

Note: The hyperpriors are gamma distributions for both α and β. The hyperpa-
rameters C and D in each gamma distribution were set to produce the means and
standard deviations shown (C/D and

p

C/D2, respectively). The posterior quan-
tities are the posterior mean of the beta prior distribution, α/(α + β), and the
posterior means for each of the sample proportions (posterior standard deviations
are in parentheses).

be known, fixed quantities, reducing variability in the overall mean. Second,
notice that it is generally the case that the variability for each Ki parameter
is smaller than that obtained under the separate-models approach. The rea-
son for this result is that, by combining all samples into a single, hierarchical
model, each Ki distribution “borrows strength” from the common linkage of
all the polls provided by the hyperparameters α and β.

9.2 Hierarchical linear regression models

The example in the previous section shows a basic hierarchical model in which
the model parameters, but not the data, were structured hierarchically—all
of the data were measured at the same level (individual polls). It is common
in social science research, however, to have hierarchical structure to the data,
that is, to have variables collected at different levels. In these cases, social
scientists often turn to hierarchical models to capture variation at different
levels of analysis. Because these models involve variables measured at differ-
ent levels, they are sometimes called “multilevel models.” Most commonly,
individuals are nested within physical or geographic units, or time-specific
measures are nested within individuals. As a few examples of the former type
of nesting, consider students within classrooms or individuals within neigh-
borhoods. As an example of the latter type of nesting, consider a panel study
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in which individuals are measured repeatedly across time. In such a case, the
“group” is the individual, and the time-specific measures are nested within
the individual. The examples here will follow this latter format—time-specific
measures nested within individuals—although the underlying concepts of hi-
erarchy are identical.

I discuss several types of such hierarchical regression models, beginning
with an example that evaluates the extent to which Internet usage influences
income using a two-wave panel study.1 These data are from the 2000 and 2001
Current Population Survey Computer Use and Internet Supplement. This sup-
plement measured, among other variables, individual use of computers and the
Internet in 2000 and again in 2001 and allows us to examine the relationship
between Internet usage and wages across a brief, but important, period of time
when availability of broadband Internet connectivity was exploding. Wages in
these examples have been transformed to 1982 dollars and are recoded into
log-dollars per hour for additional analyses not presented here.

At the end of the chapter, I turn to an example that examines factors that
influence health trajectories for individuals across age using a four-wave study
(the National Health Epidemiologic Follow-up Surveys) discussed in previous
chapters.

9.2.1 Random effects: The random intercept model

Generally, the goal of hierarchical modeling is to determine the extent to
which factors measured at different levels influence an outcome using a typical
regression modeling framework. OLS regression, however, is inappropriate,
because of the lack of independence of errors for observations within groups.
Thus, an alternative model must be developed to compensate for this lack of
independence.

The foundation for the hierarchical regression model is the simple random
effects model. Assume, as an example, that we observe a collection of indi-
viduals twice over a two-year period and ask their income at each point in
time. It is most likely the case that each individual’s income changes only
slightly over the time period, and so, we could model the data such that each
individual receives his/her own intercept (or mean). In equation form:

yit = αi + eit,

with αi ∼ N(α, τ2) and eit ∼ N(0, σ2). This specification shows that the out-
come of interest (income; y) is considered a function of “variables” measured
at two different levels: αi is an individual (group) level variable, and eit is a
time-specific (individual) random error term.

An alternative, but equivalent, way to specify this model is to use proba-
bility notation. This approach clarifies the hierarchical nature of the model:

1 I thank Bart Bonikowski and Paul DiMaggio for allowing me to use their Inter-
net/income data in the examples.
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yit ∼ N(αi, σ
2)

αi ∼ N(α, τ2)

α ∼ N(m, s2)

τ2 ∼ IG(a, b)

σ2 ∼ IG(c, d).

This specification says that an individual’s time-specific income is a ran-
dom normal variable with a mean equal to an individual-specific mean and
some variance. The second equation shows that the individual-specific means
themselves come from a (normal) distribution with a mean equal to some
population mean and some variance. Finally, the last three equations spec-
ify hyperprior distributions for the population grand mean α, the population
variance (around the mean) τ2, and the error variance σ2. The hyperprior
distribution for the population mean is specified here to be normal, with pa-
rameters m and s2; Without prior knowledge, these parameters should be
specified to make the hyperprior vague (e.g., say m = 0 and s2 = 10, 000).
The hyperprior distributions for the population variance and the error vari-
ance are inverse gamma distributions, with parameters a and b and c and d,
respectively. Once again, without prior information, these parameters should
be fixed to make the hyperprior vague.

In addition to being a simple random effects model, this model is some-
times called a “random intercept model,” because the model can be viewed
as a regression model with each αi considered a group-specific intercept term
arising from a (normal) probability distribution (at this point, with no covari-
ates included).

To implement a Gibbs sampler for this model, we first need to construct the
posterior distribution. The posterior distribution for this model is straightfor-
ward to derive following the hierarchical modeling structure using conditional
distributions presented at the beginning of the chapter. The parameters of in-
terest in the posterior distribution are the individual αi, the population mean
α, its variance τ2, and the residual variance σ2, and so our posterior density
is:

p(α, τ2, αi, σ
2|Y ) ∝ p(Y |αi, σ2)p(αi|α, τ2)p(α|m, s2)p(τ2|c, d)p(σ2|a, b).

To complete the specification of the posterior distribution, we simply need to
replace each term with its actual distribution. As discussed above, the data
are assumed to be normally distributed, and so the likelihood term is:

p(Y |αi, σ2) ∝
n∏

i=1

2∏

t=1

1√
σ2

exp

{

− (yit − αi)
2

2σ2

}

.
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The distribution for each αi is also normal and is:

p(αi|α, τ2) ∝
n∏

i=1

1√
τ2

exp

{

− (αi − α)2

2τ2

}

.

The remaining terms are hyperprior distributions for the population mean
(α), population random effects variance (τ2), and residual variance (σ2). As
mentioned above, α is assumed to come from a normal distribution with pa-
rameters m and s2, and the two variance parameters are assumed to come
from inverse gamma distributions with parameters a and b and c and d, re-
spectively. This implies the following joint hyperprior distribution:

p(α|m, s2)p(τ2|a, b)p(σ2|c, d) ∝
1√
s2

exp

{

− (α−m)2

2s2

}

× 1

(τ2)a+1
exp

{
−b/(τ2)

}
× 1

(σ2)c+1
exp

{
−d/(σ2)

}
.

The full posterior, then, is simply the product of these three terms—the likeli-
hood, prior, and hyperprior distributions. Although the posterior distribution
can be simplified considerably by carrying out the multiplication of exponen-
tials and combining like terms, it is simpler to derive the conditionals for the
Gibbs sampler by leaving the posterior written as is. For the Gibbs sampler,
we need the conditional distributions for each of the parameters; deriving
them from the posterior is a simple but tedious matter of selecting only the
terms that contain the parameter of interest, discarding all other multiplica-
tive terms as proportionality constants, and simplifying/rearranging what’s
left to determine the resulting distribution. If we begin with the parameter α,
the relevant terms in the posterior are:

p(α|.) ∝ p(αi|α, τ2)p(α)

∝
(

n∏

i=1

1√
τ2

exp

{

− (αi − α)2

2τ2

})

1√
s2

exp

{

− (α−m)2

2s2

}

.

