
Principles of Uncertainty

Joseph B. Kadane





Dedication

To my teachers, my colleagues and my students. J. B. K.

vii





Contents

List of Figures xix

List of Tables xxi

Foreword xxiii

Preface xxv

1 Probability 1
1.1 Avoiding being a sure loser 1

1.1.1 Interpretation 5
1.1.2 Notes and other views 5
1.1.3 Summary 8
1.1.4 Exercises 8

1.2 Disjoint events 9
1.2.1 Summary 10
1.2.2 A supplement on induction 11
1.2.3 A supplement on indexed mathematical expressions 11
1.2.4 Intersections of events 12
1.2.5 Summary 12
1.2.6 Exercises 13

1.3 Events not necessarily disjoint 13
1.3.1 A supplement on proofs of set inclusion 14
1.3.2 Boole’s Inequality 15
1.3.3 Summary 16
1.3.4 Exercises 16

1.4 Random variables, also known as uncertain quantities 16
1.4.1 Summary 17
1.4.2 Exercises 17

1.5 Finite number of values 17
1.5.1 Summary 21
1.5.2 Exercises 21

1.6 Other properties of expectation 22
1.6.1 Summary 24
1.6.2 Exercises 25

1.7 Coherence implies not a sure loser 25
1.7.1 Summary 26
1.7.2 Exercises 26

1.8 Expectations and limits 26
1.8.1 A supplement on limits 26
1.8.2 Resuming the discussion of expectations and limits 27
1.8.3 Reference 28

ix



x CONTENTS

1.8.4 Exercises 28

2 Conditional Probability and Bayes Theorem 29
2.1 Conditional probability 29

2.1.1 Summary 32
2.1.2 Exercises 32

2.2 The birthday problem 33
2.2.1 Exercises 35
2.2.2 A supplement on computing 35
2.2.3 References 41
2.2.4 Exercises 41

2.3 Simpson’s Paradox 41
2.3.1 Notes 43
2.3.2 Exercises 43

2.4 Bayes Theorem 44
2.4.1 Notes and other views 45
2.4.2 Exercises 45

2.5 Independence of events 47
2.5.1 Summary 49
2.5.2 Exercises 49

2.6 The Monty Hall problem 50
2.6.1 Exercises 52

2.7 Gambler’s Ruin problem 52
2.7.1 Changing stakes 55
2.7.2 Summary 57
2.7.3 References 58
2.7.4 Exercises 58

2.8 Iterated expectations and independence 58
2.8.1 Summary 61
2.8.2 Exercises 61

2.9 The binomial and multinomial distributions 62
2.9.1 Why these distributions have these names 64
2.9.2 Summary 64
2.9.3 Exercises 64

2.10 Sampling without replacement 65
2.10.1 Summary 66
2.10.2 Exercises 66

2.11 Variance and covariance 66
2.11.1 Remark 70
2.11.2 Summary 71
2.11.3 Exercises 71

2.12 A short introduction to multivariate thinking 72
2.12.1 A supplement on vectors and matrices 72
2.12.2 Covariance matrices 73
2.12.3 Conditional variances and covariances 74
2.12.4 Summary 74
2.12.5 Exercises 74

2.13 Tchebychev’s Inequality 75
2.13.1 Interpretations 76
2.13.2 Summary 77
2.13.3 Exercises 77



CONTENTS xi

3 Discrete Random Variables 79
3.1 Countably many possible values 79

3.1.1 A supplement on infinity 80
3.1.2 Notes 82
3.1.3 Summary 82
3.1.4 Exercises 82

3.2 Finite additivity 82
3.2.1 Summary 85
3.2.2 References 86
3.2.3 Exercises 86

3.3 Countable additivity 86
3.3.1 Summary 95
3.3.2 References 95
3.3.3 Can we use countable additivity to handle countably many bets

simultaneously? 95
3.3.4 Exercises 96
3.3.5 A supplement on calculus-based methods of demonstrating the

convergence of series 97
3.4 Properties of countable additivity 97

3.4.1 Summary 102
3.5 Dynamic sure loss 102

3.5.1 Summary 104
3.5.2 Discussion 104
3.5.3 Other views 104

3.6 Probability generating functions 105
3.6.1 Summary 107
3.6.2 Exercises 107

3.7 Geometric random variables 107
3.7.1 Summary 108
3.7.2 Exercises 108

3.8 The negative binomial random variable 109
3.8.1 Summary 110
3.8.2 Exercises 110

3.9 The Poisson random variable 110
3.9.1 Summary 112
3.9.2 Exercises 112

3.10 Cumulative distribution function 112
3.10.1 Introduction 112
3.10.2 An interesting relationship between cdf’s and expectations 113
3.10.3 Summary 113
3.10.4 Exercises 113

3.11 Dominated and bounded convergence 114
3.11.1 Summary 115
3.11.2 Exercises 115

4 Continuous Random Variables 117
4.1 Introduction 117

4.1.1 The cumulative distribution function 119
4.1.2 Summary and reference 119
4.1.3 Exercises 120

4.2 Joint distributions 120
4.2.1 Summary 123



xii CONTENTS

4.2.2 Exercises 123
4.3 Conditional distributions and independence 124

4.3.1 Summary 127
4.3.2 Exercises 127

4.4 Existence and properties of expectations 128
4.4.1 Summary 132
4.4.2 Exercises 132

4.5 Extensions 132
4.5.1 An interesting relationship between cdf’s and expectations of

continuous random variables 132
4.6 Chapter retrospective so far 133
4.7 Bounded and dominated convergence 133

4.7.1 A supplement about limits of sequences and Cauchy’s criterion 133
4.7.2 Exercises 136
4.7.3 References 136
4.7.4 A supplement on Riemann integrals 136
4.7.5 Summary 137
4.7.6 Exercises 137
4.7.7 Bounded and dominated convergence for Riemann integrals 138
4.7.8 Summary 141
4.7.9 Exercises 141
4.7.10 References 141
4.7.11 A supplement on uniform convergence 142
4.7.12 Bounded and dominated convergence for Riemann expectations 143
4.7.13 Summary 146
4.7.14 Exercises 147
4.7.15 Discussion 147

4.8 The Riemann-Stieltjes integral 147
4.8.1 Definition of the Riemann-Stieltjes integral 148
4.8.2 The Riemann-Stieltjes integral in the finite discrete case 148
4.8.3 The Riemann-Stieltjes integral in the countable discrete case 150
4.8.4 The Riemann-Stieltjes integral when F has a derivative 152
4.8.5 Other cases of the Riemann-Stieltjes integral 153
4.8.6 Summary 154
4.8.7 Exercises 154

4.9 The McShane-Stieltjes integral 154
4.9.1 Extension of the McShane integral to unbounded sets 159
4.9.2 Properties of the McShane integral 161
4.9.3 McShane probabilities 172
4.9.4 Comments and relationship to other literature 173
4.9.5 Summary 173
4.9.6 Exercises 174

4.10 The road from here 174
4.11 The strong law of large numbers 174

4.11.1 Random variables (otherwise known as uncertain quantities) more
precisely 174

4.11.2 Modes of convergence of random variables 176
4.11.3 Four algebraic lemmas 178
4.11.4 The strong law of large numbers 180
4.11.5 Summary 184
4.11.6 Exercises 184
4.11.7 Reference 184



CONTENTS xiii

5 Transformations 185
5.1 Introduction 185
5.2 Discrete random variables 185

5.2.1 Summary 187
5.2.2 Exercises 187

5.3 Univariate continuous distributions 187
5.3.1 Summary 192
5.3.2 Exercises 192
5.3.3 A note to the reader 193

5.4 Linear spaces 193
5.4.1 A mathematical note 195
5.4.2 Inner products 195
5.4.3 Summary 201
5.4.4 Exercises 201

5.5 Permutations 201
5.5.1 Summary 203
5.5.2 Exercises 204

5.6 Number systems; DeMoivre’s Formula 204
5.6.1 A supplement with more facts about Taylor series 205
5.6.2 DeMoivre’s Formula 206
5.6.3 Complex numbers in polar co-ordinates 207
5.6.4 The fundamental theorem of algebra 209
5.6.5 Summary 211
5.6.6 Exercises 211
5.6.7 Notes 211

5.7 Determinants 211
5.7.1 Summary 218
5.7.2 Exercises 218
5.7.3 Real matrices 218
5.7.4 References 218

5.8 Eigenvalues, eigenvectors and decompositions 218
5.8.1 Generalizations 223
5.8.2 Summary 223
5.8.3 Exercises 223

5.9 Non-linear transformations 224
5.9.1 Summary 226
5.9.2 Exercise 226

5.10 The Borel-Kolmogorov Paradox 227
5.10.1 Summary 231
5.10.2 Exercises 231

6 Normal Distribution 233
6.1 Introduction 233
6.2 Moment generating functions 233

6.2.1 Summary 236
6.2.2 Exercises 236
6.2.3 Remark 236

6.3 Characteristic functions 236
6.3.1 Remark 239
6.3.2 Summary 239
6.3.3 Exercises 239

6.4 Trigonometric polynomials 239



xiv CONTENTS

6.4.1 Trigonometric polynomials 239
6.4.2 Summary 241
6.4.3 Exercises 242

6.5 A Weierstrass approximation theorem 242
6.5.1 A supplement on compact sets and uniformly continuous functions 242
6.5.2 Exercises 243
6.5.3 Summary 244
6.5.4 The Weierstrass approximation 244
6.5.5 Remark 246
6.5.6 Exercise 246

6.6 Uniqueness of characteristic functions 247
6.6.1 Notes and references 248

6.7 Characteristic function and moments 249
6.7.1 Summary 251

6.8 Continuity theorem 251
6.8.1 A supplement on properties of the rational numbers 253
6.8.2 Resuming the discussion of the continuity theorem 253
6.8.3 Summary 259
6.8.4 Notes and references 259
6.8.5 Exercises 259

6.9 The normal distribution 259
6.10 Multivariate normal distributions 262
6.11 Limit theorems 264

7 Making Decisions 267
7.1 Introduction 267
7.2 An example 267

7.2.1 Remarks on the use of these ideas 270
7.2.2 Summary 271
7.2.3 Exercises 271

7.3 In greater generality 271
7.3.1 A supplement on regret 273
7.3.2 Notes and other views 274
7.3.3 Summary 275
7.3.4 Exercises 275

7.4 The St. Petersburg Paradox 275
7.4.1 Summary 279
7.4.2 Notes and references 279
7.4.3 Exercises 279

7.5 Risk aversion 279
7.5.1 A supplement on finite differences and derivatives 280
7.5.2 Resuming the discussion of risk aversion 280
7.5.3 References 283
7.5.4 Summary 283
7.5.5 Exercises 283

7.6 Log (fortune) as utility 284
7.6.1 A supplement on optimization 285
7.6.2 Resuming the maximization of log fortune in various circumstances 286
7.6.3 Interpretation 288
7.6.4 Summary 289
7.6.5 Exercises 289

7.7 Decisions after seeing data 291



CONTENTS xv

7.7.1 Summary 291
7.7.2 Exercise 291

7.8 The expected value of sample information 292
7.8.1 Summary 292
7.8.2 Exercise 293

7.9 An example 293
7.9.1 Summary 294
7.9.2 Exercises 294

7.10 Randomized decisions 294
7.10.1 Summary 295
7.10.2 Exercise 295

7.11 Sequential decisions 295
7.11.1 Notes 297
7.11.2 Summary 297
7.11.3 Exercise 297

8 Conjugate Analysis 299
8.1 A simple normal-normal case 299

8.1.1 Summary 301
8.1.2 Exercises 301

8.2 A multivariate normal case, known precision 302
8.2.1 Summary 303
8.2.2 Exercises 303

8.3 The normal linear model with known precision 304
8.3.1 Summary 305
8.3.2 Further reading 306
8.3.3 Exercises 306

8.4 The gamma distribution 306
8.4.1 Summary 308
8.4.2 Exercises 308
8.4.3 Reference 308

8.5 Uncertain mean and precision 308
8.5.1 Summary 311
8.5.2 Exercise 311

8.6 The normal linear model, uncertain precision 311
8.6.1 Summary 313
8.6.2 Exercise 313

8.7 The Wishart distribution 313
8.7.1 The trace of a square matrix 313
8.7.2 The Wishart distribution 314
8.7.3 Jacobian of a linear transformation of a symmetric matrix 314
8.7.4 Determinant of the triangular decomposition 316
8.7.5 Integrating the Wishart density 317
8.7.6 Multivariate normal distribution with uncertain precision and

certain mean 319
8.7.7 Summary 320
8.7.8 Exercise 320

8.8 Both mean and precision matrix uncertain 320
8.8.1 Summary 323
8.8.2 Exercise 323

8.9 The Beta and Dirichlet distributions 323
8.9.1 Summary 327



xvi CONTENTS

8.9.2 Exercises 327
8.10 The exponential family 327

8.10.1 Summary 329
8.10.2 Exercises 329
8.10.3 Utility 329

8.11 Large sample theory for Bayesians 329
8.11.1 A supplement on convex functions and Jensen’s Inequality 330
8.11.2 Resuming the main argument 330
8.11.3 Exercises 332
8.11.4 References 332

8.12 Some general perspective 332

9 Hierarchical Structuring of a Model 335
9.1 Introduction 335

9.1.1 Summary 337
9.1.2 Exercises 337
9.1.3 More history and related literature 337

9.2 Missing data 338
9.2.1 Examples 338
9.2.2 Bayesian analysis of missing data 342
9.2.3 Summary 342
9.2.4 Remarks and further reading 342
9.2.5 Exercises 342

9.3 Meta-analysis 342
9.3.1 Summary 343

9.4 Model uncertainty/model choice 343
9.4.1 Summary 345
9.4.2 Further reading 345

9.5 Graphical hierarchical models 345
9.5.1 Summary 347
9.5.2 Exercises 347
9.5.3 Additional references 347

9.6 Causation 347

10 Markov Chain Monte Carlo 351
10.1 Introduction 351
10.2 Simulation 351

10.2.1 Summary 355
10.2.2 Exercises 355
10.2.3 References 356

10.3 The Metropolis-Hastings algorithm 356
10.3.1 Literature 372
10.3.2 Summary 372
10.3.3 Exercises 372

10.4 Extensions and special cases 373
10.4.1 Summary 374
10.4.2 Exercises 374

10.5 Practical considerations 375
10.5.1 Summary 377
10.5.2 Exercises 377

10.6 Variable dimensions: Reversible jumps 377
10.6.1 Summary 378



CONTENTS xvii

10.6.2 Exercises 378

11 Multiparty Problems 379

11.1 More than one decision maker 379

11.2 A simple three-stage game 379

11.2.1 Summary 385

11.2.2 References and notes 385

11.2.3 Exercises 385

11.3 Private information 386

11.3.1 Other views 390

11.3.2 References and notes 391

11.3.3 Summary 391

11.3.4 Exercises 391

11.4 Design for another’s analysis 392

11.4.1 Notes and references 395

11.4.2 Summary 395

11.4.3 Exercises 395

11.4.4 Research problem 396

11.4.5 Career problem 396

11.5 Optimal Bayesian randomization 396

11.5.1 Notes and references 399

11.5.2 Summary 399

11.5.3 Exercises 399

11.6 Simultaneous moves 399

11.6.1 Minimax theory for two person constant-sum games 400

11.6.2 Comments from a Bayesian perspective 401

11.6.3 An example: Bank runs 403

11.6.4 Example: Prisoner’s Dilemma 404

11.6.5 Notes and references 405

11.6.6 Iterated Prisoner’s Dilemma 407

11.6.7 Centipede Game 408

11.6.8 Guessing a multiple of the average 409

11.6.9 References 409

11.6.10 Summary 410

11.6.11 Exercises 410

11.7 The Allais and Ellsberg Paradoxes 410

11.7.1 The Allais Paradox 411

11.7.2 The Ellsberg Paradox 412

11.7.3 What do these resolutions of the paradoxes imply for elicitation? 414

11.7.4 Notes and references 414

11.7.5 Summary 415

11.7.6 Exercises 415

11.8 Forming a Bayesian group 415

11.8.1 Summary 428

11.8.2 Notes and references 428

11.8.3 Exercises 429

Appendix A: The minimax theorem 430

11.A.1 Notes and references 433



xviii CONTENTS

12 Exploration of Old Ideas 435
12.1 Introduction 435

12.1.1 Summary 437
12.1.2 Exercises 437

12.2 Testing 438
12.2.1 Further reading 440
12.2.2 Summary 440
12.2.3 Exercises 440

12.3 Confidence intervals and sets 440
12.3.1 Summary 442

12.4 Estimation 442
12.4.1 Further reading 444
12.4.2 Summary 444
12.4.3 Exercise 444

12.5 Choosing among models 444
12.6 Goodness of fit 444
12.7 Sampling theory statistics 445
12.8 “Objective” Bayesian methods 445

13 Epilogue: Applications 447
13.1 Computation 448
13.2 A final thought 448

Bibliography 449

Subject Index 465

Person Index 471



List of Figures

1.1 A Venn Diagram for two sets A and B. 14

2.1 Approx plotted against k. 38
2.2 Exact plotted against k. 39
2.3 Approx plotted against exact. 39
2.4 Approx plotted against exact, with the line of equality added. 40
2.5 The probability of the weaker player winning as a function of the stakes in

the example. 57

4.1 Area of positive density in example is shaded. The box in the upper right
corner is a region of zero probability. 126

4.2 Plot of y = (1/x)sin(1/x) with uniform spacing. 155
4.3 Plot of y = (1/x)sin(1/x) with non-uniform spacing. 156

5.1 Quadratic relation between X and Y . 188
5.2 The set [0.25, 0.81] for Y is the transform of two intervals for X. 189
5.3 The geometry of polar co-ordinates for complex numbers. 208
5.4 Illustration of a curve f(x) winding twice around the origin. 210
5.5 Two senses of lines close to the line x1 = x2. 231

6.1 Density of the standard density normal distribution. 259

7.1 Decision tree for the umbrella problem. 268
7.2 The number p1 is chosen so that you are indifferent between these two

choices. 269
7.3 Decision tree with probabilities and utilities. 270
7.4 Decision tree for a 2-stage sequential decision problem. 296

9.1 Representing the relationship between variables in the standardized exami-
nation example. 345

9.2 A more detailed representation of the relationship between variables in the
standardized examination example. 346

9.3 A graph with a cycle. 346
9.4 Figure 9.1 with teacher training added. 346
9.5 District policy influences the extent of teacher training. 347

11.1 Moves in the three-stage sequential game. 380
11.2 Situation 1. Jane’s first move, u∗, moves the object further than x, imposing

costs on both herself and Dick. 382
11.3 Situation 2. Jane’s first move, u∗, moves the object further away from both

x and y, to both players’ detriment. 382
11.4 Extensive form of the Centipede Game. 408

xix





List of Tables

1.1 Your gain from each possible outcome, after buying tickets on A1 and A2

and selling a ticket on A1 ∪A2. 3
1.2 Your gain from each possible outcome, after buying a ticket on A1 ∪A2 and

selling tickets on A1 and A2. 4

2.1 Consequences of tickets bought on A|B and AB. 29
2.2 Your gains, as a function of the outcome, when tickets are settled, when

xy > z. 30
2.3 The paradox: the Maori, overall, appear to be over-represented, yet in every

district they are underrepresented. 43

7.1 Matrix display of consequences. 268

11.1 Cases for Theorem 11.8.1. 416

xxi





Foreword

With respect to the mathematical parts of this book, I can offer no better advice than
(Halmos, 1985, p. 69):

...study actively. Don’t just read it: fight it! Ask your own questions, look for your
own examples, discover your own proofs. Is the hypothesis necessary? Is the converse
true? What happens in the classical special case? What about the degenerate cases?
Where does the proof use the hypothesis?

