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Current scienti� c techniques in genomics and image processing routinely produce hypothesis testing problems with hundreds or thousands
of cases to consider simultaneously. This poses new dif� culties for the statistician, but also opens new opportunities. In particular, it allows
empirical estimation of an appropriate null hypothesis. The empirical null may be considerably more dispersed than the usual theoretical
null distribution that would be used for any one case considered separately. An empirical Bayes analysis plan for this situation is developed,
using a local version of the false discovery rate to examine the inference issues. Two genomics problems are used as examples to show the
importance of correctly choosing the null hypothesis.
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1. INTRODUCTION

Until recently, “simultaneous inference” meant considering
two or � ve or perhaps even 10 hypothesis tests at the same
time, as in Miller’s classic text (Miller 1981). Rapid progress
in technology,particularly in genomics and imaging, has vastly
upped the ante for simultaneous inference problems. Now 500
or 5,000 or even 50,000 tests may need to be evaluated simulta-
neously, raising new problems for the statistician, but also open-
ing new analytic opportunities. This article explores choosing
an appropriate null hypothesis in large-scale testing situations,
and how this choice affects well-known inference methods,
such as the false discovery rate (FDR).

Simultaneous hypothesis testing begins with a collection of
null hypotheses,

H1;H2; : : : ; HN I (1)

corresponding test statistics, possibly not independent,

Y1;Y2; : : : ; YN I (2)

and their p values, P1;P2; : : : ;PN , with Pi measuring how
strongly yi , the observed value of Yi , contradicts Hi ; for in-
stance, Pi D PrHi

fjYij > jyijg. “Large-scale” means that N is a
big number, say at least N > 100.

It is convenient, although not necessary, to work with
z-values instead of the Yi ’s or Pi ’s,

zi D 8¡1.Pi/; i D 1; 2; : : : ; N; (3)

with 8 indicating the standard normal cumulative distribution
function (cdf ), for example, 8¡1.:95/ D 1:645. If Hi is exactly
true, then zi will have a standard normal distribution,

zi jHi » N.0; 1/: (4)

I call (4) the theoretical null hypothesis.
Our motivating example concerns a study of 1,391 patients

with human immunode� ciency virus (HIV) infection, investi-
gating which of 6 protease inhibitor (PI) drugs cause mutations
at which of 74 sites on the viral genome. Each patient provided
a vector of predictors,

x D .x1; x2; : : : ; x6/; (5)
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with xj D 1 or 0 indicatingwhether or not the patient used P Ij ,
1 ·

P6
1 xj · 6; and a vector of responses,

v D .v1; v2; : : : ; v74/; (6)

vk D 1 or 0 indicating whether or not a mutation occurred at
site k. Remark A of Section 7 describes the study in more detail.

For each of the 74 genomic sites, a separate logistic regres-
sion analysis was run using all 1,391 cases, with that site’s
mutation indicators as responses and the PI indicators as pre-
dictors. Together these yielded 444 D 6 £ 74 z-values, one
for testing each null hypothesis that drug j does not cause
mutations at site k, j D 1; 2; : : : ;6 and k D 1; 2; : : : ;74.
The z-values were based on the usual approximation

zi D yi=sei ; i D 1;2; : : : ;444; (7)

[using a single subscript i in place of .j; k/] where yi is the
maximum likelihood estimate (MLE) of the logistic regres-
sion coef� cient and sei is its approximate large-sample stan-
dard error.

Figure 1 shows a histogram of the 444 z-values, with neg-
ative zi ’s indicating greater mutational effects. The smooth
curve, f .z/, is a natural spline with 7 df, � t to the histogram
counts by Poisson regression. It emphasizes the central peak
near z D 0, presumably the large majority of uninteresting
drug–site combinations that have negligible mutation effects.
Near its center, the peak is well described by a normal den-
sity with mean ¡:35 and standard deviation1.20, which will be
called the empirical null hypothesis,

zi jHi » N.¡:35; 1:202/: (8)

Section 3 describes the estimation methodology for (8), with
a brief discussion of the normality assumption in Remark D of
Section 7.

The difference between the theoretical null N.0;1/ and em-
pirical null N.¡:35; 1:202/ may not seem worrisome here,
but it will be shown that it substantially affects any simulta-
neous inference procedure. More dramatic example is given
in Section 6, for a microarray analysis in which going from
the theoretical to empirical null totally negates any � ndings
of signi� cance. Situations going in the reverse direction can
also occur.
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Figure 1. Histogram of 444 z-Values From the Drug Mutation Analy-
sis. The smooth curve f(z) is a natural spline � t to histogram counts. The
central peak near z D 0 is approximately N(¡.35, 1.20 2), the “empiri-
cal null hypothesis.” Simultaneous hypothesis tests for the 444 cases
depend critically on the choice between the empirical or theoretical
N(0, 1) null.

In classic situations involving only a single hypothesis test,
one must, out of necessity, use the theoretical null hypothesis,
z » N.0;1/. The main point of this article is that large-scale
testing situations permit empirical estimation of the null dis-
tribution. Sections 3–5 explore reasons why the empirical and
theoretical null might differ, and which might be preferable in
different situations.