From this expression, the leading fractions involving the variances can be
removed as normalizing constants (they do not depend on α), and the expo-
nential expressions can be combined to obtain:

p(α|.) ∝ exp

{(

−1

2

)(
τ2(α−m)2 + s2

∑n

i=1(αi − α)2

τ2s2

)}

.

Next, we can expand the numerator of the exponential, extract terms not
involving α as constants, and we have:

p(α|.) ∝ exp

{(

−1

2

)(
τ2α2 − 2τ2αm− 2s2α

∑
αi + ns2α2

τ2s2

)}

.
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Rearranging terms, we obtain:

p(α|.) ∝ exp

{(

−1

2

)(
(τ2 + ns2)α2 − 2α(τ2m+ s2

∑
αi)

τ2s2

)}

.

As we did in Chapter 3, we can complete the square in α, and we find that
the conditional posterior for α is:

p(α|.) ∝ N

(
τ2m+ s2

∑
αi

τ2 + ns2
,

τ2s2

τ2 + ns2

)

(9.2)

The conditional posterior distribution for each αi is even easier to obtain.
Once again, we begin with terms involving only αi. We should realize, however,
that, for each individual i, the only relevant terms in the product are those
involving that particular individual. Thus, the conditional posterior for person
i (∀i) is:

p(αi|.) ∝ p(Y |αi, σ2)p(αi|α, τ2)

∝
(

2∏

t=1

1√
σ2

exp

{

− (yit − αi)
2

2σ2

})(
1√
τ2

exp

{

− (αi − α)2

2τ2

})

.

We can follow the same steps as for α, and we obtain:

p(αi|.) ∝ exp

{(

−1

2

)(
(2τ2 + σ2)α2

i − 2αi(τ
2
∑
yit + σ2α)

τ2σ2

)}

.

If we complete the square in αi, we find that:

p(αi|.) ∝ N

(
τ2
∑
yit + σ2α

2τ2 + σ2
,

τ2σ2

2τ2 + σ2

)

. (9.3)

The variance parameters σ2 and τ2 can be derived following the same strategy.
The conditional posterior for σ2 is:

p(σ2|.) ∝ p(Y |αi, σ2)p(σ2|a, b).
After substitution we obtain:

p(σ2|.) ∝
(

n∏

i=1

2∏

t=1

1√
σ2

exp

{

− (yit − αi)
2)

2σ2

})

1

(σ2)c+1
exp

{

− d

σ2

}

,

and after some simplification, we get:
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p(σ2|.) ∝
(
σ2
)
−(n+c+1)

exp







−
(
∑n

i=1

∑2
t=1(yit − αi)

2 + 2d
)

2σ2






.

This result shows that the conditional posterior for σ2 is an inverse gamma
distribution:

p(σ2|.) ∝ IG

(

n+ c ,

∑n

i=1

∑2
t=1(yit − αi)

2 + 2d

2

)

. (9.4)

The conditional posterior for τ can be derived similarly. The posterior is:

p(τ2|.) ∝ p(αi|α, τ2)p(τ2)

∝
(

n∏

i=1

1√
τ2

exp

{

− (αi − α)2

2τ2

})

1

(τ2)a+1
exp

{

− b

τ2

}

.

After simplification, we obtain:

p(τ2|.) ∝ IG

(

n/2 + a+ 1 ,

∑n

i=1(αi − α)2 + 2b

2

)

(9.5)

(see Exercises).
Given a complete set of conditional posterior distributions, we can im-

plement a Gibbs sampler for the model by sequentially drawing from these
conditionals. Below is an R program that conducts the Gibbs sampling:

#R program for simple random effects model

#read data

y=as.matrix(read.table("c:\\internet_examp.dat")[,3:4])

m=0; s2=10000; a=c=.001; b=d=.001; tau2=1; sigma2=1; malpha=0

n=nrow(y)

for(i in 1:20000){

#draw alpha_i

alpha= rnorm(n,

mean=(((tau2*(y[,1]+y[,2]))+sigma2*malpha)/(2*tau2+sigma2)),

sd=sqrt((tau2*sigma2)/(2*tau2+sigma2)))

#draw malpha

malpha=rnorm(1,

mean=(tau2*m+s2*sum(alpha))/((tau2+n*s2)),

sd=sqrt((tau2*s2)/((tau2+n*s2))))

#draw tau2

tau2=rgamma(1, shape=(n/2+a), rate=(sum((alpha-malpha)^2)+2*b)/2)
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tau2=1/tau2

#draw sigma2

sigma2=rgamma(1, shape=n+c, rate=(sum((y-alpha)^2) +2*d)/2)

sigma2=1/sigma2

#write results to file

if(i%%10==0 | i==1)

{print(c(i,alpha[1],malpha,tau2,sigma2))

write(c(i,alpha[1],malpha,tau2,sigma2),

file="c:\\bart2.out",append=T,ncol=5)}

}

As with previous programs, the first block reads in the data and estab-
lishes starting (and fixed) values for the parameters. The hyperparameters
associated with the hyperpriors for α, τ2, and σ2 are fixed to 0, 10,000, .001,
.001, .001, and .001, respectively, in order to ensure that the hyperparameters
have little influence on the results (see Exercises). The starting values for the
population/grand mean (α) as well as for τ2 and σ2 are arbitrarily set to
benign values.

Subsequent sections of the program constitute nothing more than itera-
tively sampling from the conditional posterior distributions derived above.

Although this R program is relatively short, the derivation of the condi-
tional distributions was a tedious process. Fortunately, however, a software
package exists that allows us to simulate values from the posterior distribu-
tions for the parameters of this model more directly: WinBugs. WinBugs is
a freely available software package that simplifies Gibbs sampling for a va-
riety of models. The syntax for WinBugs is substantially similar to that of
R, but many of the conditional posterior distribution derivations are done for
us by WinBugs, reducing the need to derive the conditional posterior distri-
butions manually. For example, a WinBugs program for the same example
involves nothing more than specifying the likelihood, prior, and hyperprior
distributions and parameter as follows:

#Winbugs program for simple random effects model

model

{

for(i in 1:9249)

{

for(j in 1:2)

{

y[i,j]~dnorm(alpha[i],sigma2inv)

}

alpha[i]~dnorm(malpha,tau2inv)

}

malpha~dnorm(0,1.0E-4)

tau2inv~dgamma(.01,.01)
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tau2<-1/sqrt(tau2inv)

sigma2inv~dgamma(.01,.01)

sigma2<-1/sqrt(sigma2inv)

}

The syntax in this program is similar to that of R with a few exceptions.
First, the tilde is used to simulate from distributions. Second, “< −” is used
to assign values to variables.2 Third, the parameterization of the normal dis-
tribution in WinBugs involves a precision parameter rather than a variance
parameter. The precision is simply the inverse of the variance, and so, we can
recover the variance parameter simply by inverting the draw from the gamma
distribution for the precision parameters.