In addition, for this book, it is relevant to ask “what does this result mean for under-
standing uncertainty? If it is a stepping stone, toward what is it a stepping stone? If this
result were false, what consequences would that have?”

xxiii





Preface

“Don’t worry baby. It’s gonna be alright.
Uncertainty can be a guiding light”

—U2 (from Zooropa)

“The universe – including human communities – evolves in accordance with a divine plan. It
is man’s business to endeavor to understand this plan and guide his actions in sympathy with
it. But to understand God’s thoughts and purposes, we must study statistics, for these are a
measure of His purpose.”

—Florence Nightingale

This book started out with the goal of explaining a Bayesian approach to statistics. To
be a good statistician requires grounding in each of the disciplines we rely on: mathematics,
computing and philosophy. Consequently this book introduces a student to what I take to
be the most compelling parts of each of those subjects, as they bear on statistics. This book
involves what are sometimes thought of as two different subjects, probability and statistics.
However, it is the premise of Bayesian statistics, as it is of this book, that statistics is
properly conceived of as simply an application of probability. My desire to avoid the phrase
“it can be shown that” has led me to display more of the mathematical underpinings of the
subject than is customary.

I am struck by the extent to which the point of view I have come to selectively bor-
rows from the thoughts of those who came before me. From Bruno deFinetti I have taken
his insistence on the subjective nature of probability and his interest in finitely additive
probability, but I am ambivalent about his rejection of the restriction to countable addi-
tivity. From L.J. (“Jimmie”) Savage, I have taken his emphasis on utility theory, but not
his axiom system. From R.A. Fisher, I have accepted his emphasis on the desirability of
randomization in experimental design, but neither his use of significance testing nor his
scorn for subjective probability. From George Box, I have accepted his view of the primacy
of applications of statistics, but not his use of significance testing to choose among models.
From many of my contemporaries, I have taken the importance of computing as part of
a statistician’s toolbox. My graduate training was based on the ideas of Neyman, Pearson
and Wald, so I have no doubt used them as background without even being aware of it. The
views expressed here are probably closest to those of my late colleague Morris (“Morrie”)
DeGroot, although I am not sure he would endorse the line of reasoning that leads me to
what I take to be our common position. They are also quite close to those of Dennis Lindley,
although he has disagreements with bits here and there. In clarity of expression, my models
are DeGroot, Lindley and Savage.

My closest companions in the task of sorting through the received melange of approaches
to statistics are my colleagues Teddy Seidenfeld and Mark Schervish, with whom I have
shared many enjoyable hours of exploration and writing.

My interest in Bayesian statistics started in conversation with my advisor, Herman
Chernoff. Most influential were two years, 1966 to 1968, I spent at Yale with Frank Anscombe
and Jimmy Savage. The Seminar on Bayesian Inference in Econometrics (SBIE) organized

xxv



xxvi PREFACE

by Arnold Zellner was for years an indispensable forum for me and others who wanted to
explore Bayesian ideas.

It has been my privilege to witness the development of Bayesian ideas from being a small
(and scorned) fringe movement into being a major player. At the start, it was quite possible
to know each Bayesian, where they stood on the debated issues, and what they were working
on. Now it is barely possible to keep track of the fields Bayesian ideas are being applied
to. In 1970, fifty of us would gather for the semi-annual Seminar on Bayesian Inference in
Economics. In the 80’s and 90’s, hundreds would meet at Valencia. Now thousands take
part in the Joint Statistical Meetings, and much of the work is Bayesian.

Years ago I approached Morrie DeGroot with a proposal for a revision of his masterpiece
“Optimal Statistical Decisions.” His response was “write your own book.” Another valued
colleague, John Lehoczky, asked me longer ago than I can remember what I intended my
legacy to be. Both challenges lay dormant for a long time. I began writing this book in 2005,
when I was on a Fulbright Fellowship to visit the Statistics Department at the Pontifical
Catholic University (PUC) in Santiago, Chile. The request from Pilar Iglesias for advice
about their curriculum led me to think about what I thought their students need to know,
and that led me to start writing. I thank both the faculty and students at PUC for the
inspiration.

The organization of this book is somewhat non-standard. Each of the first few chapters
begins by introducing one new concept or assumption. Each of the rest of those chapters
explores the consequences of that new assumption, when added to those already made. This
sometimes requires revisiting a subject, which is a cost, but it has the strength of displaying
more clearly the role of each assumption. This organization permits the use of “just-in-
time mathematics,” the introduction of mathematical ideas just before they are applied
to advancing the main argument, which is about uncertainty. It assumes differential and
integral calculus of several variables, but develops the linear algebra as needed. A beginning
course in data analysis would help, but probably the less formal sampling theory a student
has been exposed to, the better.

There are two extraordinary people without whom the book would never have been
written. The first is my long-time assistant Heidi Sestrich. She has excellently and cheerfully
(well, with a minimum of grumbling) LATEX’d succeeding revisions and additions. She has
made it fun as well as efficient.

The second is my wife Caroline Mitchell, who, in addition to being a champion speller
(my spelling is terrible), has kept me grounded and outward-looking through the necessarily
inward-looking process of writing.

In addition to those mentioned above, a number of kind friends have helped with
points mentioned here, read and critiqued chapters, etc. Specifically I thank Donna Pauler
Ankherst, Barry Arnold, Susan Buchman, Anne-Sophie Charest, Nanjun Chu, Daniel Crane,
Garry Crane, Heidi Crane, Paul Crane, Naavah Deutsch, Sara Eggers, Steve Fienberg, Mary
Santi Fowler, Clark Glymour, Georg Goerg, David Gray, Geoffrey Grimmett, Jiashun Jin,
David Johnstone, Cory Lanker, Jong Soo Lee, Dennis Lindley, Alex London, Daniel McDon-
ald, Elias Moreno, Donna Asti Murphy, Esa Nummelin, Washek Pfeffer, Elizabeth Prather,
Jean-Francoise Richard, Jeffrey Rosenthal, Howard Seltman, Rafael Stern, Peter Bjoern
Stuettgen, Sonia Todorova, Robert Winkler, Xiaolin Yang, Xiting Yang, Star Ying and
Kevin Zollman.

I benefited greatly from the comments of a seminar I taught, jointly with Clark Glymour,
in the spring of 2006. Among the active participants were Naavah Deutsch, Zach Dietz, Sara
Eggers, David Gray, Alex London, Tanzy Love and Mark Perlin. I also learned a lot from
the perspectives of various anonymous publishers’ reviewers.

What is this book and how might it be used? There are many books and courses that
suggest the computation of particular statistics, or suggest the use of particular algorithms.
By contrast, this book addresses how to think about uncertainty. Thus it is addressed to
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those who want to know “why.” I have chosen a particular point of view, the subjective
Bayesian view, because this approach has best survived the tumult of doing statistical
applications and worrying about the meaning behind the calculations.

Not every course can or should consider all the questions this book addresses. Thus an
elementary course might use Chapters 1, 2, Sections 1, 2, and 6-10 of Chapter 3, Sections
1-6 of Chapter 4, Chapter 7, and perhaps parts of Chapter 11. A course in probability
that prepares graduate students for a measure-theoretic treatment could study just the
first six chapters. A Bayesian course would cover Chapters 1, 2, parts of Chapters 3 and
4 (depending on the preparation of the students), Chapters 7-10, and perhaps parts of
Chapter 11. A course in decision theory might study Chapters 1, 2, 7 and especially 11.

I hope also that this book may be useful to scholars of all persuasions who many find
the explanations here thought-provoking.





Chapter 1

Probability

“How can I be sure? In a world that’s constantly changing, how can I be sure?”
—The Young Rascals

A businessman is exploring a city new to him. He finds a pet store, wanders in, and starts
chatting with the owner. After half an hour, the owner says, “I can see you are a discerning
gentleman. I have something special to show you,” and he brings out a parrot. “This parrot
is very smart, and speaks four languages: English, German, French and Spanish,” he says.
The businessman tries out the parrot in each language, and the parrot answers. “I have to
have this parrot,” says the businessman, so he buys the parrot, puts it on his shoulder, and
leaves the shop.

He goes into a bar. Everyone is curious about the parrot. Nobody believes that the
parrot can speak four languages. So the businessman makes bets with everyone in the bar.
When all the bets are made, the businessman speaks to the parrot, but the parrot doesn’t
answer. He tries all four languages, but the parrot is silent. So the businessman has to pay
up for all his bets, puts the parrot on his shoulder, and leaves the bar.

When they get to the street, he says to the parrot, “Why wouldn’t you say anything in
there?” to which the parrot replies, “Listen, stupid, think of all the bets you can make in
there tomorrow night!”

1.1 Avoiding being a sure loser

Uncertainty is a fact of life. Indeed we spend much of our waking hours dealing with various
forms of uncertainty. The purpose of this chapter is to introduce probability as a funda-
mental tool for quantifying uncertainty.

Before we begin, I emphasize that the answers you give to the questions I ask you about
your uncertainty are yours alone, and need not be the same as what someone else would
say, even someone with the same information as you have, and facing the same decisions.

What are you uncertain about? Many things, I suppose, but in order to make progress,
I need you to be more specific. You may be uncertain about whether the parrot will speak
tomorrow night. But instead, suppose you are uncertain about tomorrow’s weather in your
home area. In order to speak of the weather, I need you to specify the categories that you
will use. For example, you might think that whether it will rain is an important matter. You
might also be concerned about the temperature, for example, whether the high temperature
for the day will be above 68 degrees Fahrenheit, which is 20 degrees Centigrade or Celsius.
Thus you have given four events of interest to you:

1
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A1: Rain and High above 68 degrees F tomorrow
A2: Rain and High at or below 68 degrees F tomorrow
A3: No Rain and High above 68 degrees F tomorrow
A4: No Rain and High at or below 68 degrees F tomorrow.

Tomorrow, one and only one of these events will occur. In mathematical language, the
events are exhaustive (at least one must occur) and disjoint (no more than one can occur).
Whatever you are uncertain about, I can ask you to specify a set of disjoint and exhaustive
events that describe your categories.

Now I have to ask you about how likely, in your opinion, is each of the events you have
specified. I will do this by asking you what price you think is fair for particular tickets I will
imagine you will offer to buy or sell. I am going to ask you to name a price at which you
would be willing either to sell or to buy such a ticket. You can write such tickets if you are
selling them, and I can write them if you are buying them and I am selling them. Tickets
are essentially promissory notes. We do not consider the issue of default, that either of us
will be unable or unwilling to redeem our promises when the time comes to settle. Consider
a ticket that pays $1 if event A1 happens and $0 if A1 does not happen. A buyer of such a
ticket pays the seller the amount p. If the event A occurs, the seller pays the buyer $1. If the
event A does not occur, the seller owes the buyer nothing. (The currency is not important.
If you are used to some other currency, change the ticket to the currency you are familiar
with.) There is an assumption here that the price at which you offer to buy such a ticket is
the same as the price at which you are willing to sell such a ticket. You can count on me to
pay if I owe you money after we see tomorrow’s weather, and I can count on you similarly.
The intuition behind this is that if you are willing to buy or sell a ticket on A1 for $0.70,
you consider A1 more likely than if you were willing to buy or sell it for only $0.10.

Let us suppose that in general your price for a $1 ticket on A1 is Pr{A1} (pronounced
‘price of A1’), and in particular you name 30 cents. This means that I can sell you such
a ticket for $0.30 (or buy such a ticket from you for $0.30). If I sell the ticket to you and
it rains tomorrow and the temperature is above 68 degrees Fahrenheit, I would have to
pay you $1. If it does not rain or if the temperature does not rise to be above 68 degrees
Fahrenheit, I would not pay you anything. Thus in the first case, you come out $0.70 ahead,
while in the second case I am ahead by $0.30. Similarly you name prices for A2, A3 and A4,
respectively Pr{A2}, P r{A3} and Pr{A4}.

It would be foolish for you to specify prices for tickets for all four events that have the
property that I can accept some of your offers and be assured of making money from you,
whatever the weather might be tomorrow (i.e., making you a sure loser). So we now study
what properties your prices must have so that you are assured of not being a sure loser.
But before we do that, I must remind you that avoiding being a sure loser does not make
you a winner, or even likely to be a winner. So avoiding sure loss is a weak requirement on
what it takes to behave reasonably in the face of uncertainty.

To take the simplest requirement first, suppose you make the mistake of offering a
negative price for an event, for example Pr{A1} = −$0.05. This would mean that you offer
to sell me ticket A1 for the price of -$0.05, (i.e., you will give me the ticket and 5 cents).
If event A1 happens, that is, if it rains and the high temperature is more than 68 degrees
Fahrenheit, you owe me $1, so your total loss is $1.05. On the other hand, if event A1 does
not happen, you still lose $0.05. Hence in this case, no matter what happens, you are a sure
loser. To avoid this kind of error, your prices cannot be negative, that is, for every event A,
you must specify prices satisfying

Pr{A} ≥ 0. (1.1)

Now consider the sure event S. In the example we are discussing, S is the same as the
event {either A1 or A2 or A3 or A4}, which is a formal mathematical way of saying either it
will rain tomorrow or it will not, and either the high temperature will be above 68 degrees
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Ticket Net
Outcome A1 A2 A1 ∪A2

A1 but not A2 1 0 -1 0
A2 but not A1 0 1 -1 0
neither A1 nor A2 0 0 0 0

Table 1.1: Your gain from each possible outcome, after buying tickets on A1 and A2 and
selling a ticket on A1 ∪A2.

Fahrenheit or not. What price should you give to the sure event S? If you give a price
below $1, say $0.75, I can buy that ticket from you for $0.75. Since the sure event is sure to
happen, tomorrow you will owe me $1, and you will have lost $0.25, whatever the weather
will be. So you are sure to lose if you offer any price below $1. Similarly, if you offer a price
above $1 for the sure event S, say $1.25, I can sell you the ticket for $1.25. Tomorrow, I
will certainly owe you $1, but I come out ahead by $0.25 whatever happens. So you can see
that the only way to avoid being a sure loser is to have a price of exactly $1 for S. This is
the second requirement to avoid a sure loss, namely,

Pr{S} = 1. (1.2)

Next, let’s consider the relationship of the price you would give to each of two disjoint
sets A and B to the price you would give to the event that at least one of them happens,
which is called the union of the events A and B, and is written A ∪ B. To be specific, let
A be the event A1 above, and B be the event A2 above. These events are disjoint, that is,
they cannot both occur, because it is impossible that the high temperature for the day is
both above and below 68 degrees Fahrenheit. The union of A and B in this case is the event
that it rains tomorrow.

Suppose, to be specific, that your prices are $0.20 for A1, $0.25 for A2 and $0.40 for the
union of A1 and A2. Then I can sell you a ticket on A1 for $0.20, and a ticket on A2 for
$0.25, and buy from you a ticket on the union for $0.40. Let’s see what happens. Suppose
first that it does not rain. Then none of the tickets have to be settled by payment. But you
gave me $0.20 + $0.25 = $0.45 for the two tickets you bought, and I gave you $0.40 for
the ticket I bought, so I come out $0.05 ahead. Now suppose that it does rain. Then one of
A1 and A2 occurs (but only one. Remember that they are disjoint). So I have to pay you
$1. But the union also occurred, so you have to pay me $1 as well. In addition I still have
the $0.05 that I gained from the sale and purchase of the tickets to begin with. So in every
case, I come out ahead by $0.05, and you are a sure loser. The problem seems to be that
you named too low a price for the ticket on the union. Indeed, any price less than $0.45
leads to sure loss, as the following argument shows.

To see the general case, suppose Pr{A1}+ Pr{A2} > Pr{A1 ∪A2}. Suppose I sell you
tickets on A1 and A2, and buy from you a ticket on A1∪A2. These purchases and sales cost
you Pr{A1} + Pr{A2} − Pr{A1 ∪ A2} > 0. There are then only three possible outcomes
(remembering that A1 and A2 are disjoint, so they cannot both occur). These are listed in
Table 1.1.