There are scienti� c as well as statistical differences between
small-scale and large-scale hypothesis testing situations. A sin-
gle hypothesis test is most often run with the expectation and
hope of rejecting the null, “with 80% power” in a typical clin-
ical trial. Nobody wants to reject 80% of N D 5;000 null hy-
potheses. The usual point of large-scale testing is to identify
a small percentage of interesting cases that deserve further
investigation. Although we are not exactly looking for a nee-
dle in a haystack, we do not want the whole haystack either.
An important assumption of what follows is that the proportion
of interesting cases is small, perhaps 1% or 5% of N , but not
more than 10%. This is made explicit in Section 2, in the de-
scription of the local false discovery rate as an analytic tool for
large-scale testing. There are situations in which the 10% limit
is irrelevant (e.g., in constructing prediction models), but these
lie outside our purpose here.

The terminology “Interesting/Uninteresting” used in this ar-
ticle in preference to “Signi� cant/Nonsigni� cant” is discussed
near the end of Section 5. We conclude in Sections 7 and 8
with remarks, including most of the technical details, and a
summary.

2. THE LOCAL FALSE DISCOVERY RATE

It is convenient to discuss large-scale testing problems in
terms of the local false discovery rate (fdr), an empirical Bayes
version of Benjamini and Hochberg’s (1995) methodology fo-
cusing on densities rather than tail areas (see Efron et al. 2001;
Efron and Tibshirani 2002; Storey 2002, 2003).

We begin with a simple Bayes model. Suppose that each of
the N z-values falls into one of two classes, “Uninteresting”
or “Interesting,” corresponding to whether or not zi is gener-
ated according to the null hypothesis, with prior probabilities

p0 and p1 D 1 ¡ p0 for the classes. Assume that zi has density
either f0.z/ or f1.z/, depending on its class,

p0 D PrfUninterestingg; f0.z/ density if Uninteresting (Null);
(9)

p1 D PrfInterestingg; f1.z/ density if Interesting (Nonnull):

The smooth curve in Figure 1 estimates the mixture den-
sity, f .z/,

f .z/ D p0f0.z/ C p1f1.z/: (10)

According to Bayes theorem, the a posteriori probability of be-
ing in the Uninteresting class given z is

PrfUninterestingjzg D p0f0.z/=f .z/: (11)

Here I de� ne the fdr as

fdr.z/ ´ f0.z/=f .z/; (12)

ignoring the factor p0 in (11), so fdr.z/ is an upper bound
on PrfUninterestingjzg. In fact, p0 can be roughly estimated
(see Remark B in Sec. 7), but I am assuming that p0 is near 1,
say p0 ¸ :90, so fdr.z/ is not a � agrant overestimator.

The fdr provides a useful methodology for identifying Inter-
esting cases in a situation like that of Figure 1: (1) estimate
f .z/ from the observed ensemble of z-values, for example, by
the natural spline � t to the histogram counts; (2) assign a null
density f0.z/; (3) calculate fdr.z/ D f0.z/=f .z/; and (4) report
as Interesting those cases with fdr.zi/ less than some threshold
value, perhaps fdr.zi/ · :10. Remark B discusses the close con-
nection between this algorithm and Benjamini and Hochberg’s
(1995) method.

This article concerns the choice of f0.z/, the null hypothesis
density. In the drug mutation example, it is crucial to determine
whether f0 is taken to be the theoretical null, N.0;1/, or the
empirical null, N.¡:35; 1:202/. This is illustrated in Figure 2,
a close-up view of Figure 1 focusing on the bin containing
z D ¡3. The expected number of the 444 zi values falling
into this bin is 6.37 for f .z/, and either .62 or 3.90 as f0.z/

Figure 2. Close-Up View of the Bin Containing z D ¡3 in Figure 1.
Expected numbers in the bin are 6.37 for f(z), .62 for f0 D N(0, 1),
and 3.90 for f0 D N(.35, 1.202), the empirical null. Corresponding es-
timates of fdr(¡3) are .097 for N(0, 1) versus .612 for N(¡.35, 1.20 2).
Should we report the cases in this bin as Interesting?
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Figure 3. Comparison of Estimates of log fdr(z) for the Drug Muta-
tion Data. The empirical null estimate (——) declines more slowly than
the theoretical null estimate (¢ ¢ ¢ ¢ ¢ ¢). Dashes indicate the 444 z-values.
A total of 17 cases on left have fdr(z) < 1/10 for theoretical but >1/10 for
empirical.

is N.0; 1/ or N.¡:35;1:202/. Thus fdr.z/ D f0.z/=f .z/ at
z D ¡3 is estimated to be either

fdr.¡3/ D

8
<

:

:097 using the theoretical null N.0; 1/

or

:612 using the empirical null N.¡:35;1:202/.

(13)

In this bin, changing from the theoretical null to the empirical
null changes the inferences from Interesting to de� nitely Unin-
teresting.

Figure 3 compares the two estimates of log fdr.z/ over
most of the z scale. As shown, 18 of the 444 z-values have
fdr.z/ < :10 for f D N.0; 1/ but > :10 for f0 D N.¡:35;1:202/,
with 17 of these at the left end of the scale. All told, the empir-
ical null yields only two-thirds as many cases with fdr < :10 as
the theoretical null (35 versus 53).

3. ESTIMATING THE EMPIRICAL
NULL DISTRIBUTION

The empirical null distribution for the drug mutation data is
estimated in two steps: (1) Fit the curve f .z/ shown in Figure 1
to the histogram counts by Poisson regression, and (2) Obtain
the center and half-width of the central peak, say ±0 and ¾0,
from f .z/,

±0 D argmaxff .z/g and ¾0 D
µ
¡ d2

dz2 logf .z/

¶¡ 1
2

±0

; (14)

yielding .±0; ¾0/ D .¡:35;1:20/. Details are given in Remark D
(Sec. 7), which brie� y discusses the possibility of a nonnormal
empirical null distribution.