The key results from the R program, the equivalent WinBugs program,
and the equivalent maximum likelihood results obtained from STATA (ver-
sions 8 and 9 were used throughout) using the xtreg procedure are presented
in Table 9.2. As the results show, all three approaches yielded virtually the
same results and therefore lead to the same conclusions. The Bayesian results,
however, whether from R or WinBugs, yield more information by default than
the STATA results, because the Bayesian approach yields distributions for all
parameters/quantities of interest, including the variance parameters.

Table 9.2. Results of hierarchical model for two-wave panel of income and Internet
use data.

Variable R WinBugs STATA xtreg

Population Mean (α) 2.103(.005) 2.103(.005) NA
Intercept NA NA 2.103(.005)
√

τ2 0.434(.004) 0.434(.004) 0.434
√

σ2 0.311(.002) 0.311(.002) 0.311
τ2/(τ2 + σ2) 0.661(.006) 0.660(.006) 0.660

Note: Posterior means (and posterior standard deviations) are reported for R and
WinBugs algorithms. Generalized least squares estimates (and standard errors) are
reported for STATA.

Overall, these results indicate that mean log wages are 2.103 log-dollars
per hour with a standard deviation of .434 log-dollars. Within individuals,
the standard deviation of wages was .311 log-dollars, and the ratio of the
between-individual to total variance is about 66%. This result suggests that
much of the variation we observe in log-wages—as we might expect—is due

2 This syntax can also be used in R, but I have generally not done so throughout
the text.
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to differences between individuals and not within individuals across the two-
year period. As a side note, the total variance in hourly wages is equal to τ2 +
σ2. Because we obtain estimates for both of these variances—the “between-
individual” and “within-individual” variances—hieararchical models like this
one are sometimes called “variance components” models.

The next step in our hierarchical modeling approach is to allow variation
in the group level parameters to be functions of group level variables and
to let the individual level (here, time-specific level) random error term to be
a function of individual level variables. First, for example, we could include
group level characteristics in our model by decomposing the random intercept
into a regression on group level variables. For example, suppose we now wish
to determine whether sex influences respondents’ wages. In that case, we can
specify the model as:

yit ∼ N(αi + α(1)sexi, σ
2)

αi ∼ N(α(0), τ
2)

α(0) ∼ N(m0, s0)

σ2 ∼ IG(a, b)

α(1) ∼ N(m1, s1)

τ2 ∼ IG(c, d).

Essentially the only substantial difference between this and the previous model
is that the individual-specific intercept has now been decomposed into a pop-
ulation intercept and an effect of sex. A WinBugs program for this model is
simple to specify from these distributions:

model

{

for(i in 1:9249)

{

for(t in 1:2)

{

y[i,t]~dnorm(alpha[i],sigma2inv)

}

alpha[i]~dnorm(mu[i],tau2inv)

mu[i]<-alpha0+alpha1*sex[i]

}

alpha0~dnorm(0,1.0E-4)

alpha1~dnorm(0,1.0E-4)

sigma2inv~dgamma(.01,.01)

sigma2<-1/sqrt(sigma2inv)

tau2inv~dgamma(.01,.01)

tau2<-1/sqrt(tau2inv)
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}

In this program, I have specified independent (univariate) normal distribution
priors for the population mean and the parameter representing the influence
of sex. The fact that I have specified independent priors, however, does not
imply that the two parameters are necessarily uncorrelated in the posterior.
In fact, the two parameters are highly negatively correlated, as Figure 9.1
shows.
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0
.1
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0
.1
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.2
0

0
.2
2

0
.2
4

α(0)

α
(1

)

corr(α(0),α(1))=−.71

Fig. 9.1. Two-dimensional trace plot of α(0) and α(1) parameters (dashed lines at
posterior means for each parameter).

The posterior mean for the adjusted population mean (α(0)) was 1.99 (s.d.
= .007), and the mean for the influence of sex (α(1)) was .225 (s.d. = .0098),
indicating that males have higher log wages. The only additional change be-
tween this and the previous model is the magnitude of τ2. Recall that τ2

reflects unexplained between-individual variation in the random intercept for
log-wages. With the inclusion of sex as an explantory variable differentiating
individuals’ wages, τ2 has been reduced. Its posterior mean is now .419 (s.d.
of .004), which is a reduction of 3.5% over the mean value obtained under the
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previous model. This reduction can be viewed as an R2 term; put another
way, sex differences account for 3.5% of the between-individual variance in
wages.

Additional time-invariant variables can be easily included to further ac-
count for between-individual variation in wages. But what if we would like
to consider the influence of time-varying covariates? For example, suppose we
are interested in examining the extent to which Internet usage at a given point
in time influences wages at the same point in time. Our data include time-
specific measures of Internet usage, measured at the same points in time that
wages are measured. There are two ways we can accomplish this goal. First,
we can allow such covariates to influence the time-specific outcomes directly:

yit ∼ N(αi + α(1)sexi + α(2)Internetit, σ
2)

αi ∼ N(α(0), τ
2)

α(0) ∼ N(m0, s0)

α(1) ∼ N(m1, s1)

α(2) ∼ N(m2, s2)

σ2 ∼ IG(a, b)

τ2 ∼ IG(c, d)

In this model, time-specific wages are considered a function of individual ran-
dom intercepts and time-specific Internet usage indicators, and the random
intercepts are considered a function of a grand mean and an indicator for sex.3

A WinBugs program to implement this model is as follows:

model

{

for(i in 1:9249)

{

for(t in 1:2)

{

y[i,t]~dnorm(mu[i,t],sigma2inv)

mu[i,t]<-(alpha[i]+alpha1*sex[i])+alpha2*internet[i,t]

}

alpha[i]~dnorm(alpha0,tau2inv)

}

alpha0~dnorm(0,1.0E-4)

alpha1~dnorm(0,1.0E-4)

alpha2~dnorm(0,1.0E-4)

sigma2inv~dgamma(.01,.01)

sigma2<-1/sqrt(sigma2inv)

3 An equivalent way of specifying this model is: yit ∼ N(αi + α(2)Internetit, σ2),
with αi ∼ N(α0 + α(1)sexi, τ2).
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tau2inv~dgamma(.01,.01)

tau2<-1/sqrt(tau2inv)

}

This program is only slightly more complicated than the previous pro-
grams. The only substantial differences are that (1) we have included the new
parameter (α(2)) within the double loop (i, t), and (2) we have incorporated a
prior distribution for it. The results of this model suggest that Internet usage
does, in fact, influence income. The posterior mean for the influence of Inter-
net usage is .18 (s.d. = .0075), and the intercept (α(0)) falls to 1.86 (s.d. =
.009).