Therefore the settlement of the tickets leads to a net of zero in each case. Thus, whatever
outcome occurs, you lost Pr{A1} + Pr{A2} − Pr{A1 ∪ A2} > 0 from buying and selling
tickets, and earned nothing from settling tickets after learning the outcome. Hence, all told,
you lost Pr{A1}+Pr{A2}−Pr{A1∪A2}. In the example above, Pr{A1} = $0.20, P r{A2} =
$0.25 and Pr{A1 ∪ A2} = $0.40, so your sure loss is Pr{A1} + Pr{A2} − Pr{A1 ∪ A2} =
$0.20 + $0.25− $0.40 = $0.05.

So suppose you decide to raise your price for the ticket on the union, say to $0.60. Now
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Ticket Net
Outcome A1 A2 A1 ∪A2

A1 but not A2 -1 0 1 0
A2 but not A1 0 -1 1 0
neither A1 nor A2 0 0 0 0

Table 1.2: Your gain from each possible outcome, after buying a ticket on A1 ∪ A2 and
selling tickets on A1 and A2.

suppose I decide to sell you the ticket on the union at your new price, and to buy from you
tickets on A1 and A2 at the prices you offer, $0.20 and $0.25. Now if it does not rain, again
no tickets pay off, but you gave me $0.60 and I spent $0.20 + $0.25 = $0.45, so I am $0.15
ahead. And if it does rain, again one and only one of A1 and A2 pays off, but so does the
union, so again we exchange $1 to settle the tickets, and I am ahead by $0.15. Once again,
you are a sure loser. Here the problem is that you increased the price of the union by too
much. The same argument shows that any price greater than $0.45 leads to sure loss, as
the following argument shows.

Now we consider the general case in which Pr{A1 ∪ A2} > Pr{A1} + Pr{A2}. Now I
do the opposite of what I did before: I buy from you tickets on A1 and A2, and sell you
a ticket on A1 ∪ A2. From these transactions, you are down Pr{A1 ∪ A2} − Pr{A1} −
Pr{A2} > 0. Again, one of the same three events must occur, with the consequences shown
in Table 1.2. Again, settling the tickets yields no gain or loss for either of us, so your sure loss
is Pr{A1∪A2}−Pr{A1}−Pr{A2} > 0. In the example, Pr{A1} = $0.20, P r{A2} = $0.25
and Pr{A1 ∪ A2} = $0.60. Then your sure loss is Pr{A1 ∪ A2} − Pr{A1} − Pr{A2} =
$0.60−$0.20−$0.25 = $0.15. The entries in Table 1.2 are the negative of those in Table 1.1,
because my purchases and sales if Pr{A1 ∪ A2} > Pr{A1} + Pr{A2} are the opposite of
my purchases and sales if Pr{A1} + Pr{A2} > Pr{A1 ∪ A2}. Hence if your price for the
ticket on the union of the two events is too low or too high, you can be made a sure loser. I
hope I have persuaded you that the only way to avoid being a sure loser is for your prices
to satisfy

Pr{A ∪B} = Pr{A}+ Pr{B}, (1.3)

when A and B are disjoint.

So far, what I have shown is that unless your prices satisfy (1.1), (1.2) and (1.3), you can
be made a sure loser. You will likely be relieved to know that those are the only tricks that
can be played on you, that is, that if your prices satisfy equations (1.1), (1.2) and (1.3), you
cannot be made a sure loser. To show that will require some more work, which comes later
in this chapter. Prices satisfying these equations are said to be coherent. The derivations of
equations (1.1), (1.2) and (1.3) are constructive, in the sense that I reveal exactly which of
your offers I accept to make you a sure loser. Also the beliefs of the opponent are irrelevant
to making you a sure loser.

Equations (1.1), (1.2) and (1.3) are the equations that define Pr{·} to be a probability
(with the possible strengthening of Equation (1.3) to be taken up in Chapter 3). To empha-
size that, we will now assume that you have decided not to be a sure loser, and hence to
have your prices satisfy equations (1.1), (1.2) and (1.3). I will write P{·} instead of Pr{·},
and think of P{A} as your probability of event A.

Although the approach here is called subjective, there are both subjective and objective
aspects of it. It is an objective fact, that is, a theorem, that you cannot be made a sure
loser if and only if your prices satisfy equations (1.1), (1.2) and (1.3). However, the prices
that you assign to tickets on any given set of events are personal, or subjective, in that
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the theorems do not specify those values. Different people can have different probabilities
without violating coherence.

To see why this is natural, consider the following example: Imagine I have a coin that we
both regard as fair, that is, it has probability 1/2 of coming up heads. I flip it, but I don’t
look at it, nor do I show it to you. Reasonably, our probabilities are still 1/2 of a head.
Now I look at it, and observe a head, but I don’t show it to you. My probability is now 1.
Perhaps yours is still 1/2. But perhaps you saw that I raised my left eyebrow when I looked
at the coin, and you think I would be more likely to do so if the coin came up heads than
tails, and so your probability is now 60%. I now show you the coin, and your probability
now rises to 1. The point of this thought-experiment is that probability is a function not
only of the coin, but also of the information available to the person whose probability it is.
Thus subjectivity occurs, even in the single flip of a fair coin, because each person can have
different information and beliefs.

1.1.1 Interpretation

What does it mean to give a price PrM{B}, this morning on an event B, and this afternoon
give a different price, PrA{B} for it? Let us suppose that no new information has become
available and that inflation of the currency is not an issue. Perhaps you thought about it
harder, perhaps you just changed your mind. If this morning you could anticipate whether
your price will increase or decrease, then you have opened yourself to a kind of dynamic
sure loss. If PrM{B} > PrA{B}, then you would be willing to buy a ticket on B this
morning for PrM{B}, and anticipate selling it back this afternoon for PrA{B}, leading to
loss PrM{B} − PrA{B} > 0. Conversely, if PrM{B} < PrA{B}, you would be willing to
sell a ticket on B in the morning for PrM{B} and buy it back this afternoon for PrA{B},
leading to loss PrA{B} − PrM{B} > 0. Thus to avoid dynamic sure loss, your statement
that your price in the morning is PrM{B} is a statement that (absent new information, a
complication dealt with in Chapter 2), you anticipate that your probability this afternoon
will also be PrM{B}.

A different issue arises in the statement, after an event, of probabilities a person would
have given, if asked, before the event. In retrospect, it is easy to exaggerate your probability
of what actually occurred. This bias, called hindsight bias (see Fischhoff (1982)), makes
whatever happens more likely in retrospect than it was in prospect.

1.1.2 Notes and other views

“We do not see things as they are, we see them as we are.”
—(Nin, 1961, p. 124)∗

“It is generally accepted that...an application of the axioms of probability is inappropriate to
questions of truth and belief.”

—(Grimmett and Stirzaker, 2001, p. 18)

I think of probability as a language to express uncertainty, and the laws of probability
((1.1), (1.2) and (1.3)) as the grammar of that language. In ordinary English, if you write a
sentence fragment without a verb, I am not sure what you mean. Similarly, if your prices are
such that you can be made a sure loser, you have contradicted yourself in a sense, and I do
not know which of your bets you really mean, and which you would change when confronted
with the consequences of your folly. Just as following the rules of English grammar does
not restrict the content of your sentences, so too the laws of probability do not restrict

∗See Crane and Kadane (2008) for justification of this citation.



6 PROBABILITY

the beliefs you express using them. For additional material on subjective probability, see
DeFinetti (1974), Kyburg and Smokler (1964), Press and Tanur (2001), Savage (1954), and
Wright and Ayton (1994).

Coherence is a minimal set of requirements on probabilistic opinions. The most extraor-
dinary nonsense can be expressed coherently, such as that the moon is made of green cheese,
or that the world will end tomorrow (or ended yesterday). All that coherence does is to en-
sure a certain kind of consistency among opinions. Thus an author using probabilities to
express uncertainty must accept the burden of explaining to potential readers the consider-
ations and reasons leading to the particular choices made. The extent to which the author’s
conclusions are heeded is likely to depend on the persuasiveness of these arguments, and on
the robustness of the conclusions to departures from the assumptions made.

The philosopher Nelson Goodman (1965) has introduced two new colors, “grue” and
“bleen.” An object is grue if it is green and the date is before Jan. 1, 2100. A grue object
is blue after that date. A bleen object simply reverses the colors. Thus empirically all our
current data would equally identify objects as grue and green on the one hand, and as bleen
and blue on the other. It is our beliefs about the world, and not our data, that lead us to the
conclusion that even after Jan. 1, 2100 leaves will be green and the sky blue, not conversely.
This thought experiment illustrates just how firmly embedded are our preconceived notions,
and how complex, and fraught with possibilities of differing interpretations are our thought
processes.

There is a substantial body of psychological research dedicated to finding systematic
ways in which the prices that people actually offer for tickets or the equivalent fail to be
coherent. See Kahneman et al. (1982) and von Winterfeld and Edwards (1986). Since the
techniques of this section show how to make them sure losers, if you can find such people,
please share a suitable portion of your gains with an appropriate local charity.

There is a special issue about whether personal probabilities can be zero or one. The
implication is that you would bet your entire fortune present and future against a penny on
the outcome, which is surely extreme. In the example in section 1.1.1, I propose that when
I see that the coin came up heads, my probability is one that it is a head. Could I have
misperceived? For the sake of the argument I am willing to set that possibility aside, but I
must concede that sometimes I do misperceive, so I can’t really mean probability one.

The subjective view of probability taken in this section is not the only one possible.
There is another view, which purports to be “objective.” Generally, proponents of this view
say that the probability of an event is the limiting relative frequency with which it appears
in an infinite sequence of independent trials. See Feller (1957, p. 5). There are, however,
several difficulties with this perspective. I postpone discussion of them until section 2.13
as part of the discussion of the weak law of large numbers. It is very much to be wished
that we could find a basis for a valid claim of objectivity, but so far, each such claim has
failed. Subjectivity at least acknowledges that people often disagree and does not allow one
to claim that his view has a higher claim on truth than another’s, without being persuasive
as to why.

A second line of argument seeks help from information theory (and in particular entropy)
to define and use ideas of ignorance, non-informativeness, reference, etc. Roughly, the idea
is that these formulas express what people “ought” to think, and hence how they “ought” to
bet. Proponents of this line include Jeffreys (1939), Jaynes (2003), Zellner (1971), Bernardo
(1979) and Bayarri and Berger (2004). Unfortunately, this literature does not explain why
a person ought to have such opinions and ought to bet accordingly. Some of the difficulties
inherent in this approach are considered in Seidenfeld (1979, 1987).

The motivation for both of these attempts to find an “objective” basis for inference seems
to be that science in general and statistics in specific would lose credibility and face by giving
up a claim of objectivity. If I thought that such a claim could be sustained, I would be in
favor of making it. However, anyone familiar with science and other empirical disciplines
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knows that disagreement is an essential part of scientific discourse, in particular about the
matters of current scientific interest. Having a language that recognizes the legitimacy of
differing points of view seems essential to helping to advance those discussions. (See Berger
and Berry (1988).)

Another treatment of the subject states (1.1), (1.2) and (1.3) (or a countably additive
version of (1.3) to be discussed later) as mathematical axioms. See for instance Billingsley
(1995). As axioms, they are not to be challenged. However the relationship between those (or
any other set of axioms) and the real world is left totally unexplored. This is unsatisfactory
when the point is to explain how to deal with a real phenomenon, namely uncertainty. Thus
I prefer the treatment given here, which has an explanation of why these are reasonable
axioms to explore.

The approach used in this book is sometimes referred to as behavioristic. One limitation
of this approach is that you may already have a “position” in the variable in question. For
example, if you are an international expert on the ozone hole over Antarctica, you may be
subject to one of two influences. If your elicited probability is to be published, you may
be inclined to “view with alarm,” as you have a personal and financial incentive to do so
as your personal services and research efforts would be more valuable if public concern
on this issue were increased. On the other hand, if the uses of the elicitation were only
private, you might want to use the availability of “tickets” to purchase “insurance” against
the possibility that ozone holes are found to be unimportant. For more on biases of these
kinds, see Kadane and Winkler (1988). There are markets in which we all, perforce, have
a position. What does it mean, for example, to hold a ticket that pays $1 if a nuclear war
occurs? (See Press (1985).) There are other limitations to the set of events to which one
might want to apply this theory. I believe that the limitation to bets that can be settled is,
while plausible, too stringent. For example, it makes sense to me to speak of opinions about
the uses that were made of a particular spot in an archaeological site, despite the fact that
a bet on the matter could never be settled. (See Kadane and Hastorf (1988).) Even with
these limitations, however, I believe the approach explored here offers a better explanation
of probability than its current alternatives.

DeFinetti (1974) is the proponent of the approach taken here. However, he is also (1981)
one of its most important critics. The heart of his criticism is that you, in naming your
prices, may try to guess what probabilities I may have, and game the system. Thus the act of
eliciting your probabilities may change them (shades of Heisenberg’s uncertainty principle!).
DeFinetti suggests instead the use of proper scoring rules, and explores in DeFinetti (1974)
the use of Brier (1950)’s squared-error scoring rule. This was not completely satisfactory
either, as he did not address the question of whether different subjective probabilities would
be the consequence of different proper scoring rules. Lindley (1982) uses scoring rules to
justify the use of personal probability. Following suggestions in Savage (1971), recent work
of Predd et al. (2009) and Schervish et al. (2009) relaxes the assumption that the proper
scoring rule must be Brier’s, and opens the possibility of basing subjective probability on
proper scoring rules. However, scoring rules have their own difficulties, as they assume that
the decision maker is motivated solely by the scoring rules. By contrast, the “avoid sure
loss” approach used here assumes only that the decision-maker prefers $1 to $0.

Yet another approach to probability is through the assumptions of Cox (1946, 1961). For
commentary, see Halperin (1999a,b) and Jaynes (2003). Cox’s approach is not operational,
that is, it does not lead to a specification of probabilities of particular events, unlike the
approach suggested here.

There are authors who accept the idea of the price of lottery tickets as a way of learning
how you feel about how likely various events are, but point out that you might feel un-
comfortable having the same price for both buying and selling a ticket. This leads to what
is now called the field of imprecise probabilities (for example Walley (1990)). This book
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concentrates on the simpler theory, supposing that your buying and selling prices are the
same for all tickets. An excellent general introduction to uncertainty is Lindley (2006).

1.1.3 Summary

Avoiding being a sure loser requires that your prices adhere to the following equations:

(1.1) Pr{A} ≥ 0 for all events A

(1.2) Pr{S} = 1, where S is the sure event

(1.3) If A and B are disjoint events, then Pr{A ∪B} = Pr{A}+ Pr{B}.
If your prices satisfy these equations, then they are coherent.

1.1.4 Exercises

1. Vocabulary. Explain in your own words the following:

(a) event

(b) sure event

(c) disjoint events

(d) exhaustive events

(e) the union of two events

(f) sure loser

(g) coherent

(h) probability

2. Consider the events A1, A2, A3 and A4 defined in the beginning of section 1.1.1 and as
applied to your current geographic area for tomorrow. What prices would you give for
the tickets? Explain your reasoning why you would give those prices. Are your prices
coherent? Prove your answer. If your prices are not coherent, would you change them to
satisfy the equations? Why or why not?

3. (a) Suppose that someone offers to buy or sell tickets on the events A1 at price $0.30,
on A2 at price $0.20, and on the event of rain at price $0.60. What purchases and
sales would you make to ensure a gain for yourself? Show that a sure gain results
from your choices. How much can you be sure to gain?

(b) Answer the same questions if the price on the event of rain is changed from $0.60
to $0.40.

4. Think of something you are uncertain about. Define the events that matter to you about
it. Are the events you define disjoint? Are they exhaustive? Give your prices for tickets
on each of those events. Are your prices coherent? (Show that they are, or are not.)
Revise your prices until you are satisfied with them, and explain why you chose to be a
sure loser, or chose not to be.

5. Suppose that someone offers to buy or sell tickets at the following prices:

If the home team wins the soccer (football, outside the U.S. and Canada) match:
$0.75

If the away team wins: $0.20

A tie: $0.10

What purchases and sales would you make to ensure a sure gain for yourself? Show that
a sure gain results from your choices. How much can you be sure to gain if you buy or
sell no more than four tickets?
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1.2 Consequences of the axioms of probability: disjoint events

We now explore some consequences of coherence. Each of these takes the form of showing
that if you know certain probabilities (i.e., the price of certain tickets) and do not want to
be a sure loser, then you are committed to the price of certain other tickets.

To start, we define the complement of an event A, which we write Ā and pronounce “not
A,” to be the event that A does not happen. By construction, A and Ā are disjoint, that
is; they can’t both happen. Hence by equation (1.3),

P{A ∪ Ā} = P{A}+ P{Ā}. (1.4)

Now again by construction, either A or Ā must happen: they are exhaustive. Another way
of saying this is

A ∪ Ā = S. (1.5)

Therefore, by equation (1.3),
P{A ∪ Ā} = P{S} = 1. (1.6)

Now from equations (1.4) and (1.6), it follows that

P{Ā} = 1− P{A} (1.7)

for every event A. Equation (1.7) should not come as a surprise. All it says is that whatever
you are willing to buy or sell a ticket on A, to avoid sure loss you must be willing to buy or
sell a ticket on Ā for $1 minus what you would be willing to pay for A.