More direct estimation methods for f0 seem possible; for ex-
ample, estimating ±0 by the median of the z-values. Suppose,
however, that 10% of the z-values came from the nonnull dis-
tribution and that all of these were located at the far left end of
Figure 1. Then the median of all the z’s would be the 4=9 quar-
tile of the actual null distribution, not its median, yielding a
badly biased estimate of ±0. Similar comments apply to esti-
mating ¾0 (see Remark D). Method (14) does not require pre-
liminary estimates of the proportion p0 in the null population
of (9), a considerable practical advantage.

How accurate are the estimates .¡:35;1:20/? The usual
standard error approximations for a Poisson regression � t are
not appropriate here, because the zi ’s are not independent
of each other. A nonparametric bootstrap analysis was per-
formed instead, with the 1,391 80-dimensional vectors .x;v/

[(5) and (6)], as the resampling units. This yielded .09 and .08
for the bootstrap standard errors of ±0 and ¾0 , that is,

.±0; ¾0/ D .¡:35;1:20/ § .:09; :08/: (15)

It seems quite unlikely that estimation error alone accounts for
the difference between the empirical null and the theoretical
values .±0; ¾0/ D .0; 1/. (Note that this type of bootstrap analy-
sis, which requires independent sampling units, is not applica-
ble to the microarray example of Sec. 6, where correlations
among the genes are present.)

The next two sections concern other possible causes for em-
pirical/theoretical differences, diagnostics for these causes, and
their interpretations. This list is not exhaustive, and in fact the
microarray example of Section 6 demonstrates another form
of pathology.

4. PERMUTATION TESTS AND
UNOBSERVED COVARIATES

The theoretical N.0;1/ null hypothesis (4) is usually based
on asymptotic approximationslike those for the logistic regres-
sion coef� cients in the drug mutation study. Permutation meth-
ods can be used to avoid these approximations, perhaps in the
hope that an improved theoretical null will more closely match
the empirical.

This was not the case for the drug mutation data, for which
permutation testing was implemented by randomly pairing
the 1,391 predictor vectors x, (5), with the 1,391 response
vectors v, (6), and recalculating the 444 z-values. This whole
process was repeated independently 20 times, yielding a total
of 20 £ 444 permutation z’s. Their distribution was well ap-
proximated by a N.0; :9652/ density (the “permutation null”),
except for a prominent spike near z D :3. In this case, the
permutation-improved theoretical null differs more, rather than
less, from the empirical null N.¡:35; 1:202/.

Permutation methods are popular in the microarray litera-
ture as a way of avoiding assumptions and approximations(see
Efron, Tibshirani, Storey, and Tusher 2001; Dudoit, Shaffer,
and Boldrick 2003), but they do not automatically resolve the
question of an appropriate null hypothesis. This can be seen in
the following hypotheticalexample, which is a stylized version
of the two-sample microarray testing problem discussed in Sec-
tion 6. The data, xij , come from N simultaneous two-sample
experiments, each comparing 2n subjects,

xij

»
Controls; j D 1; 2; : : : ; n

Treatments; j D n C 1; n C 2; : : : ;2n
.i D 1; : : : ; N/:

(16)

The ith test statistic, Yi , is the usual two-sample t statistic, com-
paring Treatments versus Controls for the ith experiment.

Suppose that, unknown to the statistician, the data were ac-
tually generated from

xij D uij C
Ij

2
¯i

»
uij » N.0; 1/

¯i » N.0; ¾ 2
¯ /;

(17)
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with the uij and ¯i mutually independentand

Ij D
»¡1; j D 1;2; : : : ; n

C1; j D n C 1; : : : ; 2n
(18)

Then it is easy to show that the statistics Yi follow a dilated
t distribution with 2n ¡ 2 df,

Yi »
³

1 C
n

2
¾ 2

¯

´ 1
2

¢ t2n¡2; (19)

whereas the permutation distribution, permuting Treatments
and Controls within each experiment, has nearly a standard
t2n¡2 null distribution. So, for example, if ¾ 2

¯ D 2=n, then

the empirical density of the Yi’s will be
p

2 times as wide as
the permutation null.

The quantity ¯i in (17) and (18) produces the only consistent
differences between Treatments and Controls in experiment i .
If ¯i is a dependable feature of the ith experiment, and would
appear again with the same value in a replication of the study,
then the permutation null t2n¡2 is a reasonable basis for infer-
ence. With n large and ¾ 2

¯ D 2=n, this results in fdr.yi/ < :10
for the most extreme 2% of the observed t statistics, favoring
those with the largest values of j¯i j.

Suppose, however, that ¯i is not inherent to experiment i ,
but rather is a purely random effect that would have a different
value and perhaps a different sign if the study were repeated;
that is, ¯i is part of the noise and not part of the signal. In
this case, the appropriate choice is the empirical null (19).
The equivalent of Figure 1 would be all central peak, with no
interesting outliers, and no cases with small values of fdr.yi/.
This is appropriate, because now there is no real Treatment
effect.

In this latter context ¯i acts as an unobserved covari-
ate, a quantity that the statistician would use to correct the
Treatment–Control comparison if it were observable. Unob-
served covariates are ubiquitous in observational studies. There
are several obvious ones in the drug mutation study, including
personal patient characteristics, such as age and gender, previ-
ous use of AZT and other non-PI drugs, years since infection,
geographic location, and so on.