9.2.2 Random effects: The random coefficient model

As written, the last model in the previous section forces the effect of Internet
usage to be constant across time: There was only a single parameter repre-
senting the effect of Internet usage on wages. This constraint may introduce
error into the model if, in fact, the influence of Internet usage on wages varies
across time. Thus, a second way we can include this time-varying variable is
to allow the influence of Internet usage to vary across time. This model is:

yit ∼ N(αi + α(1)sexi + α(2t)Internetit, σ
2)

αi ∼ N(α(0), τ
2)

α(0) ∼ N(m0, s0)

α(1) ∼ N(m1, s1)

α(21) ∼ N(m2, s2)

α(22) ∼ N(m3, s3)

σ2 ∼ IG(a, b)

τ2 ∼ IG(c, d)

The alterations of the WinBugs program to accommodate this new param-
eter are very slight: The alpha2 parameter must be subscripted appropriately
(i.e., alpha2[t]), and an additional hyperprior distribution must be incorpo-
rated. By some terminologies, we can now call the model a random coefficient

model, because a slope—and not simply an intercept—is now considered a
function of other variables.4

4 It may be easier to recognize that allowing alpha2 to vary across time implies
that alpha2 is now a slope, and not simply an intercept, if we consider that our
current representation is equivalent to specifying α2 to be a function of a dummy
variable reflecting time of measurement: α2 = β0 + β1I(t = 2), where β1 is a
regression slope.
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The results of this model do not vary substantially from those obtained
when the effect of Internet usage was treated as constant. However, the in-
fluence of Internet usage at time 1 was found to be .167 (s.d. = .009), while
the effect of Internet usage at time 2 was .188 (s.d. = .008). A distribution
for a new variable representing the difference between these parameters was
constructed in order to determine whether this difference is greater than 0;
99.9% of the mass of the resulting distribution was above 0 (posterior mean of
.02; s.d. = .006), which indicates that Internet usage indeed influenced wages
to a greater extent at the second wave of the study than at the first wave.

From a substantive perspective, this result seems to be more consistent
with the view that Internet usage influences income than the view that wages
influence Internet usage. That is, Internet availability has become less depen-
dent on income over time as the hardware for accessing the Internet (i.e.,
computers and modems), as well as Internet service, has become cheaper. If
wages influenced Internet usage, on the other hand, we might expect the influ-
ence of wages on Internet use to decrease rather than increase over the period
of observation. Thus, the result we obtained may be explained such that Inter-
net usage builds social capital, allowing individuals to find or acquire better,
higher paying jobs.

One could still argue, however, that higher paying jobs have become in-
creasingly dependent on Internet usage/access, and that a polarization of the
labor market is occurring. Thus, higher paid workers have increasingly come
to use the Internet, while lower paid jobs continue to not require Internet
access/use.

The relationship between Internet usage and income may not just vary
across time; it may vary across individuals. For example, individuals in low-
income, low-skill occupations may get less of a return to their income from
using the Internet. In contrast, individuals in high-skilled occupations may get
a large return to their income from using the Internet. In order to examine
this possibility, we can alter the model so that the α(2) parameter varies by
individual (i) rather than by time (t). Thus, the model becomes:

yit ∼ N(αi + α(1)sexi + α(2i)Internetit, σ
2)

αi ∼ N(α(0), τ
2)

α(2i) ∼ N(α(20), τ
2
2 )

α(0) ∼ N(m0, s0)

α(1) ∼ N(m1, s1)

α(20) ∼ N(m2, s2)

σ2 ∼ IG(a, b)

τ2 ∼ IG(c, d)

τ2
2 ∼ IG(e, f)
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This model is easily implemented in WinBugs with only minor changes to our
previous programs:

model

{

for(i in 1:9249)

{

for(t in 1:2)

{

y[i,t]~dnorm(mu[i,t],sigma2inv)

mu[i,t]<-alpha[i]+alpha1*sex[i]+alpha2[i]*internet[i,t]

}

alpha[i]~dnorm(alpha0,tau2inv)

alpha2[i]~dnorm(alpha20,tau20inv)

}

alpha0~dnorm(0,1.0E-4)

alpha1~dnorm(0,1.0E-4)

alpha20~dnorm(0,1.0E-4)

sigma2inv~dgamma(.01,.01)

sigma2<-1/sqrt(sigma2inv)

tau2inv~dgamma(.01,.01)

tau2<-1/sqrt(tau2inv)

tau20inv~dgamma(.01,.01)

tau20<-1/sqrt(tau20inv)

}

The results of this model suggest that there is considerable variation in
the relationship between Internet usage and income across individuals. The
estimated mean effect of Internet usage (α(2i)) was .205, and the estimated
standard deviation for this effect (τ2) was .224. This result yields (under the
assumption that the random effect α(2) is normally distributed) a 95% proba-
bility interval for the influence of Internet usage of [-.234, .644], which indicates
that Internet usage may be, in some cases, harmful to wages (playing games
at the office, lowering productivity?!).

What factors determine the influence of Internet usage on wages? In other
words, why do some people appear to benefit from using the Internet, whereas
others do not? We have previously decomposed the individual-specific random
intercepts into an adjusted intercept and an effect of respondent’s sex. When
we begin to allow regression parameters (like the the one capturing the in-
fluence of Internet usage) to vary across individuals, we can also decompose
it into a regression on higher level factors. For example, suppose we assumed
that sex not only influenced the random intercept for wages, but also that it
influences the extent to which Internet usage affects income. We can easily
incorporate this idea into our model as follows. I switch notation slightly to
avoid confusion:
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yit ∼ N(αi + βiInternetit, σ
2)

αi ∼ N(α(0) + α(1)sexi, τ
2
α)

βi ∼ N(β(0) + β(1)sexi, τ
2
β)

α(0) ∼ N(m1, s1)

α(1) ∼ N(m2, s2)

β(0) ∼ N(m3, s3)

β(1) ∼ N(m4, s4)

τ2
α ∼ IG(a, b)

τ2
β ∼ IG(c, d)

σ2 ∼ IG(e, f)

This model clarifies the hierarchical structuring of the data and parame-
ters. Each individual’s income is a function of his/her own intercept and slope,
and these individual-level intercepts and slopes are determined, in part, by
sex—a characteristic that differentiates individuals. The model consists of
seven vague hyperprior distributions, one for each of the parameters that are
not themselves endogenous within the model.

This model is sometimes called a multilevel or hierarchical model with
cross-level interactions. The cross-level interactions, although not immedi-
ately apparent in the above specification, can be observed if we revert to
the equation-based, more classical representation of the model. Under that
approach:

yit = αi + βiInternetit + eit

αi = α(0) + α(1)sexi + ui

βi = β(0) + β(1)sexi + vi,

with appropriate specifications for the variances of the errors at each level. If
we then substitute the expressions for αi and βi into the first equation, we
obtain:

yit =

α(0) +α(1)sexi + ui + β(0)Internetit + β(1)sexi× Internetit + viInternetit + eit.

In this representation, we have a grand mean (α(0)) and an individual ad-
justment to it (ui), a main effect of sex (α(1)), a time-constant main effect
of Internet usage (β0) and an individual adjustment to it (vi), an interaction
effect between sex and Internet usage (β(1)), and an error term (eit). The in-
teraction term is considered a cross-level interaction, because sex is measured
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at the individual level (the “group” in this context), whereas Internet usage is
measured at the within-individual level. Historically, prior to the widespread
use of hierarchical modeling, this model was estimated simply using OLS re-
gression with the relevant interaction. However, as we have discussed, and as
this equation shows, the OLS approach is not optimal, because it absorbs the
various random quantities (i.e., ui, viinternetit, and eit) into a single error
term for each individual. These error terms are assumed to be independent
across time-specific observations, but, as the single subscripting for ui and vi
suggest, they are not truly independent.