There is a special case of (1.7) that will be useful later. The complement of S is the
empty event, which is written often with the Greek letter φ (pronounced “fee” in the U.S.,
and “fie” in the U.K.), although its origin is the Norwegian letter O (Weil, 1992, p. 114).
It never occurs, because S always occurs. Using equation (1.3), it follows from (1.7) that

P{φ} = 1− P{S} = 1− 1 = 0. (1.8)

Thus you could buy or sell a ticket on φ for nothing (i.e., give it away or accept it for free),
and be sure of not being a sure loser.

Another consequence of equation (1.7) and equation (1.1) is that, for every event A,

P{A} = 1− P{Ā} ≤ 1. (1.9)

Now suppose there are three disjoint events, like the events A1, A2 and A3 in section
1.1. For three sets to be disjoint means that if one occurs, none of the others can. Does the
principle of avoiding sure loss commit you to a particular price for the union of those three
events, if you have already declared a price for each one separately? Equation (1.3), which
applies to the case of two disjoint sets, seems like the logical place to start in addressing
this issue.

I can think of the union of the three disjoint events as the union of the union of disjoint
events as follows:

A1 ∪A2 ∪A3 = (A1 ∪A2) ∪A3. (1.10)

Equation (1.10) means that first we consider the union of A1 with A2, and then we union
that event with A3. Now because A1 and A2 are disjoint (they can’t both happen), equation
(1.3) applies and says that

P{A1 ∪A2} = P{A1}+ P{A2}. (1.11)

In order to apply equation (1.3) again, it is necessary to examine whether A3 is disjoint
from (A1 ∪ A2). But if event A3 occurs, then neither A1 nor A2 can occur, and therefore
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(A1 ∪ A2) cannot occur. Thus A3 is indeed disjoint from (A1 ∪ A2). Therefore, equation
(1.3) can be invoked again, yielding

P{A1 ∪A2 ∪A3} = P{(A1 ∪A2) ∪A3} = P{A1 ∪A2}+ P{A3}
= P{A1}+ P{A2}+ P{A3}. (1.12)

So now we know from equation (1.3) that the probability of the union of two disjoint events
is the sum of their probabilities, and from equation (1.12) that the probability of the union
of three disjoint events is the sum of their probabilities. This suggests that perhaps the
union of any finite number of disjoint events should be the sum of their probabilities as
well.

To see how this might work, let’s review how we come to know equations (1.3) and
(1.12). Equation (1.3) is an assumption, or axiom, derived from a desire not to be a sure
loser. Equation (1.12), however, was shown above to be a consequence of equation (1.3).
Thus, we have assumed that the probability of the union of n = 2 disjoint events is the sum
of their probabilities, and shown that if the statement is true for n = 2 disjoint events, it is
also true for n = 3 disjoint events. Suppose we could show in general that if the statement
is true for n disjoint events, then it will be true for n+ 1 disjoint events as well. This would
be very convenient. If we wanted the result for, say 21 disjoint events, we have it for n = 2,
we apply the result to conclude that it is true for n = 3 disjoint events, then for n = 4, etc.
until we get to 21. An argument of this kind is called mathematical induction and is a nice
way of proving results for all finite integers.

To apply mathematical induction to this problem, there are just two steps. The first,
the basis step, is to establish the result for some small n, here n = 2, shown by equation
(1.3). Second, in the inductive step, suppose we know that the probability of the union of
n disjoint events is the sum of their probabilities, and we want to prove it for n+ 1 events.
Let A1, A2, . . . , An+1 be the n + 1 disjoint events in question. Then, generalizing equation
(1.10), I can write the union of all n+ 1 events as follows:

A1 ∪A2 ∪ . . . An+1 = (A1 ∪A2 ∪ . . . An) ∪An+1. (1.13)

Now the union in parentheses is the union of n disjoint events, so by the assumption I
am allowed to make in mathematical induction, the probability of their union is the sum
of their probabilities, which generalizes equation (1.11). Furthermore, the event An+1 is
disjoint from that union, because if An+1 occurs, then none of the other A’s can occur. This
puts all the pieces in place to generalize equation (1.11):

P{A1 ∪A2 ∪ . . . ∪An+1} = P{(A1 ∪A2 ∪ . . . ∪An) ∪An+1}
= P{A1 ∪A2 ∪ . . . ∪An}+ P{An+1}

= P{A1}+ P{A2}+ . . .+ P{An+1}, (1.14)

which is the statement for n + 1. [Check to make sure you can justify each of the equality
signs in equation (1.14).] Hence we know that for all finite numbers of disjoint sets, the
probability of the union is the sum of the probabilities.

1.2.1 Summary

If A is an event, and Ā its complement, P{Ā} = 1−P{A}. In particular, P{φ} = 0, where
φ is the empty event. Also P{A} ≤ 1 for all events A.

If A1, . . . , An are disjoint events, then the probability of their union is the sum of their
probabilities.
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1.2.2 A supplement on induction

Suppose S(n) is some statement that depends on an integer n. If S(n) can be proved for
some (usually small) integer n0, and if it can be shown that S(n) implies S(n+ 1) for all n
greater than or equal to n0, then S(n) is proved for all integers greater than n0. You can
think of induction working the way an algorithm would: you start it at S(n0), which is true.
Then S(n0) implies S(n0 + 1), which in turn implies S(n0 + 2), etc.

Take as an example the sum of the first n integers. There are at least three different
ways to think about this sum. The first is algebraic: Let T be the sum. Then T can be
written as T = 1 + 2 + 3 + . . .+n. However it can also be written as T = n+ . . .+ 3 + 2 + 1.
Add up these two expressions for T by adding the first terms, the second terms, etc. Each
pair adds up to n+ 1, and there are n such pairs. Hence 2T = n(n+ 1), or T = n(n+ 1)/2.

A second way to think about T is to imagine a discrete (n + 1) by (n + 1) square like
a chess board. Consider the number of points in the square below the diagonal. There are
none in the first row, one in the second row, two in the third, .., up to n in the last row, so
the number below the diagonal is T . There are equally many above the diagonal, and the
diagonal itself has (n + 1) elements. Since the square has a total of (n + 1)2 elements, we
have (n+ 1)2 = 2T + (n+ 1), from which we conclude that T = n(n+ 1)/2.

The third way to think about T is by induction. The statement to be proved is S(n);
the sum T (n) of the first n integers is n(n+1)/2. When n = 1, we have T (1) = 1×2/2 = 1,
so the statement is true for n = 1, and we may take n0 to be 1. Now suppose that S(n)
is true, and let’s examine S(n + 1). We have T (n + 1) = 1 + 2 + 3 + . . . + n + (n + 1) =
n(n+ 1)/2 + (n+ 1) = (n+ 1)(n/2 + 1) = (n+ 1)(n+ 2)/2, which is S(n+ 1). Therefore we
have proved the second step of the induction, and have shown that the sum of the first n
integers is n(n + 1)/2 for all integers n bigger than or equal to 1. Mathematical induction
requires that you already think you know the solution. It is not so useful for finding the
right formula in the first place. However often some experimentation and a good guess can
help you find a formula which you can then try to prove by induction.

Given how immediate and appealing the first two proofs are, it may seem heavy-handed
to apply mathematical induction to this problem. However, I think you will find that the
following problems are better solved by induction than by trying to find analogues to the
first two proofs:

1. Show that the sum of the first n squares (i.e., 1 + 4 + 9 + . . .+n2) is n(n+ 1)(2n+ 1)/6.

2. Show that the sum of the first n cubes (i.e., 1 + 8 + 27 + . . .+ n3) is [n(n+ 1)/2]2.

You can find an excellent further explanation of mathematical induction in Courant and
Robbins (1958).

I anticipate that most readers of this book will be familiar with at least one proof of the
fact that T = n(n+ 1)/2. There are two reasons for discussing it here. The first is to give a
simple example of induction. The second is to show that the same mathematical fact may
be approached from different directions. All three are valid proofs, and each seems intuitive
to different people, depending on their mental proclivities.

1.2.3 A supplement on indexed mathematical expressions

It will become awkward, and at times ambiguous, to continue to use “. . .” to indicate the
continuation of a mathematical process.

For example, consider the expression

T = 1 + 2 + 3 + . . .+ n.
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This can also be written

T =

n∑
i=1

i.

Here Σ (capital sigma, a Greek letter) is the symbol for sum. “i” is an index. “i = 1”
indicates that the index i is to start at 1, and proceed by integers to n. Sometimes, to avoid
ambiguity, the symbol above the sigma is written “i = n”. The i after the sigma indicates
what is to be added.

It is important to understand that T does not depend on i, although it does depend on
n. Thus,

T =

n∑
i=1

i =

n∑
j=1

j.

Indexed notation can be used flexibly. For example, the sum of the first n squares is

1 + 4 + 9 + . . .+ n2 =
n∑
i=1

i2.

Other functions can also be used in place of addition. For example, ∪ is the symbol for the
union of sets and

∏
is used for the product of numbers. Thus the result proved by induction

using equations (1.13) and (1.14) above can be written as follows:
If A1, A2, . . . , An are disjoint sets, then

P{∪ni=1Ai} = P{A1 ∪A2 ∪ . . . ∪An} =

P{A1}+ P{A2}+ . . .+ P{An} =

n∑
i=1

P{Ai}.

Also there is special notation for the product of the first n integers:

n∏
i=1

i = (1)(2)(3) . . . (n) = n!

(pronounced n-factorial). Factorials are used extensively in this book.

1.2.4 Intersections of events

If A and B are two events, then the intersection of A and B, written AB, is the event that
both A and B happen. For example, if A and B are disjoint (remember that means that
they can’t both happen), then AB = φ. If you flip two coins, and A is the event that the
first coin comes up heads, and B is the event that the second coin comes up heads, then A
and B are not disjoint, and AB is the event that both coins come up heads. You can think
of “intersection” as corresponding to “and” in the same way that “union” corresponds to
“or.”

The symbol
∏

is used for the intersection of several events. Thus
∏n
i=1Ai means the

event that A1, A2, . . . , An all occur. Thus
∏

is used both for events and for arithmetic
expressions. This double use should not cause you trouble – just look to see whether what
comes after

∏
is events or numbers.

Note that
∑n
i=1Ai, where A1, . . . , An are sets, is not defined.

1.2.5 Summary

The probability of the union of any finite number of disjoint events is the sum of their
probabilities.
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1.2.6 Exercises

1. Vocabulary. Explain in your own words:

(a) complement of an event

(b) empty event

(c) several disjoint events

(d) the union of several events

(e) mathematical induction

2. Consider two flips of a coin, and suppose that the following outcomes are equally likely
to you: H1H2, H1T2, T1H2 and T1T2, where Hi indicates Heads on flip i and similarly
for Ti.

(a) Compute your probability of at least one head.

(b) Compute your probability of a match, (i.e., both heads or both tails).

(c) Compute your probability of the simultaneous occurrence of at least one head and
a match.

3. Consider a single roll of a die, and suppose that you believe that each of the six sides
has the same probability of coming up.

(a) Find your probability that the roll results in a 3 or higher.

(b) Find your probability that the roll results in an odd number.

(c) Find your probability that the roll results in a prime number (i.e., one that can’t be
expressed as the product of two integers larger than one).

4. (a) Find the sum of the first k even positive integers, as a direct consequence of the
formula for the sum of the first k positive integers.

(b) From the sum of the first 2k integers, find by subtraction the sum of the first k odd
numbers.

(c) Prove the result of (b) directly by induction.

1.3 Consequences of the axioms, continued: Events not necessarily disjoint

Think of two events A and B that are not necessarily disjoint. The union of A and B, which
is the event that either A happens or B happens or both happen, can be thought of as the
union of three events: A happens and B does not, B happens and A does not, and both A
and B happen. In symbols, this is

A ∪B = AB̄ ∪BĀ ∪AB. (1.15)

Furthermore, the events AB̄, BĀ and AB are disjoint. Therefore applying equation (1.12),
we have

P{A ∪B} = P{AB̄}+ P{BĀ}+ P{AB}. (1.16)

Now it is also true that A = AB̄ ∪AB. Also the events AB̄ and AB are disjoint. Therefore
using equation (1.3),

P{A} = P{AB̄}+ P{AB}. (1.17)

Similarly, B = BĀ ∪AB, and these sets are disjoint as well. Hence

P{B} = P{BĀ}+ P{AB}. (1.18)

Substituting (1.17) and (1.18) into (1.16) yields the result that

P{A ∪B} = (P{A} − P{AB}) + (P{B} − P{AB}) + P{AB}
= P{A}+ P{B} − P{AB}. (1.19)
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In the special case in which A and B are disjoint, AB = φ, P{AB} = 0, and (1.19) reduces
to (1.3). However, it is quite remarkable that a formula such as (1.3) giving the probability
of the union of disjoint sets, implies formula (1.19) specifying the probability of the union
of sets without assuming that they are disjoint.

Often it is useful to display geometrically the sets A and B and their subsets. This is
done using a picture known as a Venn Diagram, shown below in Figure 1.1. Here the event
A is represented by the circle on the left, event B by the circle on the right, the event AB
by the shaded area, AB̄ by the 3/4 moon-shaped area to the left of the shaded area AB,
and BĀ similarly by the 3/4 moon-shaped area to the right of AB.

Figure 1.1: A Venn Diagram for two sets A and B.

There is one other implication of the equations above worth noting in passing. Suppose
event A cannot occur without event B also occurring. In this case, event B is said to contain
event A. This is written A ⊆ B. If this is true, AB = A. Then equation (1.18) implies

P{B} = P{BĀ}+ P{A} ≥ P{A}, (1.20)

since P{BĀ} ≥ 0, using (1.1).

1.3.1 A supplement on proofs of set inclusion

Our purpose is to show how to prove facts about whether one set is included in another.
Our target is the equality

A ∪B = ĀB̄. (1.21)

In words, this equation says that the elements of A ∪B are exactly the elements of ĀB̄.
An equality between two such sets is equivalent to two set inclusions:

A ∪B ⊆ ĀB̄ (1.22)

and

ĀB̄ ⊆ A ∪B. (1.23)

Equation (1.22) says that every element of A ∪B is an element of ĀB̄, while (1.23) says
that every element of ĀB̄ is an element of A ∪B.

To show (1.22), suppose that x ∈ A ∪B. Then x /∈ A ∪B. The notation “/∈” means “is
not an element of.” Then x /∈ A and x /∈ B, so x ∈ Ā and x ∈ B̄, so x ∈ ĀB̄. Therefore
A ∪B ⊆ ĀB̄, proving (1.22).

To show (1.23), suppose that x ∈ ĀB̄. Then x ∈ Ā and x ∈ B̄. Therefore x /∈ A and
x /∈ B. Therefore x /∈ A ∪B. And so x ∈ A ∪B. Therefore ĀB̄ ⊆ A ∪B, proving (1.23).
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Proving (1.22) and (1.23) proves (1.21), since

A ∪B = ĀB̄.

The equality (1.21) is known as DeMorgan’s Theorem.

1.3.2 Boole’s Inequality

The proof of Boole’s Inequality uses (1.19). This inequality is used later in this book. The
events in Theorem 1.3.1 need not be disjoint.

Theorem 1.3.1. (Boole’s Inequality) Let A1, A2, . . . , An be events. Then

P{
n∏
i=1

Ai} ≥ 1−
n∑
i=1

P{Āi}.

Proof. By induction on n. When n = 1, (1.7) gives the result.
For n = 2,

P{A1A2} = P{A1}+ P{A2} − P{A1 ∪A2}
(uses (1.19))

= 1− (1− P{A1})− (1− P{A2}) + (1− P{A1 ∪A2})
(just algebra)

= 1− P{A1} − P{A2}+ P{A1 ∪A2}
(uses (1.7))

≥ 1− P{A1} − P{A2}
(uses (1.1))

which is the result for n = 2.
Now suppose the result is true for n− 1, where n ≥ 3. Then,

P{
n∏
i=1

Ai} = P{A1

n∏
i=2

Ai}

≥ 1− P{Ā1} − P{
n∏
i=2

Ai}

(uses result at n=2)

= 1− P{A1} − 1 + P{
n∏
i=2

Ai}

(uses (1.7))

≥ 1− P{A1} − 1 + 1−
n∑
i=2

P{Ai}

(uses inductive hypothesis at n-1)

= 1−
n∑
i=1

P{Ai},

which is the statement at n. This completes the proof.
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1.3.3 Summary

The probability of the union of two sets is the sum of their probabilities minus the probability
of their intersection. Boole’s Inequality is also proved.

1.3.4 Exercises

1. Vocabulary. State in your words the meaning of:

(a) the intersection of two events

(b) Venn Diagram

(c) subset

(d) element

(e) DeMorgan’s Theorem

(f) Boole’s Inequality

2. Show that if A and B are any events, AB = BA.

3. Show that, if A, B and C are any events, A(BC) = (AB)C.

4. Show that, if A, B and C are any events, that A(B ∪ C) = AB ∪AC.

5. Reconsider the situation of problem 2 in section 1.2.6: Two flips of a coin, and the
following outcomes are equally likely to you: H1H2, H1T2, T1H2 and T1T2 where Hi

indicates heads on flip i and similarly for Ti.

(a) Find the probability that one or both of the following occur: at least one head and
a match. Interpret the result.

(b) Find the probability that exactly one of at least one head and a match occurs.

6. Consider again the weather example of section 1.1, in which there are four events:
A1: Rain and High above 68 degrees F tomorrow.
A2: Rain and High at or below 68 degrees F tomorrow.
A3: No Rain and High above 68 degrees F tomorrow.
A4: No Rain and High at or below 68 degrees F tomorrow.

Suppose that your probabilities for these events are as follows:

P (A1) = 0.1 , P (A2) = 0.2 , P (A3) = 0.3 , P (A4) = 0.4.

(a) Check that these probability assignments are coherent.

(b) Check Boole’s inequality for these events.