The effect of important unobserved covariates is to dilate the
null hypothesis density f0.z/, as happens in (19). Unobserved
covariates will also dilate the Interesting density f1.z/ in (9),
and the mixture density f .z/, (10). However, an empirical � t-
ting method for estimating f .z/, such as the spline � t in Fig-
ure 1, automatically includes any dilation effects. In estimating
fdr.z/ D f0.z/=f .z/, it is important to also allow for dilation of
the numerator f0 . This is a strong argument for preferring the
empirical null hypothesis in observational studies.

5. A STRUCTURAL MODEL FOR THE z-VALUES

The Bayesian speci� cations (9) underlying the fdr results
have the advantage of not requiring a structural model for
the z-values; in particular, it is not necessary to motivate,
or even describe, the nonnull density f1.z/. There is, how-
ever, a simple structural model that can help elucidate the
Interesting–Uninteresting distinction in (9).

The structural model assumes that zi , the ith z-value, is nor-
mally distributed around a “true value” ¹i , its expectation,

zi » N.¹i ;1/ for i D 1; 2; : : : ;N; (20)

with ¹i having some prior distribution g.¹/,

¹i » g.¹/ for i D 1; 2; : : : ; N: (21)

Structure (20) is often a good approximation (see Efron 1988,
sec. 4), and in fact proved reasonably accurate in the bootstrap
experiment yielding (15). Together, (20) and (21) say that the
mixture density f .z/, (10), is a convolution of g.¹/ with the
standard normal density ’.z/,

f .z/ D
Z 1

¡1
’.z ¡ ¹/g.¹/d¹ (22)

[with the understanding that g.¹/ may include discrete proba-
bility atoms].

As a � rst application of the structural model, suppose that
we insist that g.¹/ put probability p0 on ¹ D 0,

Prgf¹ D 0g D p0; (23)

for some � xed value of p0 between 0 and 1. This amounts to the
original Bayes model (9) with p0 D PrfUninterestingg, f0.z/

the theoretical null hypothesis N.0; 1/, and

f1.z/ D
Z

¹ 6D0
’.z ¡ ¹/g.¹/ d¹

.
.1 ¡ p0/: (24)

In the context of this article, p0 should be .90 or greater.
For any f .z/ of the convolutionform (22), let .±g; ¾g / be the

center and width parameters .±0; ¾0/ de� ned by (14). Figure 4
answers the following question: For a given choice of p0 in
constraint (23), what are the maximum possible values of j±g j
and of ¾g ,

±max D maxfj±gjjp0g and ¾max D maxf¾gjp0g? (25)

Three curves appear for ¾max, for the general case just de-
scribed, for the case where the nonzero component of g.¹/ is
required to be symmetric around 0, and for the case where it
is also required to be normal. Here only the general case will
be discussed. Remark F (Sec. 7) discusses the solution of (25),
which turns out to have a simple “single-point” form.

The notable feature of Figure 4 is that for p0 ¸ :90, my
preferred realm for large-scale hypothesis testing, .±max; ¾max/

must be quite near the theoretical null values .0;1/,

±max · :07 and ¾max · 1:04: (26)

Figure 4. Maximum Possible Values of the Center and Width Para-
meters (±0, ¾0), (14), When the Structural Model (20)–(22) is Constrained
to Put Probabilityp0 on ¹ D 0. For 1¡p0 · .10, the maxima are not much
greater than the theoretical null values (0, 1), as shown in Table 1.
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Table 1. Value of ¾max and ±max as a Function of 1 ¡ p0 (23)

1 ¡ p0 : .05 .10 .20 .30 (Drug mutation)

¾max : 1.02 1.04 1.11 1.22 (1.20)
±max: .03 .07 .15 .27 (¡.35)

Table 1 shows .±max; ¾max/ for various choices of p0. It shows
that the “Interesting” probability 1 ¡ p0 would have to be
nearly .30, very large by the standards of large-scale test-
ing, to obtain the observed drug mutation values .±0; ¾0/ D
.¡:35;1:20/. The inference is that Uninteresting effects, such
as the unobserved covariates of Section 4, are dilating the
null hypothesis.

The main point here is that the measures (14) of center
and width are quite robust to the arrangement of Interesting
values ¹i , as long as the Interesting percentage does not ex-
ceed 10%. If .±0; ¾0/ for the central peak is much different
than .0; 1/, as it is in Figure 1, then using the theoretical null
is bound to result in identifying an uncomfortably large per-
centage of supposedly Interesting cases.

We can pursue this last point for the drug mutation data by
removing constraint (23). Figure 5 shows an unconstrained
estimate of g.¹/. For computational simplicity, g.¹/ was
assumed to be discrete, with at most J D 8 support points
¹1;¹2; : : : ;¹J , so that (22) becomes

f .z/ D
JX

jD1

¼j ’.z ¡ ¹j /; (27)

¼j being the probability g puts on ¹j , with ¼j ¸ 0 andP
¼j D 1. A nonlinearminimizationprogram was employed to

� nd the best-� tting curve of form (27) to the histogram counts
in Figure 1, using Poisson deviance as the � tting criterion. The
vertical bars in Figure 5 are located at the resulting eight val-
ues ¹j , with the bar’s height proportional to ¼j . For exam-
ple, the little bar at far left represents an atom of probability
¼1 D :015 at ¹1 D ¡10:9. The resulting f .z/ estimate, (26),
closely resembles the natural spline � t of Figure 1. Table 2
shows all eight .¼j ;¹j / pairs.