Returning to the Bayesian specification, the model can be implemented
very easily in WinBugs with the following code:

model

{

for(i in 1:9249)

{

for(t in 1:2)

{

y[i,t]~dnorm(mu[i,t],sigma2inv)

mu[i,t]<-alpha[i]+beta[i]*internet[i,t]

}

alpha[i]~dnorm(ma[i],tauinv.alpha)

beta[i]~dnorm(mb[i],tauinv.beta)

ma[i]<-alpha0 + alpha1*sex[i]

mb[i]<-beta0 + beta1*sex[i]

}

alpha0~dnorm(0,1.0E-4)

alpha1~dnorm(0,1.0E-4)

beta0~dnorm(0,1.0E-4)

beta1~dnorm(0,1.0E-4)

sigma2inv~dgamma(.01,.01)

sigma2<-1/sqrt(sigma2inv)

tauinv.alpha~dgamma(.01,.01)

tau.alpha<-1/sqrt(tauinv.alpha)

tauinv.beta~dgamma(.01,.01)

tau.beta<-1/sqrt(tauinv.beta)

}

The key results of this model are not only that men make higher wages than
women (α(0) = 1.86; α(1) = .20), but also that Internet usage has substantially
higher returns for men than for women (β(0) = .18; β(1) = .05). In fact, based
on these point estimates, the return to income of Internet usage for men is
28% greater than it is for women. A 95% interval estimate of this percentage
is [11%, 48%].
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9.2.3 Growth models

Often, we may wish to include time as one of our variables affecting an out-
come. For example, in the previous model, we allowed the effect of Internet
usage on wages to vary across individuals, but we could also consider that
wages grow at differential rates for individuals. Similarly, we found earlier
that the influence of Internet usage on wages varied across time. We may
therefore consider specifying a model in which wages are expected to grow at
differential rates for individuals, with Internet usage influencing the rate of
growth. This type of model is often called a “growth model,” or “latent growth
model,” because we are modeling the time-specific outcomes as realizations of
an underlying growth process that unfolds across age/time at the individual
level. Such a model may look like:

yit ∼ N(αi + βitit, σ
2)

αi ∼ N(α(0) + α(1)sexi + α(2)Interneti, τ
2
α)

βi ∼ N(β(0) + β(1)sexi + β(2)interneti, τ
2
β)

α(0) ∼ N(m1, s1)

α(1) ∼ N(m2, s2)

α(2) ∼ N(m3, s3)

β(0) ∼ N(m4, s4)

β(1) ∼ N(m5, s5)

β(2) ∼ N(m6, s6)

τ2
α ∼ IG(a, b)

τ2
β ∼ IG(c, d)

σ2 ∼ IG(e, f).

Although this model has a lengthy specification, it is has a fairly straight-
forward interpretation. Individual wages are expected to start and grow at
individual-specific levels and rates (αi and βi, respectively). An individual’s
specific level and rate is then seen as depending on his/her sex and Internet
usage. The remaining lines of the model specification are simply hyperpriors
for the various parameters.

A couple of notes are in order regarding the growth model presented above.
First, I have included Internet usage measured only at the first point in time.
The reason for this is that the model is underidentified if we attempt to es-
timate it with Internet usage treated as a time-varying covariate influencing
individual-specific effects of time (see Exercises). Second, given that this model
only consists of two waves of data, the model is only measuring the extent
to which sex and Internet usage influence change in wages over a single time
interval, making the model nothing more than a slightly different parame-
terization of a change score regression model. Third, because of the limited
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number of waves, some additional constraints must be enforced. One is that
the error variance σ2 must be constrained to be time invariant. Often, growth
models allow this parameter to vary across time (see Bollen and Curran 2006),
but here we simply cannot allow that, given our limitation of having only two
time-specific measures per person. The results of this model can be found in
Table 9.3.

Table 9.3. Results of “growth” model for two-wave panel of income and Internet
use data.

Parameter Meaning Parameter Posterior Mean(s.d.)

Adjusted intercept for time-1 wages α0 1.74(.016)
Influence of sex on wages α1 0.259(.015)
Influence of Internet on wages α2 0.296(.016)
Adjusted intercept for change in wages β0 0.033(.009)
Influence of sex on change in wages β1 −0.013(.009)
Influence of Internet on change in wages β2 0.006(.009)
Residual variance in wages σ2 0.308(.002)
Residual variance in time-1 wages τ2

α 0.383(.004)
Residual variance in change in wages τ2

β 0.061(.006)

Note: Posterior means (and posterior standard deviations) are reported.

These results indicate that sex and Internet usage each influence baseline
wages, with men earning more than women (see α(1)) and Internet users earn-
ing more than nonusers (see α2). Indeed, the Internet effect is roughly 20%
larger than the sex effect. The results also indicate that wages grew slightly
across the one-year time period (see β(0)). Wages grew less for men (see β(1)),
but more for Internet users (see β(2)), although this effect was slight at best
(observe the posterior standard deviation for β(2) compared with its mean).
These results may also be written in equation form to clarify their interpre-
tation:

E(wagesit) = αi + βi

E(αi) = 1.74 + .259malei + .296Interneti1

E(βi) = .033− .013malei + .006interneti1.

For a fuller, more detailed example involving more time points of measure-
ment, I examine health trajectories of individuals across a 20-year span. My
assumption is that health tends to decline across the life course of individuals,
and that baseline health and the rate of decline in health are a function of age,
sex, race, area and type of residence, and education. My primary interest is in
examining how socioeconomic status (measured by education) influences the
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health differential across time. One hypothesis in the literature—the cumula-
tive advantage hypothesis—argues that the health gap between high and low
SES groups widens across age as a function of the cumulative disadvantage
that low SES generates across the life course (see Lynch 2003). At young ages,
risk factors like smoking and lack of health care access matter little, because
most young adults are quite healthy. However, across age, exposure to risk
factors accumulates and produces a larger health differential. An alternate
hypothesis is the age-as-leveler hypothesis. This hypothesis argues that the
health gap narrows across age because age overwhelms all risk factors—the
biological effect of aging supercedes any socially based risk factor (see House
et al. 1994). Often a selective mortality argument is also advanced to support
this hypothesis: that the observed health gap at a particular age is ultimately
a between-individual measure, and only the health of survivors is observed.
Thus, those with the poorest health have been eliminated from the observed
population, and the gap is simply a comparison of a robust subset of lower
SES individuals with higher SES individuals. In other words, there are differ-
ent populations being compared at young and older ages (see Lynch 2003 for
extensive discussion).