1.4 Random variables, also known as uncertain quantities

The real numbers, that is, numbers like 3,−3.1,
√

2, π, etc., are remarkably useful. A random
variable scores the outcome of an event in terms of real numbers. For example, the outcome
of a single flip of a coin is an event and can be recorded as H for heads, and T for tails.
Since H and T are not real numbers, this scoring is not a random variable. However, instead
one could write 1 for a tail and 0 for a head, or 1 for a head and -1 for a tail. Both of these
are random variables, since 1, 0, and -1 are real numbers.

One advantage of scoring using random variables is that all of the usual mathematics of
real numbers applies to them. For example, consider n flips of a coin, and let Xi = 1 if the
ith flip is a tail, and let Xi = 0 if the ith flip is a head, for i = 1, . . . , n. Then

∑n
i=1Xi is a

new random variable, taking values 0, 1, . . . , n, and is the number of tails that occur in the
n flips.

A random variable can be a convenient quantity to express your opinions about in
probabilistic terms. For example, if X = 1 if a coin flip comes up tails and X = −1 if a coin
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flip comes up heads, then P{X = 1} is, in the framework of this book, the worth to you
of a ticket that pays $1 if X = 1 occurs (if the coin flip comes up tails). To be coherent,
then 1 − P{X = 1} is the worth to you of a ticket that pays $1 if X = −1 occurs (if the
coin flip comes up heads). The probabilities you give to a random variable comprise your
distribution of the random variable.

Random variables that take only the values zero and one have a special name, indicators.
Thus the indicator for an event A, which is written IA, is a random variable that takes the
value 1 if A occurs, and 0 otherwise. Consider the roll of a fair die, having faces 1, 2, 3, 4,
5 and 6. Suppose A is the set of even outcomes, that is, A = {2, 4, 6}. Then IA{3} = 0,
but IA{4} = 1. Indicators turn out to be very useful. Several examples of solving problems
using indicators are given later.

1.4.1 Summary

A random variable scores the outcome of a random event in terms of real numbers. An
indicator is a random variable taking only the values 0 and 1.

1.4.2 Exercises

1. Vocabulary. Explain in your own words:

(a) random variable

(b) indicator

(c) distribution of a random variable

2. What is the indicator of

(a) φ

(b) S

3. Suppose A and B are events, with indicators respectively IA and IB . Find expressions
in terms of IA and IB for

(a) IAB
(b) IA∪B
(c) IA∪B

4. Prove ∪ni=1Ai =
∏n
i=1Ai using the methods of set inclusion.

5. Prove the result of exercise 4 by induction on n.

1.5 Expectation for a random variable taking a finite number of values

Suppose that Z is a random variable that takes at most a finite number of values. This is a
major constraint on the random variables considered, to be relaxed starting in Chapter 3.
Under the assumption that Z takes only finitely many values, there is a sequence of real
numbers zi and an associated sequence of probabilities pi so that

P{Z = zi} = pi, i = 1, . . . , n

and
∑n
i=1 pi = 1. We want a number that will, in some sense, represent a summary of Z.

While many such summaries are possible (and used), the one we choose to study first is a
weighted average of the values of Z, where the weights are the probabilities. Thus we define
the expectation of Z, written E(Z), to be

E(Z) =

n∑
i=1

zipi. (1.24)
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For those who are physically inclined, consider putting weight pi at position zi on a weight-
less beam. If so, E(Z) is the position on the beam where it balances.

Thus suppose Z a random variable taking the value 2 with probability 1
4 and 6 with

probability 3
4 . Then z1 = 2, p1 = 1

4 , z2 = 6, p2 = 3
4 and

E(Z) =z1p1 + z2p2

=(2)(
1

4
) + 6(

3

4
) =

2 + 18

4
=

20

4
= 5.

As a second example of expectation, consider a set A to which you assign probability p,
so, to you, P{A} = p. The indicator of A, IA, has the following expectation:

E(IA) = 1P{IA = 1}+ 0P{IA = 0}
= P{A} = p. (1.25)

This relationship between expectation and indicators comes up many times in what
follows. If some outcome has probability zero, it has no effect on the expectation of Z.

We now explore some of the most important properties of expectation. The first is quite
simple, relating to the expectation of a random variable multiplied by a constant and added
to another constant. Again suppose that Z is a random variable taking values zi with
probability pi (for i = 1, . . . , n), where

∑n
i=1 pi = 1. Let k and b be any real numbers. Then

kZ+ b is a new random variable taking values kzi+ b with probability pi. Then expectation
of kZ + b is

E(kZ + b) =

n∑
i=1

(kzi + b)pi = k

n∑
i=1

zipi + b

n∑
i=1

pi = kE(Z) + b. (1.26)

Now let X and Y be two random variables, and we wish to study E(X+Y ). To establish
notation, let pi,j = P{(X = xi) ∩ (Y = yj)} be your probability that X takes the value
xi(1 ≤ i ≤ n) and Y takes the value yj(1 ≤ j ≤ m). The event ((X = xi) ∩ (Y = yj))
can be written more briefly as (X = xi, Y = yj). We now find the relationship between the
numbers pi,j and the probability that X takes the value xi. To do so, we use the properties
of set inclusion as follows:

P{X = xi} =P{X = xi, Y = y1}+ P{X = xi, Y = y2}+ . . . (1.27)

+ P{X = xi, Y = ym}

=pi,1 + pi,2 + . . .+ pi,m =

m∑
j=1

pi,j for i = 1, . . . , n. (1.28)

It is convenient to have special notation for the latter sum, and we use

pi,+ =

m∑
j=1

pi,j .

Therefore we may write

P{X = xi} = pi,+ for i = 1, . . . , n.

Similarly, reversing the roles of X and Y , we have

P{Y = yj} =

n∑
i=1

pi,j = p+,j for j = 1, . . . ,m. (1.29)
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Then

E(X + Y ) =

n∑
i=1

m∑
j=1

P{X + Y = xi + yj}(xi + yj)

=

n∑
i=1

m∑
j=1

pi,j(xi + yj)

=

n∑
i=1

m∑
j=1

pi,jxi +

n∑
i=1

m∑
j=1

pi,jyj =

n∑
i=1

pi,+xi +

m∑
j=1

p+,jyj

= E(X) + E(Y ). (1.30)

Formula (1.30) holds regardless of the relationship between X and Y . Of course, by
induction

E(X1 + . . .+Xk) = E(X1) + E(X2) + . . .+ E(Xk). (1.31)

As an example of the usefulness of indicators, I now derive a formula for the union of
many events that need not be disjoint.

We already know that IAB = IAIB , that IĀ = 1− IA and that A ∪B = ĀB̄.
Therefore we find

IA∪B = 1− IA∪B = 1− IĀB̄ = 1− IĀIB̄ = 1− (1− IA)(1− IB)

= IA + IB − IAB .

This expression gives a relationship between the random variables IA∪B , IA, IB and IAB .
Since the random variables on both sides are equal, their expectations are equal. Then using
the additivity of expectation proved above, we can write

P{A ∪B} = E(IA + IB − IAB) = E(IA) + E(IB)− E(IAB)

= P{A}+ P{B} − P{AB}.

When A and B are disjoint, P{AB} = 0 and the result reduces to (1.3).
This argument can be extended to any number of events as follows: Suppose

A1, A2, . . . , An are n events. We wish to find an expression for the probability of the not-
necessarily-disjoint union of these events in terms of intersections of them. Recall that∏n
i=1Ai means the event that A1, A2, . . . , and An all occur.
We have

∪ni=1Ai =

n∏
i=1

Āi. (1.32)

Therefore

I∪ni=1Ai
= 1− I∪ni=1Ai

= 1− I∏n
i=1 Āi

= 1−
n∏
i=1

IĀi = 1−
n∏
i=1

(1− IAi)

= 1− (1− IA1)(1− IA2) . . . (1− IAn)

=

n∑
i=1

IAi −
∑
i 6=j

IAiIAj +
∑

i,j,k not equal

IAiIAjIAk . . .

Therefore

P{∪ni=1Ai} =

n∑
i=1

P{Ai} −
∑
i6=j

P{AiAj}+
∑

i,j,k not equal

P{AiAjAk} . . . (1.33)
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Thus, when n = 3, we have

P{A1 ∪A2 ∪A3} = [P{A1}+ P{A2}+ P{A3}]−
[P{A1A2}+ P{A1A3}+ P{A2A3}] + [P{A1A2A3}]

and when n = 4, (1.33) is

P{A1 ∪A2 ∪A3 ∪A4} =[P{A1}+ P{A2}+ P{A3}+ P{A4}]
−[P{A1A2}+ P{A1A3}+ P{A1A4}+ P{A2A3}

+ P{A2A4}+ P{A3A4}]
+[P{A1A2A3}+ P{A1A2A4}+ P{A1A3A4}

+ P{A2A3A4}]
−[P{A1A2A3A4}].

Example: Letters and envelopes. Consider the following problem. There are n letters
to distinct people, and n addressed envelopes. Envelopes and letters are matched at random
(i.e., with equal probability). What is the probability P0,n that no letter gets matched to
the correct envelope?

Let Ii be the indicator for the event Ai that letter i is correctly matched. Then we seek

P0,n = 1− P{∪ni=1Ai} = P

{
n∏
i=1

Āi

}
= E

(
I∏n

i=1 Āi

)
=

E

[
n∏
i=1

IĀi

]
= E

[
n∏
i=1

(1− IAi)

]

= E

1−
n∑
i=1

IAi +
∑
i 6=j

IAiAj −
∑

i,j,k not equal

IAiAjAk + . . .

 .

Now EIAi = P (Ai) = 1/n, so E [
∑n
i=1 IAi ] = n(1/n) = 1.

Similarly if i 6= j, E(IAiAj ) = P (AiAj) = 1
n ·

1
n−1 . Then

E[
∑
i 6=j

IAiAj ] =
n(n− 1)

2

1

n(n− 1)
=

1

2
.

In general, for r distinct indices, EIAi1Ai2 ...Air = P (Ai1Ai2 . . . Air ) = 1
n ·

1
n−1 . . .

1
n−r+1 =

(n− r)!/n!.
How many ways are there of choosing j distinct indices from n possibilities? Suppose we

have n items that we wish to divide into two groups, with j in the first group, and therefore
n− j in the second. How many ways can this be done? We know that there are n! ways of
ordering all the items in the group, so we could just take any one of those orders, and use
the first j items to divide the n items into the two groups of the needed size. But we can
scramble up the first j items any way we like without changing the group, and similarly the
last (n− j) items. Thus the number of ways of dividing the n items into one group of size
j and another group of size n− j is n!/j!(n− j)!, which I write as(

n

j, n− j

)
, but others sometimes write as

(
n

j

)
.

It is pronounced “n choose j and n − j” in the first case, and “n choose j” in the
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second. Both are called binomial coefficients, for reasons that will be evident later in the
book (section 2.9). The notation I prefer has the advantage of maintaining the symmetry
between the groups, and makes it easier to understand the generalization to many groups
instead of just two. (Section 2.9 shows how my notation helps with the generalization.)

How many ways are there to choose, out of n letters, which r will be correctly matched
to envelopes and which n− r will not? Exactly

(
n

r,n−r
)

= n!
r!(n−r)! ways. Hence the term in

the sum for r matches is(
n

r, n− r

)
· (n− r)!

n!
=

n!

r!(n− r)!
· (n− r)!

n!
=

1

r!
,

and we have

P0,n = 1− 1 +
1

2!
− 1

3!
+

1

4!
− . . .+ (−1)n

1

n!

This is a famous series in applied mathematics.
Taylor approximations are used to study the behavior of a function f(x) in a neighbor-

hood around a point x0. The approximation is

f(x) ≈ f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2!
f ′′(x0) + . . . .

The accuracy of the approximation depends on the function, how far from x0 one wants
to use the approximation, and how many terms are taken.

Recall that d
dxe

x = ex and e0 = 1. Then expanding ex around x0 = 0 in a Taylor series,

ex ≈ 1 + x+
x2

2!
+
x3

3!
+ . . . . (1.34)

That this series converges for all x is a consequence of the ratio test, since the absolute
value of the ratio of the (n+ 1)st term to the nth term is∣∣∣∣ xn+1

(n+ 1)!
/xn/n!

∣∣∣∣ =
| x |
n+ 1

which is less than 1 for large n (see Rudin (1976, p. 66)). Indeed (1.34) is sometimes taken
to be the definition of ex.

Substituting x = −1,

e−1 = 1− 1 +
1

2!
− 1

3!
+

1

4!
+ . . . .

Hence P0,n → e−1 ≈ .368 as n→∞. This is a remarkable fact, that as the number of letters
and envelopes gets large, the probability that none match approaches .368, and hence the
probability of at least one match approaches .632. 2

1.5.1 Summary

The expectation of a random variable w taking values wi with probability pi is E(W ) =∑n
i=1 wipi. The expectation of the indicator of an event is the probability of the event. The

expectation of a finite sum of random variables is the sum of the expectations.

1.5.2 Exercises

1. Vocabulary. State in your own words what the expectation of a random variable is.
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2. Suppose you flip two coins, and let X be the number of tails that result. Also suppose
that there is some number p, 0 ≤ p ≤ 1, such that

P{X = 0} = (1− p)2

P{X = 1} = 2p(1− p)
P{X = 2} = p2.

(a) Check that, for any such p, these specifications are coherent.

(b) Find E(X).

3. In the simplest form of the Pennsylvania Lottery, called “Pick Three,” a contestant
chooses a three-digit number, that is, a number between (000 and 999), good for a single
drawing. In each drawing a number is chosen at random. If the contestant’s number
matches the number drawn at random, the contestant wins $600. (Each ticket costs $1.)
What is the expected winnings of such a lottery ticket?

4. Consider the first n integers written down in random order. What is the probability that
at least one will be in its proper place, so that integer i will be the ith integer in the
random order? [Hint: think about letters and envelopes.]

5. (a) Let X and Y be random variables and let a and b be constants. Prove

E(aX + bY ) = aE(X) + bE(Y ).

(b) Let X1, . . . , Xn be random variables, and let a1, . . . , an be constants. Prove
E(
∑n
i=1 aiXi) =

∑n
i=1 aiE(Xi).

1.6 Other properties of expectation

For the next property of the expectation of Z it is now necessary to limit ourselves to indices
i such that pi > 0. Suppose those indices are renumbered so that x1 < x2 < . . . < xn, where∑n
i=1 pi = 1 and pi > 0 for all i = 1, . . . , n. Let a random variable X be defined as trivial

if there is some number c such that P{X = c} = 1, and non-trivial otherwise. Then a
trivial random variable is characterized by n = 1 and a non-trivial one by n ≥ 2. Then the
following result obtains:

Theorem 1.6.1. Suppose X is a non-trivial random variable. Then

minX = x1 < E(X) < maxX = xn.

Proof.

minX = x1 =

n∑
i=1

pix1 <

n∑
i=1

pixi = E(X) <

n∑
i=1

pixn = xn = maxX

Corollary 1.6.2. If X is non-trivial, there is some positive probability ε1 > 0 that X
exceeds its expectation E(X) by a fixed amount η1 > 0, and positive probability ε2 > 0 that
E(X) exceeds X by a fixed amount η2 > 0.

Proof. For the first statement, let η1 = xn − E(X) > 0 and ε1 = pn. For the second, let
η2 = E(X)− x1 and ε2 = p1.



OTHER PROPERTIES OF EXPECTATION 23

This is the key result for the next section.

Example: Letters and envelopes, continued. Let’s pause here to consider a classic
probability problem, and to show the power of indicators and expectations to solve the
problem. Reconsider the envelope and letter matching problem, but now ask, what is the
expected number of correct matches? That is, what is the expected number of letters put
in the correct envelopes?

If n = 1, there is only one letter and one envelope, so the letter and envelope are sure
to match. Thus the expected number of correct matches is one. Now consider n = 2. There
can be only zero or two matched, and each has probability 1/2. Thus the expected number
of correct matches is 1

2 · 0 + 1
2 · 2 = 1. The expectation takes a value, 1, which is not a

possible outcome in this example.

To do this problem for n = 3, or more generally, in this way seems unpromising, as there
are many possibilities that must be kept track of. So let’s use some of the machinery we
have developed. Let Ii be the indicator for the event that the ith letter is in the correct
envelope. Then the number of letters in the correct envelope is I =

∑n
i=1 Ii. Since we are

asked for the expectation of I, we write:

E(I) = E(

n∑
i=1

Ii) =

n∑
i=1

E(Ii).

Now each letter has probability 1/n of being in the right envelope. Thus E(Ii) = 1/n for
each i. Then

E(I) = nE(Ii) = n · 1/n = 1

for all n. This is quite simple, considering the large number of possible ways envelopes and
letters might be matched. 2

Finally, we give a result that is so intuitive to statisticians that it is sometimes called
the Law of the Unconscious Statistician. Its proof uses expectations of indicator functions.

Theorem 1.6.3. Let X be a random variable whose possible values are x1, . . . , xN . Let
Y = g(X). Then the expectation of the random variable Y is given by

E(Y ) = E[g(X)] =

N∑
k=1

g(xk)P{X = xk}.

Proof. Let the possible values of Y be y1, . . . , yM . Let Ikj be an indicator for the event
X = xk and Y = yj = g(xk) for k = 1, . . . , N and j = 1, . . . ,M . With these definitions,
yjIkj = g(xk)Ikj .

Then
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E(Y ) =

M∑
j=1

yjP{Y = yj} (definition of expectation)

=

M∑
j=1

yjE

N∑
k=1

Ikj (uses (1.25) and (1.14))

= E

M∑
j=1

N∑
k=1

yjIkj (rearranges sum)

= E

M∑
j=1

N∑
k=1

g(xk)Ikj (by substitution)

=

N∑
k=1

g(xk)E
M∑
j=1

Ikj (rearranges sum)

=

N∑
k=1

g(xk)P{X = xk}. (uses (1.25) and (1.14))

Theorem 1.6.3 says that if Y = g(X), then E(Y ) can be computed in either of two ways,

either as
∑M
j=1 yjP{Y = yj} or as

N∑
i=1

g(xi)P{X = xi}.