Suppose for a moment that the estimated g.¹/ is exactly cor-
rect, so 1.5% of the 444 cases have their ¹i ’s equal to ¡10:9,
1.3%, to ¡7:0, and so on, and that an oracle has told us the
eight .¼j ;¹j / values. Given an observed zi , we can now calcu-
late PrfUninterestingjzg, (11), exactly, once the scientist speci-
� es the de� nition of Uninteresting versus Interesting. It seems
obvious that the 60.8% at ¹j D 0 are Uninteresting, and that
the 10.6% at ¹j D ¡10:9, ¡7:0, ¡4:9, and 6.1 deserve Inter-
esting status. However, the status of the 28.6% at ¹j D ¡1:8,
¡1:1, and 2.4 is less clear.

If the 28.6% are deemed Interesting, then this leaves only
the 60.8% at ¹j D 0 as Uninteresting. In terms of the Bayes

Figure 5. Best-Fit Discrete Mixing Function g(¹), (21), for Drug Mu-
tation Data. The bars are located at support points ¹j, the heights are
proportional to weights ¼ j, and the tall bar at ¹j D 0 has weight ¼ j D .61.
Solid curve is a best-� t estimate f(z) D

P
¼j ’(z ¡ ¹j); it closely matches

the natural spline � t from Figure 1 (- - - - ).

model (9), this yields p0 D :608 and f0.z/ » N.0; 1/, the
theoretical null. About 174 of the 444 cases will be identi-
� ed as Interesting, too many for a typical screening exercise.
Shifting the 28.6% to the Uninteresting classi� cation increases
p0 to :608 C :286 D :894, a more manageable value, and
changes f0.z/ to the version of (27) supported on the four Un-
interesting ¹j ’s,

f0.z/ D
7X

jD4

¼j ’.z ¡ ¹j /

¿ 7X

jD4

¼j : (28)

This is approximately N.¡:34;1:192/, almost the same as
the empirical null (8).

In other words, the de� nition of “Interesting” determines
the relevant choice of the null hypothesis f0. If the goal is
to keep the proportion of Interesting cases manageably small,
then f0.z/ must grow wider than N.0;1/.

Use of the term “Interesting” rather than “Signi� cant” re-
� ects a difference in intent between large-scale and classical
testing. In the hypothetical context of Figure 5 and Table 2, all
of the 39.2% of the cases with nonzero ¹i ’s would eventually
be declared as “signi� cantly different from 0” if the sample size
of patients was vastly increased. Section 4 suggests that minor
deviations from N.0;1/ might arise from scienti� cally uninter-
esting causes, such as unobserved covariates. However, even if
a modestly nonzero ¹i is genuine in some sense, it may still be
Uninteresting when viewed in comparison with an ensemble of
more dramatic possibilities. Nonsigni� cant implies Uninterest-
ing, but not conversely.

6. A MICROARRAY EXAMPLE

Microarrays have become a prime source of large-scale si-
multaneous testing problems. Figure 6 relates to a well-known

Table 2. Weights ¼ j and Locations ¹j for the Eight-Point Best-Fit Estimate g(¹) of Figure 8

–Interesting– ? ? Uninteresting ? Interesting

100¢¼j 1.5% 1.3% 5.6% 12.3% 13.6% 60.8% 2.7% 2.2%
¹j ¡10.9 ¡7.0 ¡4.9 ¡1.8 ¡1.1 0 2.4 6.1

NOTE: Which locations deemed Interesting versus Uninteresting determines the choice between the theoretical or empirical null hypothesis. (Numerical
results accurate to one decimal place.)
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Figure 6. Histogram of N D 3,226 z-Values From the Breast Can-
cer Study. The theoretical N(0, 1) null is much narrower than the central
peak, which has (±0, ¾0) D (¡.02,1.58). In this case the central peak
seems to include the entire histogram.

microarray experiment concerning differences between two
types of genetic mutations causing increased breast cancer risk,
BRCA1 and BRCA2 (see Hedenfalk, Duggen, and Chen 2001;
Efron and Tibshirani 2002; Efron 2003).

The experiment included 15 breast cancer patients, 7 with
BRCA1 and 8 with BRCA2. Each women’s tumor was ana-
lyzed on a separate microarray, each microarray reporting on
the same set of N D 3,226 genes. For each gene, the two-sample
t statistic yi comparing the seven BRCA1 responses with the
eight BRCA2’s was computed. The yi ’s were then converted
to z-values,

zi D 8¡1F13.yi/; (29)

where F13 is the cdf of a standard t distribution with 13 df.
Figure 6 displays the histogram of the 3,226 z-values.

The central peak is wider here than in Figure 1, with center-
width estimates .±0; ¾0/ D .¡:02;1:58/. More importantly,
the histogram seems to be all central peak, with no interest-
ing outliers such as those seen at the left of Figure 1. This
was re� ected in the local fdr calculations; using the theoreti-
cal N.0;1/ null yielded 35 genes with fdr.zi/ < :1, those with
jzij > 3:35; using the empirical N.¡:02; 1:582/ null, no genes
at all had fdr < :1—or, for that matter, fdr < :9, the histogram
in fact being a little short-tailed compared with N.¡:02;1:582/.

There is ample reason to distrust the theoretical null in
this case. The microarray experiment, for all its impressive
technology, is still an observational study, with a wide range of
unobserved covariates possibly distorting the BRCA1–BRCA2
comparison.

Another reason for doubt can be found in the data itself.
The fdr methodologydoes not require independenceof the yi ’s
or zi ’s across genes. However, it does require that the 15 mea-
surements for each gene be independentacross the microarrays.
Otherwise, the two-sample t statistic yi will not have an t13 null
distribution, not even approximately.