A life course perspective suggests that we should examine trajectories of
health for individuals, and that selective mortality should be “controlled out.”
One way to do this is to allow decedents to be included in the model, rather
than to exclude them, as cross-sectional analyses must do (because only sur-
vivors can be observed in a cross-section). A Bayesian growth model can easily
handle the unbalanced data that result from mortality, and health trajecto-
ries can even be estimated for individuals for whom we only observe a sin-
gle measure. Their trajectories become a compromise between their observed
measures and those of persons with similar covariate profiles who do survive.
Ultimately, this approach underestimates the rate of decline in health, because
surviving low-SES individuals drive the estimate of the mean growth rate, and
surely decedents have/had steeper—but unobserved—rates of health decline.
However, this argument implies that the finding with regard to the cumulative
advantage hypothesis are conservative.

For this example, I again use the data from the National Health and Nutri-
tion Examination Survey (NHANES) and its follow-ups, the National Health
Epidemiologic Follow-up Surveys (NHEFS) (see Chapter 8 for a description).
After eliminating individuals who were missing on one or another variable
in the analyses and individuals whose final status in 1992 was unknown, the
analytic sample consisted of 6,403 persons.

In this example, I include only individuals who were between 30 and 34
years of age at baseline, because age presents a problem in these analyses:
The variable “age” represents both age and cohort. Research has shown that
a common pattern for the health gap between individuals with low versus high
SES across age is divergent until midlife and then convergent after (see House
et al. 1994). This pattern is a function of two things: selective mortality and
cohort change in the importance of education in affecting health (see Lynch
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2003). Thus, for the sake of simplicity in this example, I restrict the analyses
to the 608 individuals who fall in this age range, eliminating cohort effects.

I include age (mean = 32.0, s.d. = 1.4), sex (male = 1, 41.6%), race (non-
white = 1, 12.3%), region (south = 1, 28.1%), urban residence (urban = 1,
23.2%), and education (in years, mean = 12.6, s.d. = 2.6, minimum = 0,
maximum = 17) as second-level covariates that may influence the random in-
tercept and slope factors. The outcome measure is self-rated health measured
on a 5-point Likert scale ranging from excellent health (5) to poor health (1).
Health measured on a 5-point scale is known to be a reliable and valid indica-
tor of health (especially at younger ages), and the data are fairly symmetric,
with a slight skew toward excellent health. I expect that individuals random
intercepts are relatively high, and that in general, health declines between
30 and 55—the age range covered by the study. Furthermore, I expect that
education differentiates health at baseline, with higher educated individuals
having better health than lower educated ones. Finally, if the cumulative ad-
vantage hypothesis is true at least prior to age 55, education serves to reduce
the rate of decline in health. This hypothesis implies that the growth rate
in health is negative in general, but that education’s influence on the growth
rate is positive.

Below is the WinBugs program specifying the growth model:

model

{

for(i in 1:608)

{

for(t in 1:pyrs[i])

{

h[i,t]~dnorm(mu[i,t],sigma2inv)

mu[i,t]<-alpha[i]+beta[i]*yr[i,t]

}

alpha[i]~dnorm(ma[i],tauinv.alpha)

beta[i]~dnorm(mb[i],tauinv.beta)

ma[i]<-alpha0 + alpha1*age[i] + alpha2*male[i] + alpha3*nonw[i] +

alpha4*south[i] + alpha5*urban[i] + alpha6*educ[i]

mb[i]<-beta0 + beta2*male[i] + beta3*nonw[i] +

beta4*south[i] + beta5*urban[i] + beta6*educ[i]

}

alpha0~dnorm(0,1.0E-4)

alpha1~dnorm(0,1.0E-4)

alpha2~dnorm(0,1.0E-4)

alpha3~dnorm(0,1.0E-4)

alpha4~dnorm(0,1.0E-4)

alpha5~dnorm(0,1.0E-4)

alpha6~dnorm(0,1.0E-4)

beta0~dnorm(0,1.0E-4)

beta2~dnorm(0,1.0E-4)

beta3~dnorm(0,1.0E-4)

beta4~dnorm(0,1.0E-4)
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beta5~dnorm(0,1.0E-4)

beta6~dnorm(0,1.0E-4)

sigma2inv~dgamma(.01,.01)

sigma2<-1/sqrt(sigma2inv)

tauinv.alpha~dgamma(.01,.01)

tau.alpha<-1/sqrt(tauinv.alpha)

tauinv.beta~dgamma(.01,.01)

tau.beta<-1/sqrt(tauinv.beta)

}

This program, although longer than our previous growth model program
because of the inclusion of additional level 2 covariates, is only slightly differ-
ent from it. In order for WinBugs to handle unbalanced data—that is, data
collected at different times and on different numbers of occasions for different
respondents—I include a variable called pyrs, which tells the program at how
many occasions the respondent was interviewed, and time of measurement
is treated as a time-specific, individual-level variable. Individuals who die—
or are lost—before the first follow-up (after baseline) contribute only a single
person-year record and single measure of time. Persons who die—or are lost—
before the second follow-up contribute two person-year records, etc. In these
data, there are 16 persons who contribute one person-year record, 7 persons
who contribute two records, 6 who contribute three, and 579 who contribute
the maximum of four. These data provide some initial indication that there
is some education-based selective mortality: The mean for education among
persons who contribute 4 person-records is 12.7, whereas the mean for those
who contribute fewer records is 10.9. In other words, the less-educated die
earlier than the more-educated.

The remainder of the model is virtually identical to the one presented
earlier, only with more covariates and therefore more hyperprior distributions.
One note is in order: I do not include the effect of respondent’s age on growth.
The reason for this is that for age to influence the growth rate, either (1) the
underlying latent health trajectories must be assumed to be nonlinear or (2)
there are cohort differences in growth rates (see Mehta and West 2000).

I ran the program for 10,000 iterations and retained the last 1,000 samples
for inference. Figure 9.2 shows 200 sampled values for the random intercepts
and random slopes for four individuals. Person 1 only survived through the
first wave of the study; person 17 survived through two waves; person 24
survived through three waves; and person 35 survived through all four waves.
As the figure shows, the scatter of points is widest for person 1, reflecting
the lack of certainty about this individual’s true random intercept and slope
values due to the existence of only one observed measure for his health. As
the number of time points observed increases, the variance in the random
intercept and slope for each individual decreases. For example, in the bottom
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right plot, the random intercept and slope scatter is centered very narrowly
over approximately (3, −.08), which indicates that we are fairly certain that
this individual’s latent trajectory starts around 3 health units at baseline and
declines about .08 units per year.
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Fig. 9.2. Scatterplots of four persons’ random intercepts and slopes from growth
curve model of health (posterior means superimposed as horizontal and vertical
dashed lines).

Table 9.4 presents the posterior means and standard deviations for the
model parameters. The columns in the table report the influence of each co-
variate on the random intercept and random slope. The intercept for the
random intercept term was 4.52. Older persons (recall the age range was only
30-34) reported worse health than younger persons at baseline (−.06). Men
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reported better health at baseline than women (.05), and persons from the
South reported worse health (−.05), but these effects were not substantially
different from 0, based on posterior probabilities that the parameters were
greater than (or less than) 0, truncated to the p-value ranges used by classical
statistics (i.e., p < .05). Nonwhites and persons living in urban areas reported
worse health than whites and persons living in other areas. Finally, education
had a strong, positive effect on baseline health.