1.6.1 Summary

Expectation has the following properties:

1. Let k be any constant. Then E(kX) = kE(X).

2. Let X1, X2, . . . , Xk be any random variables. Then

E(X1 +X2 + . . .+Xk) = E(X1) + E(X2) + . . .+ E(Xk).

3. minX ≤ E(X) ≤ maxX. Equality holds here if and only if X is trivial.

4. If E(X) = c, and X is not trivial, then there are positive numbers ε1 and η1, such that
the probability is at least ε1 that X > c+ η1 and positive numbers ε2 and η2 such that
the probability is at least ε2 that X < c− η2.

5. Let g be a real-valued function. Then Y = g(X) has expectation

E(Y ) =

N∑
k=1

g(xk)P{X = xk},

where x1, . . . , xN are the possible values of X.

The first two were proved in section 1.5, the latter three in this section.
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1.6.2 Exercises

1. Vocabulary. Explain in your own words what a trivial random variable is.

2. Write out a direct argument for the expectation in letters and envelopes matching prob-
lem for n = 3.

3. Let Pk,n be the probability that exactly k letters get matched to the correct envelopes.
Prove that Pn−1,n = 0 for all n ≥ 1.

4. Suppose there are n flips of a coin each with probability p of coming up tails. Let Xi = 1
if the ith flip results in a tail and Xi = 0 if the ith flip results in a head. Let X =

∑n
i=1Xi

be the number of flips that result in tails.

(a) Find E(Xi).

(b) Find E(X) using (1.31).

1.7 Coherence implies not a sure loser

Now we return to the choices you announced in section 1.1, to show that if your choices are
coherent, you cannot be made a sure loser. So we suppose that your prices are coherent.

Suppose first that you announce price p for a ticket on event A. If you buy such a ticket
it will cost you p, but you will gain $1 if A occurs, and nothing otherwise. Thus your gain
from the transaction is exactly IA − p. If you sell such a ticket, your gain is p − IA. Both
of these can be represented by saying that your gain is α(IA − p) where α is the number of
tickets you buy. If α is negative, you sell −α tickets. With many such offers your total gain
is

W =

n∑
i=1

αi(IAi − pi) (1.35)

where your price on event Ai is pi. The numbers αi may be positive or negative, but are not
in your control. But whatever choices of α’s I make, positive or negative, W is the random
variable that represents your gain, and it takes a finite number of values. Now we compute
the expectation of W :

E(W ) = E(
∑n
i=1 αi(IAi − pi)) (by substitution)

=
∑n
i=1E(αi(IAi − pi)) (uses (1.31))

=
∑n
i=1 αiE(IAi − pi) (uses (1.26))

= 0. (uses (1.25))

Then we can conclude that one of two statements is true about W , using the corollary to
Theorem 1.6.1.

Either

(a) W is trivial (i.e., W = 0 with probability 1), so there are no bets and you are certainly
not a sure loser,

or

(b) there is positive probability ε that you will gain at least a positive amount η. This
means that there is positive probability that you will gain from the transaction, and
therefore you are not a sure loser.

Therefore we have shown that if your prices satisfy (1.1), (1.2) and (1.3) you cannot be
made a sure loser. So we can pull together these results with those of section 1.1 into the
following theorem referred to in this book as the Fundamental Theorem of Coherence:

Your prices Pr(A) at which you would buy or sell tickets on A cannot make
you a sure loser if and only if they satisfy (1.1), (1.2) and (1.3), or, in other words,
if and only if they are coherent.
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1.7.1 Summary

The Fundamental Theorem says it all.

1.7.2 Exercises

1. Vocabulary. Explain in your own words:

Fundamental Theorem of Probability

2. Why is the Fundamental Theorem important?

3. The proof in section 1.7 that coherence implies you can’t be made a sure loser rests on
the properties of expectation. Where does each of (1.1), (1.2) and (1.3) get used in the
proof of those properties?

1.8 Expectations and limits

(This section could be postponed on a first reading.)
Suppose that X1, X2, . . . is an infinite sequence of random variables each taking only

finitely many values. Thus, let

P{Xn = ani} = pi , n = 1, . . . , i = 1, . . . , I.

Suppose
lim
n→∞

ani = bi for i = 1, . . . , I. (1.36)

Let X be a random variable that takes the value bi with probability pi. Then is it true
that

lim
n→∞

E[Xn] = E[X] ? (1.37)

We pause to analyze this question here, because it constitutes a theme that recurs in Chap-
ter 3 (concerning random variables taking a countable number of values) and Chapter 4
(concerning random variables on a continuous space). To begin, it is necessary to be precise
about what is meant by a limit, which is addressed in the following supplement.

1.8.1 A supplement on limits

What does it mean to write that the sequence of numbers a1, a2, . . . has the limit a? Roughly
the idea is that an gets closer and closer to the number a as n gets large. Consider, for
example, the sequence an = 1/n. This is a sequence of positive numbers, getting closer and
closer to 0 as n gets large. It never gets to 0, but it does get arbitrarily close to 0. Here I
seek to give a precise meaning to the statement that the sequence an = 1/n has the limit 0.

Since the sequence never gets to 0, we have to allow some slack. For this purpose, it is
traditional to use the Greek letter ε (pronounced “epsilon”). And we assume that ε > 0 is
positive. Can we find a number N such that, for all values of the sequence index n greater
than or equal to N , an is within ε of the number a? If we can do this for every positive ε,
no matter how small, then we say that the limit of an as n gets large, is a.

Let’s see how this works for the sequence an = 1/n, with the limit a = 0. The question
is whether we can find a number N such that for all n larger than or equal to N , we have

| an − a |=| 1/n− 0 |= 1/n

less than ε. But to write ε > 1/n is the same as to write n > 1/ε. Therefore, if we take N
to be any integer greater than 1/ε, the criterion is satisfied for the sequence an = 1/n and
the limit a = 0.
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Thus in general we write that the sequence an has the limit a provided, for every ε > 0,
there is an N (finite) such that, for every n ≥ N ,

| an − a |< ε.

If this is the case, we write

“ lim
n→∞

an = a” or “an → a as n→∞.”

Another way of understanding what limits are about is to notice that the criterion is
equivalent to the following: for every positive ε, no matter how small, | an−a |< ε is violated
for at most a finite number of values of n (namely, possibly, 1, 2, . . . , N − 1).

Yet another way of phrasing the criterion is that every interval I, centered at a and with
width 2ε, that is, the interval (a− ε, a+ ε), excludes only finitely many an’s.

A property of limits that is used extensively in the materials that follow is the following:
Lemma: Suppose limn→∞ an = a and limn→∞ bn = b. Then the sequence cn = an + bn
converges, and has limit a+ b.

Proof. Let ε > 0 be given. Since limn→∞ an = a, there is some N1 such that, for all n ≤ N1

| an − a |< ε/2.

Similarly, since limn→∞ bn = b, there is some N2 such that, for all n ≥ N2

| bn − b |< ε/2.

Let N = max{N1, N2}. Then for all n ≥ N ,

| (an + bn)− (a+ b) |≤| an − a | + | bn − b |< ε/2 + ε/2 = ε.

Therefore limn→∞(an + bn) exists and equals a+ b.

It is easy to see that this lemma can be extended to the sum of finitely many convergent
sequences.

1.8.2 Resuming the discussion of expectations and limits

We now resume our discussion of (1.37), and prove the following:

Theorem 1.8.1. Under the assumption that (1.36) holds, (1.37) holds.

Proof. Let ε > 0 be given. According to (1.36), for each i, i = 1, . . . , I, there is an Ni
such that, for all n ≥ Ni, | ain − bi |< ε. Let N = max{N1, N2, . . . , NI}. Then for all
n ≥ N, | ain − bi |< ε. Therefore, for all n ≥ N ,∣∣∣∣ I∑

i=1

piain −
I∑
i=1

pibi

∣∣∣∣ ≤ I∑
i=1

pi

∣∣∣∣ain − bi∣∣∣∣
<

I∑
i=1

piε = ε.

Hence

lim
n→∞

E[Xn] = lim
n→∞

I∑
i=1

piain =

I∑
i=1

pibi = E[X].
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1.8.3 Reference

A friendly introduction to limits can be found in Courant and Robbins (1958, pp. 289-295).

1.8.4 Exercises

1. Vocabulary. Explain in your own words what the limit of a sequence of numbers is.

2. Do all sequences of numbers have a limit? Prove your answer.

3. Let an = 1/n2. Prove limn→∞ an = 0.

4. Let an = 0 if n is odd, and an = 1 if n is even. Does an have a limit? Prove your answer.

5. Let an = (n+ 1)/n. Does an have a limit? If so, what is it? Prove your answer.



Chapter 2

Conditional Probability and Bayes Theorem

2.1 Conditional probability

We now turn to exploring what is meant by the probability of an event A conditional on the
occurrence of an event B. What makes this particularly important is that the comparison
of this conditional probability to the probability of A gives a quantitative view of how much
the occurrence of B has changed your view of the probability of A. We’ll come back to this
after exploring what constraints are put on conditional probabilities by avoidance of sure
loss.

To make the exposition clearer, I ask your indulgence to allow tickets to be bought and
sold not only in integer amounts, as was done in Chapter 1, but now in non-integer amounts.
For example, if you buy half a ticket on the event A, it costs you half as much, and if A
occurs, you win half as much as you would have with a full ticket. This extension is later
shown not to be necessary for the result to be shown next, but it does make the argument
simpler.

So let Pr{A|B} (pronounced “A given B”) be the price at which you would buy or sell
a ticket that pays $1 if A and B occur, $0 if B occurs but A does not, and is called off if B
does not occur. Thus if B were not to occur, there are no financial consequences to either
party.

To explain what is meant by a called-off bet, consider the difference between a ticket on
the event A|B and one on the event AB. Suppose you bought one each of such tickets. If A
and B occur, you would win a dollar on each ticket. If A and B occur, you would win $0
on each ticket. But if B occurs, you would have your purchase price refunded for the ticket
on A|B but not on the ticket on AB. The situation is summarized in the following table:

Ticket
Outcome A|B AB
AB $1 $1
AB $0 $0
B purchase price refunded no refund ($0)

Table 2.1: Consequences of tickets bought on A|B and AB.

Table 2.1 makes it clear that a ticket on A|B will be at least as valuable as a ticket on
AB, and in general more valuable. The next set of results establish how much more valuable
a ticket on A|B is compared to a ticket on AB.

Theorem 2.1.1. Either
Pr{AB} = Pr{A|B}Pr{B}

or you can be made a sure loser.

Proof. Let x = Pr{B}, y = Pr{A|B} and z = Pr{AB}. To show that z = yx is required

29
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Ticket Net
Outcome A|B AB B
B y 0 0 y
AB 0 0 y y
AB 1 -1 y y

Table 2.2: Your gains, as a function of the outcome, when tickets are settled, when xy > z.

to avoid being a sure loser, this proof shows first that xy > z leads to sure loss, and then
that xy < z leads to sure loss.

Suppose first that xy > z. I choose to sell you a ticket on A|B, buy from you a ticket on
AB, and sell you y tickets on B. (Note that 0 ≤ y ≤ 1, so you are buying from me a partial
ticket on B.) There are three disjoint and exhaustive outcomes, B,AB and AB. Call them
case 1, case 2 and case 3, respectively. We investigate each of these cases in turn.

Case 1: If B occurs, the ticket on A|B is called off. You sold me a ticket on AB, which
gains you z and bought from me y tickets on B, which cost you xy. Hence your net gain
here is z − xy < 0, which means a loss for you.

Case 2: Next consider the consequence if AB occurs. In addition to your gain of z − xy
for the tickets on AB and B, you owe me y for the ticket I sold you on A|B, so your gain is
z − xy− y. When we settle tickets, the y tickets you own on B pay off, so your gain in this
case is z − xy − y + y = z − xy < 0. Again, you lost.

Case 3: Finally, if AB occurs, the purchase and sale of tickets results in a net gain to you
of z−xy−y. All three kinds of tickets now pay off, and your net gain is z−xy−y+y+1−1 =
z − xy < 0. So in this third case, you lost as well.

Since you lost in all three possible outcomes when xy > z, you are a sure loser.
The fact that you lost the same amount in each case is not essential to the proof.
It is useful to summarize these transactions as follows: when xy > z, I sell you a ticket

on A|B, which costs you y. I buy a ticket from you on AB, for which I pay you z. Finally,
I sell you a fraction y of a ticket on B, which costs you xy. Thus your total costs for these
transactions are xy + y − z. If B does not occur, I am obliged to return to you the cost, y,
of the ticket on A|B, so that this bet is called off. Then Table 2.2 shows the consequences
of each possible outcome: you gain y.

Thus your total cost is xy + y − z − y = xy − z > 0 whatever the random outcome is.
You are therefore a sure loser.

Now we move to the second part of the proof, where xy < z. Now I choose to buy from
you a ticket on A|B, sell you a ticket on AB, and buy from you y tickets on B. Again there
are the same three disjoint and exclusive events to consider, B,AB and AB.

You can now follow the pattern of the argument above, showing that in each of these
three cases, you have a gain of xy − z < 0, which means you lose! Since you lose no matter
which of B,AB and AB happens, you are a sure loser if xy < z.

Since you are a sure loser if xy > z and a sure loser if xy < z, the only possible way to
avoid sure loss is xy = z, as claimed. This completes the proof of the theorem.

It is somewhat remarkable that the principle of avoiding sure loss requires a unique
value for the price for which you would offer to buy or sell a called-off ticket except when
Pr{B} = 0. Again, this treatment is constructive, in that I show exactly which of your offers
I accept to make you a sure loser.

I promised some remarks on the case in which you insist that tickets be bought and sold
as integers. If the numbers of tickets bought and sold are all multiplied by the same number,
the analysis above applies, with each loss being multiplied by the same number. Thus if y is
a rational number, that is, it can be written as p/q, where p and q are integers, then when
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xy > z, I can imagine selling you q tickets on A|B, buying from you q tickets on AB, and
selling you p tickets on B. Exactly the argument above applies. Similarly, when xy < z, I
can imagine buying from you p tickets on A|B, selling you p tickets on AB, and buying
from you q tickets on B. Again the argument applies. Since every real number y can be
approximated arbitrarily closely by rational numbers, it can be shown that Theorem 2.1.1
holds for all real y without resorting to non-integer numbers of tickets. If this paragraph is
more mathematics than is to your taste, don’t worry about it, and just go with the idea of
buying and selling y tickets, where y is not an integer.

The argument above shows that if P{AB} 6= Pr{A|B}P{B} then you can be made a
sure loser. We now show the converse, that if P{AB} = P{A|B}P{B} you cannot be made
a sure loser.

To do so, we need a new random variable to describe the outcome of the ticket that
pays $1 if A and B occur, $0 if B occurs and A does not, and is called off otherwise. The
first two possible outcomes can be modelled with an indicator function, taking the value $1
if AB occurs, and 0 if AB occurs. But what if B occurs? You are willing to buy this ticket
for p = Pr{A|B}. For the bet to be called off if B occurs means that no money changes
hands in this case, which is the same as having your money, Pr{A|B}, returned. Thus the
random variable defined as

IB(IA − p)

properly expresses the consequences of each of the three possible outcomes.
Recall from section 1.7 that the gain from selling for price p a ticket that pays $1 if A

occurs and 0 when it does not is IA − p, and for buying such a ticket is p − IA. Both of
these can be represented by α(IA − p) where α is the number of tickets you buy. Negative
α’s are interpreted as sales.

With this definition, the payoff from bets on A,B,AB and A|B can be expressed as

W = α1(IA − P{A}) + α2(IB − P{B}) + α3(IAB − P{AB}) + α4(IB(IA − p)),

where the α’s are chosen by an “opponent” to try to make you a sure loser. The argument
of section 1.7 shows that if your probabilities are coherent, every choice of α1, α2 and α3

leads to

E(W ′) = α1(IA − P{A}) + α2(IB − P{B}) + α3(IAB − P{AB}) = 0.

Thus I concentrate on the fourth term

E(W ) = α4E[IB(IA − p)]
= α4[E(IAB)− pE(IB)]

= α4[P{AB} − pP{B}].

Therefore, under the assumption that P{AB} = Pr{A|B}P{B}, we have E(W ) = 0
for all choices of α1, α2, α3 and α4. Again, we can conclude that either

(a) W is trivial (i.e., W = 0 with probability 1), so there are no bets and you are certainly
not a sure loser,
or

(b) there is positive probability ε that you will gain at least a positive amount η. And,
therefore, as in section 1.7, you are not a sure loser.

Thus we may conclude

Theorem 2.1.2. Your price Pr{A | B} for the called off bet on A given that B occurs,
cannot make you a sure loser if and only if

P{AB} = Pr{A | B}P{B}. (2.1)
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Since I am supposing that you have decided not to be a sure loser, I now equate Pr{A|B}
with P{A|B}, and suppose therefore when P{B} > 0, that

P{A|B} = P{AB}/P{B}. (2.2)

It is very important to notice from the outset that the conditional probability of A given
B is NOT the same as the conditional probability of B given A. At the time of this writing
(2005), there are 14 women and 86 men in the United States Senate. Then the conditional
probability of a person being male, given that he is a Senator, is 86%, but the probability
that he is a Senator, given that he is male, is very small.

For a second, and perhaps somewhat silly example, the probability that a person has a
cold, given that the person has two ears, is, fortunately, substantially less than 1. However
the probability that a person has two ears, given that the person has a cold, is virtually 1.