Unfortunately the experimental methodology used in the
breast cancer study seems to have induced substantial correla-
tions among the various microarrays. In particular, as discussed
in Remark G, the � rst four microarrays in the BRCA2 groups

were mutually correlated, and likewise the last four. Correla-
tions reduce the effective sample size for a two-sample t sta-
tistic, just the type of effect that would induce overdispersion
in (29).

This does not say that there are no BRCA1–BRCA2 differ-
ences, only that it is dangerous to compare the t statistics with
a standard t13 null distribution, even if simultaneous inference
is accounted for.

7. REMARKS

Remark A (Drug mutation study). The data base for the
drug mutation study (Wu et al. 2002), included 2,497 patients
having HIV subtype B, of whom 1,391 had received at least
one of six popular protease inhibitor (PI) drugs: amprenavir,
indinavir, lopinavir, nel� navir, ritonavir, or saquinavir. Among
the 1,391, the mean number of PI drugs taken was 2.05 per pa-
tient. Amino acid sequenceswere obtainedat all 99 positionson
the HIV protease gene, and mutations from wild-type recorded;
25 positions showed 3 or fewer mutations among the 1,391 pa-
tients, deemed too few for analysis, leaving 74 positions for the
investigationhere. Each of the 74 individuallogistic regressions
included an intercept term as well as the six PI main effects, but
no other covariates.

Remark B (The local false discovery rate). The local fdr,
(11) or (12), is closely related to Benjamini and Hochberg’s
(1995) “tail-area” FDR, as discussed by Efron et al. (2001),
Storey (2002), and Efron and Tibshirani (2002). Substituting
cdf’s F0 and F for the densities f0 and f , Bayes’s theorem
gives a tail-area version of (11),

PrfUninterestingjz · z0g D p0F0.z0/=F .z0/

´ FDR.z0/: (30)

Here FDR.z0/ turns out to be the conditional expectation
of fdr.z/ ´ p0f0.z/=f .z/ given z · z0,

FDR.z0/ D
Z z0

¡1
fdr.z/f .z/ dz

¿Z z0

¡1
f .z/ dz: (31)

Benjamini and Hochberg worked in a frequentist framework,
but their FDR control rule can be stated in empirical Bayes
terms. Given F0 , which they usually took to be what has been
called here the theoretical null, they estimate FDR.z0/ by

dFDR.z0/ D p0F0.z/=bF.z0/; (32)

where bF is the empirical cdf of the zi ’s. For a desired control
level ®, say ® D :05, de� ne

z0 D argmax
z

f dFDR.z/ · ®gI (33)

then rejecting all cases with zi · z0 gives an expected (frequen-
tist) rate of false discoveries no greater than ®.

With z0 as in (33), relation (31) (applied to the estimated
versions of FDR, fdr, and f ) says that the weighted average
of fdr.zi/ for the cases rejected by the FDR level-® rule is
itself ®. As an example, take ® D :05 and f0 equal the theoreti-
cal N.0; 1/ null. Applying the FDR control rule to the negative
side of Figure 1’s drug mutation data rejects the null hypothesis
for the 56 cases having zi · ¡2:61; the corresponding 56 val-
ues of fdr.zi/ have weighted average ® D :05. They vary from
nearly 0 at the far left to .19 at the boundary value z D ¡2:61,
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justifying the term “local”; zi ’s near the boundary are more
likely to be false discoveries than the overall .05 rate suggests.

Our concern with a correct choice of null hypothesis ap-
plies to FDR just as well as to fdr. In the microarray study,
FDR with F0 D N.0;1/ gives 24 signi� cant genes at ® D :05,
whereas F0 D N.¡:02;1:582/ gives none. In fact, any simul-
taneous testing procedure, the popular Westfall–Young method
(Westfall and Young, 1993), for example, will depend on a cor-
rect assessment of p values for the individual cases, that is, on
the choice of F0.

Remark C [Estimating f .z/]. The Poisson regression me-
thod used in Figure 1 to estimate the mixture density f .z/, (10),
originates in an idea of Lindsey described by Efron and Tibshi-
rani (1996, sec. 2). The range of the sample z1; z2; : : : ; zN is
partitioned into K equal intervals, with interval k having mid-
point xk and containingcount sk of the N z-values; the expecta-
tion ¸k of sk is nearly proportional to fk ´ f .xk/, and if the zi ’s
are independent,then the countsapproximateindependentPois-
son variates,

sk
ind» Poi.¸k/ and ¸k D cfk; k D 1;2; : : : ;K; (34)

where c is a constant depending on N and the interval length.
Lindsey’s method is to estimate the ¸k ’s with a Pois-

son regression, which because of (34) amounts to estimating
a scaled version of the fk’s; in other words, estimating f .z/.
K equals 60 in Figure 1, with the regression model being a nat-
ural spline with 7 df, roughly equivalent to a sixth degree poly-
nomial � t in z.

Poisson regression based on (34) is almost fully ef� cient for
estimating f .z/ if the zi’s are independent. Here one does not
expect independence,but we still have the expectationof sk pro-
portional to fk . The Poisson regression method will still tend
to unbiasedly estimate f .z/, assuming the regression model is
suf� ciently � exible, though we may lose estimating ef� ciency.

I also used the bootstrap analysis that gave the standard er-
rors in (15) to check (34). This turned out to be surprisingly
accurate for the drug mutation data. If it had not, then I might
have used the bootstrap estimate of covariance for the sk ’s to
motivate a more ef� cient estimation procedure, though this is
unlikely to be important for large values of N . In any case boot-
strap analyses as in (15) will provide legitimate standard errors
for the Poisson regression whether or not (34) is valid.