Almost none of the covariates influenced the random slope. The inter-
cept for the random slope was negative, implying that the tendency was for
health to decline slightly across the 20-year period. Males and nonwhites had
a slightly steeper decline in health, although these effects would not be sta-
tistically significant by classical standards. Persons from the South and from
urban areas had shallower declines in health than persons from other areas,
although, again, these effects would not be statistically significant by classical
standards. Finally, education had the expected positive effect (.001, p < .1),
indicating that health trajectories do diverge across age (for the range from
age 30 to age 55), such that persons with more education experience a shal-
lower decline in health across age than persons with less education. Indeed,
although the coefficient’s magnitude appears small, the results indicate that
a person with 17 years of schooling (the maximum) would experience a rate
of health decline only 43% as great as a person with 0 years of schooling and
only 76% as great as a person with 12 years of schooling.

Table 9.4. Results of growth curve model of health across time.

Variable Random Intercept Random Slope

Intercept 4.52(.70)*** −0.03(.01)**
Age −0.06(.02)**
Male 0.05(.08) −0.006(.005)
Nonwhite −0.54(.11)*** −0.006(.008)
South −0.05(.08) 0.003(.005)
Urban −0.23(.08)*** 0.003(.005)
Education 0.11(.01)*** 0.001(.0009)#
Variance 0.37(.03) 0.001(.0001)
Within-ind. Variance 0.42(.02)

Note: The Bayesian estimates are posterior means. The p-values are the probabilities
that the parameter exceeds 0 (either positively or negatively), truncated to the
classical cutpoints of #p < .1, *p < .05, **p < .01, ***p < .001.

The results can be used in two ways to predict health trajectories. First,
we may directly use the simulated latent intercepts and slopes for individuals
in the sample (as shown in Figure 9.2). For example, we could use the poste-
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rior means for these simulated intercepts and slopes to construct an expected
trajectory: yit = µαi

+ µβi
× t. Second, we may use the posterior distribu-

tions for the model parameters—the covariate effects—to compute predicted
latent intercepts and slopes for persons with particular covariate profiles. This
approach allows us to predict trajectories for individuals out of the sample,
in addition to those in the sample. Person 1 shown in Figure 9.2 was a 31-
year-old nonwhite male living in a non-southern, urban area with 11 years of
schooling. Based on the posterior means for the effects of the covariates, this
individual would have a predicted intercept of 3.22 for his health trajectory
and a predicted slope of −.022.

Figure 9.3 shows these two types of predicted trajectories for the four
individuals shown in the previous figure, along with their observed health
measures. The solid line in each graph shows the predicted trajectory based
on the posterior means of the simulated, individual-specific random intercepts
and slopes (i.e., the simulated values from Figure 9.2). The dashed line in each
graph shows the model predicted trajectory based on the posterior means of
the parameters applied to each individual’s covariate profile.

There is a substantial difference between these two trajectories, as well as
between either trajectory and the observed health measures. This variation
reflects the different types of (error) variance captured by the model. The
discrepancies between the solid-line trajectories and the observed health mea-
sures are captured by the within-individual error variance parameter σ2. In
brief, we do not expect each individual’s health measure to fall exactly on the
solid line, because a number of unobserved factors may “bump” an individual
off of his/her expected, latent health trajectory at any point in time. Instead,
what the model has attempted to capture is the best fitting line for the ob-
served health measures. This error may be reduced by including time-specific
measures into the model as we did in the previous section in the model in
which we included Internet usage as a time-varying covariate.

The discrepancies between the solid and dashed-line trajectories, on the
other hand, reflect the extent of between-individual variation captured (or
not!) by the covariates in the model. Put another way, if the covariates per-

fectly explained all differences between individuals’ health trajectories, the
solid and dashed lines would perfectly coincide. The fact that these lines are
not overlapping suggests that our covariates do a poor job differentiating indi-
viduals in the sample. This conclusion is foretold by the lack of strong results
in Table 9.4, especially with respect to the general lack of effect of covari-
ates on the latent growth rate. Indeed, if we consider the estimated rate of
decline in health for each individual in Figure 9.3, all four individuals are
expected to have similar, shallow rates of health decline that obviously do
not match the observed health declines (or those predicted by the simulated
individual-specific random effects). In contrast, the estimated intercepts for
these trajectories show greater variability, reflecting the stronger effects of the
covariates in predicting baseline health. In an additional model (not shown),
I re-estimated this growth model with no covariates to obtain estimates of
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the variance of the mean latent intercept and slope. An R2 for the effects
of the covariates on the estimated latent intercept was found by computing
1− τ2

α,cov/τ
2
α,nocov, using the posterior means for these variance parameters

from the two models. A similar calculation was performed for the variance of
the latent slope (τ2

β). The results indicated that the covariates reduced the

between-individual variance in the latent intercept by 29% (i.e., R2 = .29),
but the covariates reduced the between-individual variance in the latent slope
by only 10%. These results confirm that our covariates have little effect on the
latent slope, and therefore, it is no surprise that our two types of predicted
trajectories differ substantially.

As a final note on growth modeling, the use of growth models has been
rapidly expanding in psychology and sociology over the last decade, in part
because the growing availability of longitudinal (panel) data has enabled the
investigation of life course processes for which growth modeling is well suited.
Additionally, growth models have become increasingly popular, because they
can be estimated via a variety of software packages, including HLM and var-
ious structural equation modeling packages (see Willett and Sayer 1994; see
also McArdle and Epstein 1987, Meredith and Tisak 1990 and Rogosa and
Willett 1985). The HLM approach closely resembles the modeling strategy
developed in this section. The structural equation modeling approach, on the
other hand, is in some ways more intuitive, although it is mathematically
equivalent to the Bayesian and HLM approaches.5 However, that approach
typically requires balanced data—that is, data that have been collected at
the same time and at all times for all individuals in the sample. This lat-
ter requirement can be relaxed by assuming that individuals who are missing
at one or more occasions are missing at random and estimating the model
using a full information maximum likelihood (FIML) estimator. The former
restriction, however, is not easily relaxed. However, estimating the model us-
ing a Bayesian approach or using other hierarchical modeling packages offer a
straightforward way to handling unbalanced data. For more details on latent
growth modeling within a structural equation modeling framework, I highly
recommend Bollen and Curran (2006).

9.3 A note on fixed versus random effects models and

other terminology

One issue that makes understanding hierarchical models difficult is the ter-
minology that different disciplines and statistical paradigms use to describe
various features of the models. In this section, I hope to clarify some of the
terminology, although there is certain to be some disagreement regarding my

5 In fact, for each growth model example presented here, I estimated the equivalent
model using a structural equation approach. The results were nearly identical.
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Fig. 9.3. Predicted trajectories and observed health for four persons: The solid lines
are the predicted trajectories based on the posterior means of the random intercepts
and slopes from Figure 9.2; and the dashed lines are the predicted trajectories based
on the individuals’ covariate profiles and posterior means of the parameters in Ta-
ble 9.4

use of terms. To be sure, many of the terms used in discussions of hierarchical
modeling have not had static definitions over time, adding to the confusion.