When P{B} = 0, since B = AB ∪AB and this is a disjoint union, we have

0 = P{B} = P{AB}+ P{AB}.

Application of (1.1) now yields
P{AB} = 0.

In the context of (2.1), this implies that Pr{A|B} is unconstrained, and can take any
value including values less than 0 and greater than 1. An exploration of a method to define
conditional probability when conditioning on a set of probability 0 is given by Coletti and
Scozzafava (2002).

Probability as developed in section 1.1 can be regarded as probability conditional on S,
since P{A|S} = P{AS}/P{S} = P{A}. Indeed, conditioning on a set B can be regarded
as shrinking the sure event from S to B, as exercise 4 in section 2.1.2 below justifies.

What happens if there are three events in question, A, B and C? We can write

P{ABC} = P{A|BC}P{BC} = P{A|BC}P{B|C}P{C}. (2.3)

Indeed there are six ways of rewriting P{ABC}, since there are three ways to choose
the first set, and for each of them, two ways to choose the second, and only one way to
then choose the third. Each of these six ways of rewriting P{ABC} is correct, but selecting
which one is most useful in an applied setting takes some experience.

Equation (2.3) can be generalized as follows:

P{A1A2 . . . An} = P{A1|A2 . . . An}P{A2|A3 . . . An} . . . P{An}. (2.4)

How many ways are there of rewriting the left-hand side of (2.4)? Now there are n ways
of choosing the first set, for each of them (n − 1) ways of choosing the second, etc. Hence
the number of ways is n!

2.1.1 Summary

Avoiding sure loss requires that your price Pr{A|B} for a ticket on A conditional on B
satisfies Pr{A|B}Pr{B} = Pr{AB}.

2.1.2 Exercises

1. Vocabulary. Explain in you own words what is meant by the conditional probability of
A given B.

2. Write out the argument for the case xy < z in the proof of Theorem 2.1.1.

3. Make your own example to show that P{A|B} and P{B|A} need not be the same.
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4. Let B be an event such that P{B} > 0. Show that P{· |B} satisfies (1.1), (1.2) and
(1.3), which means to show that

(i) P{A|B} ≥ 0 for all events A.

(ii) P{S|B} = P{B|B} = 1.

(iii) Let AB and CB be disjoint events. Then

P{A ∪ C|B} = P{A|B}+ P{C|B}.

5. Suppose that my probability of having a fever is .01 on any given day, and my probability
of having both a cold and a fever on any given day is .001. Given that I have a fever,
what is my conditional probability of having a cold?

2.2 The birthday problem

The birthday problem is an interesting application of conditional probability. By “birthday”
in this problem, I mean the day a person is born, not the day and the year. Suppose there are
k people who compare birthdays, and we want to know the probability sk,n that at least two
of them have the same birthday where there are n possible birthdays. For this calculation,
assume that nobody is born on February 29 (which obviously isn’t true), so that there are
n = 365 possible birthdays. Also suppose that people have the same probability of being
born on any of them. (This is not quite true. There are seasonal variations in birthdays.)
Also let tk,n = 1 − sk,n be the probability that no two people have the same birthday. It
turns out that this is the easier event to work with.

Now let’s look at t1,n. Since there is only one person, t1,n = 1 because overlap is not
possible. Then what about t2,n? Well, t2,n = (n−1

n )t1,n, since the first person occupies one
birthday, so the second person has probability (n−1

n ) of missing it.

Let Ek = j be the event that the kth person has birthday j. Let Ek = j be the event

that persons k = (1, 2, . . . , k − 1) have birthdays j = (j1, . . . , jk−1), all different.
Then

tk,n =
∑
j

∑
j /∈j

P{Ek = j|Ek = j}P{Ek = j}

=
∑
j

[
n− (k − 1)

n

]
P{Ek = j}

=

[
n− (k − 1)

n

]
tk−1,n.

Therefore

tk,n =
n− (k − 1)

n
tk−1,n =

(
n− (k − 1)

n

)(
n− (k − 2)

n

)
tk−2,n = . . .

=

k−1∏
i=1

(1− i/n), if k > 1

and t1,n = 1.

For any given k and n, this number can be computed simply, but the formula doesn’t give
much idea of what these numbers look like. Obviously if k grows for fixed n, tk,n decreases,
and if n grows for fixed k, tk,n increases.
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To approximate tk,n, we’ll take its logarithm as follows:

log tk,n =

k−1∑
i=1

log(1− i/n).

We now apply a Taylor approximation to f(x) = log(1 + x) in the neighborhood of x0 = 0.
(If you have forgotten about Taylor approximations, there is a brief introduction to them
in section 1.5.) Since log(1) = 0, f(x0) = log(1 + 0) = log 1 = 0. Also f ′(x) = 1

1+x , so
f ′(x0) = f ′(0) = 1.

Hence for x close to 0, the Taylor approximation to log(1 + x) is as follows:

log(1 + x) = 0 + x+HOT

where HOT stands for “Higher Order Terms.” Applying the approximation and neglecting
HOT, we have

log (1− i/n) ' −i/n.

Therefore

log tk,n =

k−1∑
i=1

log(1− i/n) '
k−1∑
i=1

(−i/n) =
−1

n

k−1∑
i=1

i = − 1

2n
k(k − 1),

using the formula for the sum of the first k − 1 integers, as found in section 1.2.2.
Therefore

tk,n ' e−
k(k−1)

2n .

Now suppose we want to find k such that tk,n = 1/2 (approximately). We know there
won’t necessarily be an integer k that solves this equation exactly. However, there will be a
largest k such that tk,n ≤ 1/2, and, for that k, tk+1,n ≥ 1/2.

Thus we want to find the solution k to the equation

1

2
= e−

k(k−1)
2n ,

and we’ll accept any real number, not necessarily an integer, as the solution. Taking loga-
rithms again, we have

log

(
1

2

)
= −k(k − 1)

2n
, or

2n log 2 = k2 − k.

So we have the quadratic equation in k to solve for k. One way to solve this equation is
to complete the square by noticing that the equation is, except for a constant, of the form

(k − a)2 = k2 − 2ak + a2.

We have to match the linear term, so −2a = −1, or a = 1/2. So we can re-express the
equation, adding a2 = 1/4 to both sides, as

2n log 2 + 1/4 = k2 − k + 1/4 = (k − 1/2)2.

Hence k − 1/2 = ±
√

2n log 2 + 1/4.
Here only the positive square root makes sense, so we find

k = 1/2 +
√

2n log 2 + 1/4.
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When n = 365, I get k = 22.99. Thus with 23 people, half the time there will be a common
birthday between some pair of them.

This is a surprisingly small number. The reason why it works is that each person in
the group can have a common birthday with each other member of the group, so there is
quadratic behavior at the heart of the problem.

Because the Taylor approximation is justified as a limiting argument, it applies in the
limit as x → 0. Now that we know that k = 23 with n = 365, we see that the Taylor’s
Theorem approximation is being applied around x0 = 0 when x is no larger than 23/365 =
.063. It is therefore plausible that the Taylor’s Theorem approximation is accurate.

Many people find this result surprising. Warren Weaver (1963, p. 135) reports

In World War II, I mentioned these facts at a dinner attended by a group of high-
ranking officers of the Army and Navy. Most of them thought it incredible that there
was an even chance with only 22 or 23 persons. Noticing that there were exactly 22
at the table, someone proposed we run a test. We got all the way around the table
without a duplicate birthday. At which point a waitress remarked, “Excuse me. But
I am the 23rd person in the room, and my birthday is May 17, just like the General’s
over there.” I admit that this story is almost too good to be true (for, after all, the
test should succeed only half of the time when the odds are even); but you can take
my word for it.

An interesting website on the birthday problem is Weisstein (2005).

2.2.1 Exercises

1. The length of the Martian year is 669 Martian days. How many Martians would it take
to have at least a 50% probability that two Martians would have the same birthday?

2. Do the same problem for Jovians, whose year is 10,503 Jovian days.

3. For each of the three planets, Earth, Mars and Jupiter, how many inhabitants would it
take to have a 2/3 probability of having two people with the same birthday?

2.2.2 A supplement on computing

Computation is an essential skill for using the methods suggested in this book. While there
are many platforms and packages available with which to do statistics, most are limited to
doing only the computations anticipated by the package writers. The notable exception is
the open-ware package R (and its commercial cousin S+). The spirit of R is that it is more like
a convenient computer language than like a package. Given the freedom of opinion allowed
in the view of probability adopted here, the ability to compute what you want is critical.

Currently R can be downloaded (at no charge) from the following website http://

www.r-project.org. Please do so now. R is an interpretive language, which means that
it compiles each command line, interactively, as it is given. This makes R excellent for
exploration of data and figuring out what you want to compute. But this same quality
makes it slow for large data-sets and for programs that involve many steps. For computing
of this kind, programs are commonly written in C or C++, and run in that environment. This
need not be a concern now.

The first command in R is the command that assigns a number to a variable, pronounced
“gets” and written as “=” Thus

n = 365

assigns to n the value 365. Please type this line into the console window of R. If you now
type

n

http://www.r-project.org
http://www.r-project.org
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R will respond with

365.

Hence at any time in a computation you can find out the value of a variable simply by
typing it. You can also use the print command to find the value of an object. Another
feature of R that many users find helpful is the use of up and down arrows to reuse a line
that has previously been typed.

R works most conveniently with vectors, and much less efficiently with “do loops.” The
computations in this section take advantage of this. The goal is to assess the accuracy of

the approximation of 1−
∏k−1
i=1 (1− i/n) by 1− e− 1

2
k(k−1)
n . While calculus can suggest that

this approximation is close, and sometimes derive upper bounds on the error, those bounds
tend to exaggerate the extent of error. Computing is an excellent way to find out what the
error really is like.

We have already taken n to be 365. Which k’s are we interested in? Since the calculation
above suggests that k’s in the neighborhood of 23 are interesting to us, we’ll take all k’s up
to 30 as being of interest. Therefore, using ul to stand for upper limit, typing

ul = 30

specifies its value.

Now we need to explore some vectors. A convenient way to get some useful vectors is
with the colon command. Try typing

1:3

You should get the response

1 2 3

Thus in general l:u, where l (for “lower”) and u (for “upper”) are integers, gives you a
vector of integers starting at l and ending at u. Do you want to find out what would happen
if you try the colon command when u is less than l, or if l and u are not integers? Try it.
You can’t harm anything, and it will give you the right exploratory attitude toward this
type of computing.

Using the colon function, then, we’d like to compute the value of e−
k(k−1)

2n for each k
from 1 to 30, and, since we’re thinking in terms of vectors, we’d like a vector of length 30
to do this. We can build this up in stages.

Now we can create a vector of integers from 1 to 30 as

1:ul

We could also type 1:30 with the same result, but if we think we might want to change the
upper limit later to another value, it helps to have a symbol for upper limit.

The next step is to create a vector of length ul whose kth value is k times (k− 1). Now
if we wrote k(k− 1), R would think that k is a function, to be evaluated at the value k− 1.
R returns an error message for this. To express multiplication, * is used. Hence we write

k = 1:ul

k*(k-1)

to get our intended vector. R does an interesting thing: it knows that what is meant by
(k − 1) is to subtract the number 1 from each of the elements of k, so that (k − 1) is the
same, in this case, as 0:(ul-1). To complete the approximation, we add

approx = 1 - exp ( k * (k-1)/((-2) * n))

This yields a vector of length 30 giving 1− e−
k(k−1)

2n for each value of k from 1 to 30.

The key steps are:
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n = 365

ul = 30

k = 1:ul

approx = 1 - exp (k * (k-1) /((-2)*n))

print (approx)

For greater flexibility in changing n and ul without having to reenter everything, R

allows us to define approx as a function of n and ul, as follows:

approx = function (n, ul) {
k = 1:ul

return(1 - exp (k * (k-1) /((-2) * n)))

}

Having entered this function into R,

print (approx (365, 30))

produces the same vector we got before.
Now let’s work on the exact calculation, using the same ideas. Fortunately, R provides

some special tricks. If you type

cumsum (1:3)

R responds with (1,3,6). [Try it!] This is the cumulative sums of the vector (1,2,3).
Similarly, cumprod (1:3) yields (1,2,6). Hence, cumprod is the cumulative product. How

convenient! This is just what’s needed to compute
∏k
i=1(1− i/n), for each k between 1 and

ul, as follows:

k = 1:ul

cumprod (1 - k/n).

This is helpful as a step toward what we want, but isn’t quite right yet, for two reasons.
First, the first number should be 0 (since when there is only one person, there can’t be a
coincidence of birthdays). Second, the formula we want to compute for k > 1 is

1−
k−1∏
i=1

(1− i/n),

not

1−
k∏
i=1

(1− i/n).

To address the first, we use the function c(·), which permits one to create vectors by inserting
elements. For example

c(1,3,5)

will return 1 3 5

The second is addressed because using c to put a 0 in front of the cumprod function
automatically shifts each element of the vector to the right by one index. Hence the only
adjustment needed is to subtract 1 from ul, so that the resulting vector has exactly ul

elements.
Therefore our computation for the exact probabilities is

exact = function (n, ul){
k=1:(ul - 1)

return(c(0,1- cumprod (1-k/n)))

}
With this function entered in R,
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print (exact (365, 30))

produces the exact probabilities.

Now, it would be nice to compare the answers obtained to see how close the approxi-
mation is. One way to do this is to examine the two vectors that have been calculated, for
example by computing the difference. While some checks can be performed visually, it is
inconvenient and difficult to see the big picture. Some plots would be nice.

The simplest kind of plot is accomplished with the command

plot(approx (365, 30))

which gives a picture like Figure 2.1.
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Figure 2.1: Approx plotted against k.

Command: plot (approx (365,30))
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Figure 2.2: Exact plotted against k.

Command: plot (exact (365,30))
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Figure 2.3: Approx plotted against exact.

Command: plot (exact (365,30)), (approx (365,30))
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Figure 2.4: Approx plotted against exact, with the line of equality added.

Command: abline (0,1)

R automatically used k as the second argument, found nice points for the axes, labeled
the y axis, but not the x axis, and chose a reasonable plotting character for the points.
(Some systems choose other default plotting characters.)

Similarly, the command

plot(exact (365,30))

gives Figure 2.2.
While these graphs look roughly similar, it would be nice to have them on the same

graph. One way to do this is to plot them against each other, for example, by using

plot(exact(365,30), approx(365,30))

which yields Figure 2.3.
This is a bit more helpful, but it would be nice to see the line y = x put in here, as it

would give a visual way of seeing the extent to which the approximation deviates from the
exact.

This is accomplished by typing

abline(0,1)

which gives Figure 2.4. Here the “0” gives the intercept, and the “1” gives the slope. Im-
plicitly the line is being thought of as y = a+ bx, hence the (somewhat unfortunate) name
“abline.”

Now we can actually see something, namely that the approximation is a bit too low for
larger values of k. Using square brackets to designate the coordinates of a vector, when we
examine the exact and approximate calculation in the neighborhood of k = 23 we find

exact(365,30)[21] = .44369 approx(365,30)[21] = .43749

exact(365,30)[22] = .47570 approx(365,30)[22] = .46893

exact(365,30)[23] = .50730 approx(365,30)[23] = .50000

Hence it appears that 23 people are enough to have a 1/2 or more probability of at least
one coincident birthday.
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Was our Taylor approximation a success? On the one hand, it told us accurately that
the number we sought was roughly 23, so 18 is too low and 28 too high. On the other hand,
it was not quite accurate, as the approximation could leave serious doubt about whether
the correct answer is 23 or 24. Should we be satisfied or not?

There is an art to finding good approximations, and also for appreciating how large
the error is likely to be in a given instance. It is learned mostly by comparing exact and
approximate results, but there is also some helpful mathematics that can bound errors, or
give rates at which errors go to zero, etc. We’ll count the first-order Taylor approximation
to the birthday problem a qualified success. How useful approximations are depends a lot
on the accuracy required for the use you plan to make of the result.

A more precise approximation might be found by taking another term in the Taylor
approximation. This would involve adding the first n squares of integers, which you know
how to do (see section 1.2.2).

2.2.3 References

There are many fine books on graphics, for example Tufte’s volumes (Tufte (1990, 1997,
2001, 2006)) and Cleveland (1993, 1994). An interesting comparative review of five books
on graphics is given by Kosslyn (1985).

There are also many excellent books on R and S+, R’s commercial counterpart. At an
introductory level, there’s Krause and Olson (1997). At a more advanced level, the book of
Venables and Ripley (2002) is widely used. On-line help and links are available as part of
R, S and S+ functions. Additionally, statlib@www.stat.cmu.edu has many useful libraries
of R, S and S+ functions.

For more on the birthday problem, see Mosteller (1962).

2.2.4 Exercises

1. Extend the approximation by calculating the next-order term in the Taylor expansion.
Compare the resulting approximation to the approximation discussed above. Is the new
approximation more accurate?

2. Compare the approximate and exact solutions to the birthday problem for Martians,
both computationally and graphically (see section 2.2.1, exercise 1).

3. Try it for Jovians. Can your computer handle vectors of the lengths required?

2.3 Simpson’s Paradox

Imagine two routes to the summit of a mountain, a difficult route D and an easier route
D. Imagine also two groups of climbers: amateurs A, and experienced climbers, A. Suppose
that a person has probabilities of reaching the summit R, as a function of the route and
the experience of the climber as follows:

P{R|D,A} = 0.8 P{R|D,A} = 0.7

P{R|D,A} = 0.4 P{R|D,A} = 0.3

Thus experienced climbers are more likely to reach the summit whichever route they
take, and both groups are less likely to reach the summit using the more difficult route.

Further suppose also that the experienced climbers are believed to be more likely to take
the more difficult route:

P{D|A} = 0.75 P{D|A} = 0.35.

statlib@www.stat.cmu.edu
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Now let’s see what the consequences of the choices are for the probability that an expe-
rienced climber reaches the summit.