Remark D (Estimating the empirical null distribution).
The main tactic of this article is to estimate the null distribution
f0.x/ in (9) from the central peak in the z-values’ histogram.
Assuming normality for f0 gives

logf .z/ PD ¡1

2

³
z ¡ ±0

¾0

´2

C constant (35)

for z near 0, so that ±0 and ¾0 can be estimated by differentiating
logf .z/ as in (14). The constant depends on N and p0, but the
constant has no effect on the derivatives in (14).

Directly differentiating the spline estimate of logf .z/ can
give an overly variable estimate of ¾0 . One more smoothing
step was used here, � tting a quadratic curve a0 C a1xk C a2x2

k

by ordinary least squares to the estimated values logfk , for xk

within 1.5 units of the maximum ±0, yielding¾0 D [¡2a2]¡ 1
2 as

in (14). This procedure gave the small bootstrap standard error
estimate in (15).

None of this methodology is crucial, although it is impor-
tant that the estimates ±0 and ¾0 relate directly to f0.z/ and are
not much affected by the nonnull distribution f1.z/ in (9). As
an example of what can go wrong, suppose that one tries to
estimate ¾0 by a “robust” scale measure, such as (84th quan-
tile minus 16th quantile)=2. This gives ¾0 D 1:47 for the drug
mutation data, re� ecting long tails due to the Interesting cases
in Figure 1. Similar dif� culties arise using the central slope of
a qq plot. Basically, a density estimate of the central peak is
required, and then some assessment of its center and width.

More ambitiously, one might try extending the estimation
of f0.z/ to third moments, permitting a skew null distribution.
Expression (35) could be generalized to

¡ logf .z/ PDc0 C c1z C c2z2=2 C c3z3=6; (36)

now requiring three derivates to estimate the coef� cients rather
than the two of (14). This is an unexploredpath, and in particu-
lar Table 1 has not been extended to include skewness bounds.

Familiarity was the only reason for using z-values instead of
t -values in Figures 1 and 6.

Remark E (Estimatingp0). One can obtain reasonableupper
bounds for p0 in (9) from estimates of

¼.c/ ´ Prf fzi 2 ±0 § c¾0g: (37)

Supposing that f0.z/ D N.±0; ¾ 2
0 /, de� ne

G0.c/ D 28.c/ ¡ 1 and G1.c/ D
Z ±0Cc¾0

±0¡c¾0

f1.z/ dz; (38)

the probabilities that zi 2 ±0 § c¾0 under f0 and f1. Then

p0 D
¼.c/ ¡ G1.c/

G0.c/ ¡ G1.c/
·

¼.c/

G0.c/
; (39)

the inequality following from the assumption that G1.c/ ·
G0.c/; that is, the f1 density is more dispersed than f0.

This leads to the estimated upper bound for p0,

bp0 D
b¼.c/

G0.c/
; with b¼.c/ D #fzi 2 ±0 § c¾0g=N: (40)

In particular, if it is assumed that G1.c/ D 0—in other words,
that the Interesting zi ’s always fall outside ±0 § c¾0—then
bp0 D b¼.c/=G0.c/ is unbiased. (This is the same estimate sug-
gested in remark F of Efron et al. 2001 and Storey 2002.)
Choosing .±0; ¾0/ D .¡:35; 1:20/ and c D 1:5 gave bp0 D :88
for the drug mutation data, with bootstrap standard error .024.

Remark F [Single-point solutions for .±max;¾max/]. The dis-
tributions g.¹/ providing .±max; ¾max/ in (25), as graphed in
Figure 4, have their nonzero components supported at a single
point ¹1. For example, g.¹/ for the entry giving ¾max D 1:04
in Table 1 puts probability .90 at ¹ D 0 and .10 at ¹1 D 1:47.
Single-pointoptimalitywas proved for three of the four cases in
Figure 4, and veri� ed by numerical maximization for the “Gen-
eral” case. Here is the proof for the ¾max “Symmetric” case;
the other two proofs are similar.
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Consider symmetric distributions putting probability p0

on ¹ D 0 and probabilities pj on symmetric pairs .¡¹j ;¹j /,
j D 1; 2; : : : ; J , so (22) becomes

f .z/ D p0’.z/ C
JX

jD1

pj [’.z ¡ ¹j / C ’.z C ¹j /]=2: (41)

De� ning c0 D p0=.1 ¡ p0/, rj D pj =p0, and rC D
PJ

1 rj D
1=c0, ¾0 in (14) can be expressed as

¾0 D .1 ¡ Q/¡ 1
2 ; where Q D

PJ
1 rj ¹2

j e
¡¹2

j
=2

c0rC C
PJ

1 rj e
¡¹2

j
=2

: (42)

Here ±0 D 0, which is true by symmetry assuming that p0 ¸ 1=2.
Then ¾max in (25) can be found by maximizing Q.

It will be shown that with p0 (and c0) and ¹1;¹2; : : : ; ¹J

held � xed in (41), Q is maximized by a choiceof p1;p2; : : : ;pJ

having J ¡1 zero values; this is a stronger version of the single-
point result. Because Q is homogeneous in r D .r1; r2; : : : ; rJ /

in (42), the unconstrained maximization of Q.r/, subject only
to rj ¸ 0 for j D 1;2; : : : ; J , can be considered.