First, the terms “fixed effects” and “random effects” are frequently tossed
about in discussions of hierarchical modeling. From a Bayesian perspective,
controversy over these terms is often much ado about nothing, because from
a Bayesian view (1) parameters are seen as random quantities arising from
proper probability distributions, making all effects “random”; and (2) fixed
effects models generally contain “random” effects, making the distinction be-
tween fixed and random effects models somewhat dubious. Consider the OLS
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regression model Y = Xβ + e, which is often considered to be a fixed ef-
fects regression model. In this model, X is considered a fixed variable matrix,
and β is considered a fixed regression parameter vector—i.e., “fixed effects.”
From a classical statistical standpoint, the only random quantity in this model
is the vector e, which is generally portrayed as random by the expression
e ∼ N(0, σ2

eIn). In other words, in the classical representation, e is a random
effect because it comes from a specified probability distribution. The β vector,
on the other hand, is considered fixed—these parameters are what they are
in the population and do not stem from a probability distribution. From a
Bayesian view, however, β may be considered as a vector of random effects,
because we can produce a posterior probability distribution for the vector.
The only difference between the Bayesian approach to this model and the
classical approach is that the classical approach implicitly assumes uniform
prior distributions on β, whereas a Bayesian approach makes this assumption
explicit in the formulation of the prior. Whether we consider β fixed or ran-
dom, nonetheless, one could argue that the model is a random effects model
with some fixed effects (β) if the priors are left unspecified.

Next, consider the basic random effects model considered in this chapter
in which individuals have their “own” intercepts or means:

yit ∼ N(αi, σ
2),

with αi ∼ N(α0, τ
2). From a Bayesian perspective, this model is considered

a random effects model, because the αi are treated as arising from a normal
distribution with parameters α0 and τ2. A classical statistician, on the other
hand, might introduce a dummy variable for each observation, coupled with a
β for each dummy variable, and call this model a fixed effects model, because
the β vector could be considered a fixed parameter vector. In other words,
the classical statistician may specify the model as an OLS regression model,
Y = Xβ + e, again with X being a matrix of dummy variables, β being a
vector of effects of these dummy variables, and e ∼ N(0, σ2

e) being considered
the only random quantity. The data structure in this specification would be a
person-year matrix, with each individual contributing t rows, with X having
dummy variables for each person-record corresponding to each person. From
a Bayesian view, this is a random effects model, but from a classical view, this
is still a fixed effects model. The Bayesian, however, recognizes that, again,
the only difference between these models is the explicit statement that each
αi (intercept/mean) has a proper prior distribution; the classical statistician
again implicitly assumes uniform priors distributions on these “fixed” effects.

The next step in our modeling process in this chapter was to incorporate
additional individual-level (level 2) variables via essentially the decomposition
of the intercept term into a regression on individual-level factors. Specifically,
we allowed individuals’ αi to be a function of their sex. One representation of
this model is:
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yit ∼ N(αi, σ
2)

αi ∼ N(α(0) + α(1)sexi, τ
2),

along with appropriate (vague) hyperpriors for the hyperparameters α(0), α(1),
σ2, and τ2. Alternatively, but equivalently, the model may be specified as we
did earlier:

yit ∼ N(αi + α(1)sexi, σ
2)

αi ∼ N(α0, τ
2),

again with appropriate priors for α(0), α(1), σ
2, and τ2. A Bayesian then

would call this a random intercept model. The classical statistician, on the
other hand, would write this model as:

yit = αi + α1sexi + eit

eit ∼ N(0, σ2)

αi = α0 + ui

uit ∼ N(0, τ2).

After substituting the third equation into the first, we would obtain:

yit = α0 + ui + α1sexi + eit.

Under this representation, the classical statistician would claim that α0 and
α1 are fixed effects, and that the only random effects are ui and eit. If ui
is considered a component of α0, then the model could be called a random
intercept model with fixed effects. Once again, however, the Bayesian would
argue that the explicit assignment of proper priors for α0 and α1 makes the
model a random effects model: The classical approach is implicitly assuming
uniform priors on these parameters.

In subsequent steps of our modeling building process, we included Internet
usage as a time-varying (level 1) variable, and we eventually allowed the influ-
ence of Internet usage on wages to vary across individuals and we allowed the
individual-specific influence of Internet usage to be a function of individuals’
sex:

yit ∼ N(αi + βiInternetit, σ
2)

αi ∼ N(α0 + α1sexi, τ
2
α)

βi ∼ N(β0 + β1sexi, τ
2
β),

once again with appropriate hyperprior distributions for the higher level hy-
perparameters. Using Bayesian terminology, this model is a “random coeffi-
cients” model, because the regression coefficient βi is allowed to vary across
individuals. The classical approach, however, would find
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yit = α0 + α1sexi + ui + β0Internetit + β1sexiInternetit + viInternetit + eit

after subsitution and might call the model a fixed effects model with random
intercepts, random coefficients, and cross-level interactions.

To make a long story short, all of these models are considered hierarchi-
cal models because there is a hierarchical structure to the parameters. They
may also be called multilevel models because the variables in the models are
measured at different levels (time-specific measures and individual-level mea-
sures). Additionally, all the models contain random effects and may therefore
be called random effects models, despite the fact that the classical statistician
may prefer to include the term “fixed effects” in describing them. When the
regression parameters—and not simply the intercepts—are allowed to vary
across individuals, they may be called “random coefficient models.” When
time is included as a variable and its influence—a random coefficient—is al-
lowed to vary across individuals, the model may be called a “(latent) growth
(curve) model.” Finally, all of these models are sometimes called “mixed mod-
els,” because they generally include both fixed and random effects when the
terms “fixed” and “random” are applied to distinguish between effects that
have implicit versus explicit prior distributions.

9.4 Conclusions

In this chapter, we have covered considerable ground. We began by discussing
how we can use the conditional probability rule to produce hierarchical struc-
ture in the parameters and obtain a posterior distribution for all parameters
in a simple model without covariates. We then discussed how hierarchical re-
gression models can easily be constructed to capture hierarchical structure in
both the parameters and the data with variables measured at different lev-
els. Finally, we showed how the general hiearchical linear regression model
can be specialized to examine growth in the outcome over time by including
time in the model as a covariate. As the chapter demonstrated, the Bayesian
approach is naturally suited to hierarchical modeling. Indeed, the Bayesian
approach handles hierarchicality so easily that virtually no text on Bayesian
statistics omits hierarchical modeling, and I can find no Bayesian text that
only covers hierarchical modeling. For further reading on Bayesian hierarchi-
cal modeling, as I said at the beginning of the chapter, I recommend Gelman
et al. (1995). I also recommend Gill (2002) for an introductory exposition,
and I suggest Spiegelhalter et al. (1996) for an illustrative example of growth
modeling.
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9.5 Exercises

1. Show the steps in the derivation of the conditional posterior distribution
for τ in Equation 9.5.

2. Explain why the values chosen to complete the hyperprior specification in
Section 9.2.1 are noninformative.

3. Explain in your own words why the first growth model presented in Sec-
tion 9.2.3 cannot allow Internet usage to be a time-varying variable in the
model as it is specified.

4. Using your own data, write an R routine to estimate a growth model.
Then write a WinBugs routine to estimate the same model. Are the results
similar?