Differentiation gives

@Q=@rj D 1

den

£
¹2

je
¡¹2

j
=2 ¡ Q ¢

¡
c0 C e

¡¹2
j
=2¢¤

; (43)

with “den” the denominator of Q. At a maximizing point r,
we must have

@Q.r/

@rj
· 0 with equality if rj > 0: (44)

De� ning Rj D ¹2
j =.1 C c0e

¹2
j
=2

/, (43) and (44) yield

Q.r/ ¸ Rj with equality if rj > 0: (45)

Because Q.r/ is the maximum, this says that rj , and pj can
be nonzero only if j maximizes Rj . In case of ties, one of the
maximizing j ’s can be arbitrarily chosen.

All of this shows that only J D 1 need be considered in (41).
The global maximized value of r0 in (41) is ¾max D .1 ¡
Rmax/¡ 1

2 , where

Rmax D max
¹1

©
¹2

1

¯¡
1 C c0e¹2

1=2¢ª
: (46)

The maximizing argument ¹1 ranges from 1.43 for p0 D :95
to 1.51 for p0 D :70. The corresponding result for ±max is sim-
pler, ¹1 D ±max C 1.

Remark G (Microarray correlation in the breast cancer
study). It is easy to spot an unwanted correlation structure
among the eight BRCA2 microarrays. Let X be the 3,226 £ 8
matrix of BRCA2 data, with the columns of X standardized
to have mean 0 and variance 1. A “de-gened” matrix eX was
formed by subtracting row-wise averages from each element
of X,

exij D xij ¡
8X

kD1

xik=8: (47)

Table 3 shows the 8 £ 8 correlation matrix of eX. With gen-
uine gene effects subtracted out, the correlations should vary
around ¡1=7 D ¡:14 if the columns of X are independent. In-
stead, the columns are correlated in blocks of four, with the

Table 3. Correlation Matrix for the BRCA2 Data With Row-Wise Means
Subtracted off (46), Indicating Positive Correlations Within the

Two Blocks of Four

1 2 3 4 5 6 7 8

1 1.00 .02 .02 .23 ¡.36 ¡.35 ¡.39 ¡.34
2 .02 1.00 .10 ¡.08 ¡.30 ¡.30 ¡.23 ¡.33
3 .02 .10 1.00 ¡.17 ¡.21 ¡.26 ¡.31 ¡.27
4 .23 ¡.08 ¡.17 1.00 ¡.30 ¡.23 ¡.27 ¡.32

5 ¡.36 ¡.30 ¡.21 ¡.30 1.00 ¡.02 .11 .22
6 ¡.35 ¡.30 ¡.26 ¡.23 ¡.02 1.00 .15 .13
7 ¡.39 ¡.23 ¡.31 ¡.27 .11 .15 1.00 .07
8 ¡.34 ¡.33 ¡.27 ¡.32 .22 .13 .07 1.00

off-diagonalblocks too negativeand the on-diagonalblocks too
positive.

Remark H (Scaling properties). The associate editor pointed
out that the combinationof empirical null hypotheseswith false
discovery rate methodology“scales up” nicely, in terms of both
the number of tests and the amount of information per test.
Consider the structural model (20), (21) with g.¹/ a mixture
of 99% ¹ » N.0; :01/ and 1% of ¹ D 5. For N the number of
tests large enough,methods like Bonferroni bounds that control
the family-wise error rate will eventually accept all N null hy-
potheses; fdr methods, using either the empirical or theoretical
null, will correctly identify most of the Interesting 1%.

Suppose now that the amount of information per test in-
creases by a factor of n, so that each ¹i !

p
n ¹i in (21). Using

the theoretical N.0; 1/ null makes fdr reject all N cases for n

suf� ciently large, whereas the empirical null continues to iden-
tify only the Interesting 1%. In this context, the fdr=empirical
combination avoids the standard criticism of hypotheses test-
ing, that rejection becomes certain for large sample sizes.

8. SUMMARY

Large-scale simultaneoushypothesis testing, where the num-
ber of cases exceeds, say 100, permits the empirical estimation
of a null hypothesis distribution. The empirical null may be
wider (more dispersed) than the theoreticalnull distribution that
would ordinarilybe used for a single hypothesistest. The choice
between empirical and theoretical nulls can greatly in� uence
which cases are identi� ed as “Signi� cant” or “Interesting,” as
opposed to “Null” or “Uninteresting,” this being true no matter
which simultaneoushypothesis testing method is used.

This article presents an analysis plan for large-scale testing
situations:

² A density � tting technique is used to estimate the null hy-
pothesis distribution f0, (Fig. 1 and Sec. 3).

² The local false discovery rate (fdr), an empirical Bayes
version of standard FDR theory, provides inferences for
the N cases (Fig. 3 and Sec. 2).

There are many possible reasons for overdispersion of the
empirical null distribution that would lead to the empirical null
being preferred for simultaneous testing including:

² Unobserved covariates in an observational study, (Sec. 4)
² Hidden correlations (Sec. 6)
² A large proportion of genuine but uninterestinglysmall ef-

fects (Fig. 5).
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Large-scale testing differs in scienti� c intent from an individ-
ual hypothesis test. The latter is most often designed to reject
the null hypothesis with high probability. Large-scale testing
is usually more of a screening operation, intended to identify
a small percentage of Interesting cases, assumed to be on the
order of 10% or less in this article. The empirical null hypothe-
sis methodologyis designed to be accurate under this constraint
(Fig. 4). More traditional estimation methods, involving per-
mutations or quantiles, give incorrect f0 estimates (Sec. 4 and
Remark D).

[Received June 2003. Revised August 2003.]
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