The events RD and RD are disjoint, and their union is R. Therefore

P{R|A} = P{RD|A}+ P{RD|A}
= P{R|D,A}P{D|A}+ P{R|D,A}P{D|A}
= (0.8)(0.25) + (0.4)(0.75) = 0.5.

Similarly

P{R|A} = P{R|D,A}P{D|A}+ P{R|D,A}P{D|A}
= (0.7)(0.65) + (0.3)(0.35) = 0.56.

Thus amateur climbers have a greater chance of reaching the summit (0.56) than do expe-
rienced climbers (0.5), although for each route they have a smaller chance.

This is an example of Simpson’s Paradox. It may seem paradoxical that the better
climbers reach the summit less often. However the tool of conditional probability is useful
to see the logic of this apparent contradiction. The amateurs have less chance of reaching
the summit than the experienced climbers whichever route they take, but have a greater
chance of reaching the summit because more of them take the easier route.

The first point to make is that these choices of conditional probabilities are coherent.
Thus there is no way to make a sure loser out of a person who holds these beliefs. Second,
if it were the case that P (D|A) = P (D|A), so if the rate of taking the more difficult route
were regarded as the same regardless of the experience of the climber, the “paradox” would
disappear (see problem 2 in section 2.3.2). Indeed, Simpson’s paradox is a conundrum, but
actually is simply an unexpected consequence of coherence.

Now suppose we had gathered data on the skill of climbers and their success in reaching
the summit, but neglected to gather data on what route they chose. This would lead us to
the wrong conclusion that amateurs are better climbers.

Instead of mountain climbers, consider an observational study that compares the success
rates of two medical treatments. The two treatments are like the two kinds of climbers,
and success of the treatment is like reaching the summit. Unmeasured covariates, such as
genetics, smoking, diet or exercise may play the role of the route.

This example illustrates why biostatisticians are very concerned to ensure randomization
of treatment assignment of patients in a clinical trial. The purpose of randomization is to
ensure P{D|A} = P{D|A}. (Chapters 7 and 11 of this book return to this topic in greater
depth.) For example, consider that a general result of clinical studies is that patients who are
sicker don’t do as well as patients who are less sick no matter what treatment they have. Left
to their own devices, physicians might assign one treatment to sicker patients and the other
to less sick ones. Thus an examination of the raw results would not be informative about
which treatment is better. Nonetheless, enthusiasts for data mining sometimes propose
exactly such an analysis (Mitchell (1997)).

As an example of Simpson’s Paradox in practice, consider the data in Table 2.3. To
give you some background, the ancestors of the present-day Maori were the indigenous
people living in New Zealand at the time when European settlers arrived. As such, they
are analogous to the Native Americans in North America, the Inuit of the Arctic, and
the Aboriginal People of Australia. In all these places, there are issues of whether these
descendants of the original inhabitants are being fairly treated. The data in Table 2.3 were
gathered to see whether the Maori were represented in juries in New Zealand in proportion
to their numbers in the population. The results show that overall Maoris comprise 9.5%
of the population and 10.1% of the jury pool. However, when broken down by geography,
Maoris are underrepresented in each district!
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Percentage Maori ethnic group
Eligible population

District (aged 20-64) jury pool shortfall
Whangarei 17.0 16.8 .2

Auckland 9.2 9.0 .2
Hamilton 13.5 11.5 2.0
Rotorua 27.0 23.4 3.6

Gisborne 32.2 29.5 2.7
Napier 15.5 12.4 3.1

New Plymouth 8.9 4.1 4.8
Palmerston N 8.9 4.3 4.6

Wellington 8.7 7.5 1.2
Nelson 3.9 1.7 2.2

Christchurch 4.5 3.3 1.2
Dunedin 3.3 2.4 .9

Invercargill 8.4 4.8 3.6

All districts 9.5 10.1 -.6

Table 2.3: The paradox: the Maori, overall, appear to be over-represented, yet in every
district they are underrepresented.

2.3.1 Notes

The data for Table 2.3 come from Westbrooke (1998). Other real examples of Simpson’s
Paradox are given by Appleton et al. (1996), by Cohen and Nagel (1934, p. 449), by Bickel
et al. (1975), by Morrell (1999), by Knapp (1985) and by Wagner (1982).

Simpson’s Paradox is a name used for several different phenomena. It was popularized
by Blythe (1972, 1973), after a paper by Simpson (1951). However, the basic idea goes back
at least to Pearson et al. (1899, p. 277) and Yule (1903). This is an example of Stigler’s
Rule, which says that when a statistical procedure is named for someone, someone else did
it earlier. Stigler (1980) applies his rule to Stigler’s Rule as well. See also Good and Mittal
(1987).

2.3.2 Exercises

1. Explain in your own words what Simpson’s Paradox is. In your view, is it a paradox?

2. Prove the following:
If

1. P{D|A} = P{D|A}
2. P{S|D,A} > P{S|D,A}

and
3. P{S|D,A} > P{S|D,A},

then
P{S|A} > P{S|A}.

3. Suppose that the probabilities for the climbers are as follows, instead of those given in
section 2.3:

P{R|D,A} = 0.7 P{R|D,A} = 0.6
P{R|D,A} = 0.5 P{R|D,A} = 0.4
P{D|A} = 0.6 P{D|A} = 0.5
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Does this lead to Simpson’s Paradox? Why or why not?

4. Create a setting and give numbers to probabilities that lead to Simpson’s Paradox.

5. In your judgment, do the data in Table 2.3 indicate underrepresentation of Maoris on
New Zealand juries? Does your answer depend on whether New Zealand juries are chosen
to represent the entire population of New Zealand, or chosen within districts?

6. In section 2.3, Simpson’s paradox is introduced in terms of an unmeasured variable (in
the example, the expertise of the climber). What is the equivalent variable in Table 2.3?
How is it possible for Maoris to be underrepresented in each district, but overrepresented
when the districts are put together? Explain your answer.

2.4 Bayes Theorem

There’s no theorem like Bayes theorem,
there’s no theorem I know.
Everything about it is appealing,
everything about it is a wow!

Box (1980a)

The purpose of this section is to derive several forms of a theorem relating conditional
probabilities to each other. The result, Bayes Theorem, is a fundamental tool for the rest of
the book. It explains how to respond coherently to data, and forms the mathematical basis
for a theory of changing your mind coherently.

Observe that P{AB} = P{BA}, but that (2.2) is asymmetric in A and B. Therefore
there are two ways to express P{AB}, namely

P{A|B}P{B} = P{B|A}P{A}. (2.5)

Supposing P{B} > 0 and dividing by P{B} yields

P{A|B} =
P{B|A}P{A}

P{B}
, (2.6)

which is the first form of Bayes Theorem. Looking at (2.6) might make it clear why P{A|B}
and P{B|A} are not the same.

The event B in (2.6) can be decomposed as follows: B = AB ∪ AB. Furthermore AB
and AB are disjoint. Therefore using (1.3),

P{B} = P{AB}+ P{AB}.

Now each of P{AB} and P{AB} can be rewritten using (2.2) so that

P{B} = P{B|A}P{A}+ P{B|A}P{A}. (2.7)

Substituting (2.7) into (2.6) yields

P{A|B} =
P{B|A}P{A}

P{B|A}P{A}+ P{B|A}P{A}
, (2.8)

which is the second form of Bayes Theorem.
Now suppose that instead of A and A we have a set of events A1, A2, . . . , An, that are

mutually exclusive (remember that means that no more than one can occur) and exhaustive
(at least one must occur). Therefore, exactly one occurs. Then B can be written as

B = BA1 ∪BA2 ∪ . . . ∪BAn = ∪ni=1BAi.
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Furthermore, the BAi’s are disjoint, so P{B} =
∑n
i=1 P{BAi}.

Again each of these can be rewritten using (2.2), yielding

P{B} =

n∑
i=1

P{B|Ai}P{Ai}. (2.9)

Now substituting (2.9) into (2.6) and replacing A by Aj yields

P{Aj|B} =
P{B|Aj}P{Aj}∑n
i=1 P{B|Ai}P{Ai}

(2.10)

which is the third and final form of Bayes Theorem. It is important to notice that the second
form is a special case of the third form, in which the mutually exclusive and exhaustive
sequence consists of the two events A and A.

Let’s see how (2.8) works in practice. Suppose A is the event that a person has some
specific disease, and B represents their symptoms. A doctor wishes to assess P{A|B}, her
probability that the person has the disease, given the symptoms the person exhibits. The
medical literature is generally organized in terms of P{B|A}, the probability of various
symptoms given diseases a person might have. The bridge between the literature and the
desired conclusion is built using Bayes Theorem. To use it (in the second form) requires
the doctor to make a judgement about P{A}. Now P{A} is the doctor’s probability that
the person has the disease before knowing about symptoms B. Depending on what disease
we’re talking about, she might want to know about the person’s medical history, the medical
history of the family, what travels the person has recently made, or other information. All
of this might go into her belief P{A}. This belief can be understood in terms of what price
she would give to buy or sell a ticket that pays $1 if the person does indeed have disease
A, and nothing otherwise. Additionally she has to assess what she thinks about P{B|A}
and P{B|A}. These are respectively her probability of the symptoms if the person has the
disease and does not. To take a ridiculous example again, suppose B represents “has two
ears.” Then P{B|A} and P{B|A} are both reasonably taken to be 1, and (2.8) reduces to
P{A|B} = P{A}, so the symptom “has two ears” was uninformative.

The case in which the doctor has n disease-states in mind instead of just two (has or
has not the disease) is addressed by the third form of Bayes Theorem, equation (2.10).

2.4.1 Notes and other views

Bayes Theorem is a simple consequence of the axioms of probability, and is therefore ac-
cepted as valid by all. However some who challenge the use of personal probability reject
certain applications of Bayes Theorem. For instance, in the context of the medical example,
they sometimes view P{B|A} and P{B|A} as reliably given by the medical literature and
therefore “objective,” but P{A} as “subjective” and therefore not a legitimate probability
(Fisher (1959b)). However, this view does not help a doctor treat her patients.

2.4.2 Exercises

1. What are the differences among the three forms of Bayes Theorem?

2. Suppose A1, A2, A3 and A4 are four mutually exclusive and exhaustive events. Also
suppose

P{A1} = 0.1

P{A2} = 0.2

P{A3} = 0.3

P{A4} = 0.4.
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Let B be an event such that

P{A1B} = 0.05

P{A2B} = 0.15

P{A3B} = 0.25

P{A4B} = 0.3

Compute P{A1|B}.
3. An Elisa test is a standard test for HIV. Suppose a physician assesses the probability of

HIV in a patient who engages in risky behavior (unprotected sex with multiple partners
of either sex, or sharing injection drug needles) as .002, and the probability of HIV in a
patient who does not engage in those risky behaviors as .0001. Also suppose the Elisa
test has a sensitivity (probability of having a positive reading if the patient has HIV)
of .99, and a specificity (probability of having a negative reading if the patient does
not have HIV) of .99 and do not depend on whether the patient has engaged in risky
behavior. Let E stand for “engages in risky behavior,” H stand for “has HIV,” and R
stand for “positive Elisa result.” Use Bayes Theorem to compute each of the following:

(a) P{H|E,R}
(b) P{H|E,R}
(c) P{H|E,R}
(d) P{H|E,R}.
The low probabilities even after a positive test led to the development of a more expensive
but higher-specificity follow up test, which is used after a positive Elisa test before the
results are given to patients.

4. In the following problem, choice “at random” means equally likely among the alterna-
tives.
Suppose there are three boxes, A, B and C, each of which contain two coins. Box A has
two pennies, Box B one penny and one nickel, and Box C two nickels. A box is chosen
at random, and then a coin is chosen at random from that box. The coin chosen turns
out to be a nickel. What is the probability that the other coin in the chosen box is also
a nickel? Show each step in your argument.

5. Phenylketonuria (PKU) is a genetic disorder that affects infants and can lead to mental
retardation unless treated. It affects about 1 in 10 thousand newborn infants. Suppose
that the test has a sensitivity of 99.99% and a specificity of 99%. What is the probability
that a baby has PKU if the test is positive?

6. Gamma-glutamyl Transpeptidase (GGTP) is a test for liver problems. Among walking,
apparently healthy persons, approximately 98.6% have no liver problems, 1% are binge
drinkers, 0.2% have a hepatic drug reaction, and 0.2% have some serious liver disease
such as hepatitis, liver cancer, gall stones, metastatic cancer, etc. Suppose the probability
of having a positive test in a person with no liver problems is 5%, in a binge drinker
50%, in those with a drug reaction 80% and among those with serious liver disease 95%.
Suppose a walking, apparently healthy person has a positive test. What is the probability
that such a person has

(a) no liver problems

(b) is a binge drinker

(c) has a hepatic drug reaction

(d) has a serious liver disease?

Do the numbers you have computed in (a) to (d) add up to 1? Why or why not?
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2.5 Independence of events

Suppose two events A and B have the relationship that learning A does not affect how you
would bet on B, that is,

P{B} = P{B|A} = P{AB}/P{A},

or, equivalently (and symmetrically),

P{AB} = P{A}P{B}. (2.11)

Such events are defined to be independent. The events S (the sure event) and φ (the
empty event) are independent of every other event. Also if A and B are independent, then
A and B are independent as well, since P{B} = 1− P{B} = 1− P{B|A} = P{B|A}.

Consider flipping two coins. Then one way to think of the possible outcomes is
{H1H2, H1T2, T1H2, T1T2}. If the coins are fair, it is natural to think that each of these
possibilities has equal probability, namely 1/4. In this case, the probability of H1 is given
by P{H1} = P{H1H2}+P{H1T2} = 1/4 + 1/4 = 1/2. Similarly P{H2} = 1/2. The events
H1 and H2 are independent, since 1/4 = P{H1H2} = P{H1}P{H2} = (1/2)(1/2).

However, suppose someone else decides to code the outcomes by the number of heads,
0, 1 or 2, and believes these are equally likely, so each has probability 1/3.

Can the outcomes of these two flips be regarded as independent? Thus, suppose that
P{H1H2} = P{T1T2} = 1/3. Then for some z, we must have P{H1T2} = (1/3)z and
P{T1H2} = (1/3)(1− z). As a consequence

P{H1} = P{H1H2}+ P{H1T2}
= 1/3 + (1/3)z = (1/3)(1 + z)

P{H2} = P{H1H2}+ P{T1H2}
= 1/3 + (1/3)(1− z)
= (1/3)(2− z).

Independence then requires

1/3 = P{H1H2} = P{H1}P{H2}
= (1/3)(1 + z) · (1/3)(2− z), or

3 = (1 + z)(2− z) = 2 + z − z2.

Thus z must satisfy
h(z) = z2 − z + 1 = 0. (2.12)

This function goes to infinity as z → ∞ and −∞. Its minimum occurs at 2z − 1 = 0, or
z = 1/2. At z = 1/2, h(1/2) = 1/4−1/2+1 = 3/4 > 0. Therefore there are no real numbers
z satisfying (2.12).

Hence the outcome of two flips in this example cannot be regarded as independent.
Can this person be made a sure loser? Provided the person will buy or sell tickets on

any two numbers of heads out of the set {0, 1, 2} for 2/3, and on all three possibilities for 1,
equations (1.1), (1.2) and (1.3) are satisfied. Thus the person cannot be made a sure loser.
What’s going on here? This example is a reminder that avoidance of sure loss is a very mild
condition on beliefs. Many quite unreasonable beliefs can avoid sure loss. At the same time,
it is also useful to be reminded that the idea that flips of coins (the same one or different
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ones) are independent involves an assumption. This assumption may or may not be natural
in the applied context, but it deserves to be justified when it is used.

How might independence be extended to more than two sets? The idea to be captured
is that learning that any number of them has occurred does not alter the probabilities of
the others. One thought is to apply the definition of independence in (2.11) pairwise; that
is, to suppose that (2.11) applies to each pair. However, this idea fails to meet our goal.
Consider the following example:

Suppose that there are four possible outcomes of a random variable X, which we’ll
number 1, 2, 3 and 4. Suppose each outcome is equally likely to you. Let A1 = {1, 2},
A2 = {1, 3} and A3 = {2, 3}. Then A1 occurs if and only if X = 1 or X = 2. Then, by
construction, each A has probability 1/2. Also each pair of A’s has one outcome in common,
and therefore has probability 1/4. For example P{A1A2} = P{X = 1} = 1/4. Thus the
A’s are pairwise independent. However the intersection of the three A’s is φ, the empty set,
which has probability zero, which is not the product of the probabilities of all three A’s,
which is 1/8. Hence, for example, learning that A1 and A2 have occurred, means that the
outcome is known to be X = 1, and so A3 cannot occur. Thus P{A3|A1, A2} = 0 6= P{A3}.

Hence pairwise independence is not sufficient to capture the idea that probablities are
not altered by learning independent events. As a consequence, we define a set of events
A1, A2, . . . An to be independent if the probability of the intersection of every subset of
them is the product of their probabilities. Formally, this is expressed by writing that if
{Ai1 , Ai2 , . . . , Aij} is a subset of {A1, A2, . . . , An}, then

P{Ai1Ai2 . . . Aij} = P{Ai1}P{Ai2} . . . P{Aij}.

Events that are not independent are said to be dependent. Independence turns out to be a
very important concept in applications of probability.

Having discussed conditional probability in Section 2.1 and independence in this section,
it is now possible to move on to conditional independence. It should come as no surprise
that events A1, A2, . . . , An are defined to be conditionally independent given an event B if
every subset {Ai1 , Ai2 , . . . , Aij} of {A1, A2, . . . , An} satisfies

P{Ai1Ai2 . . . Aij |B} = P{Ai1 |B}P{Ai2 |B} . . . P{Aij |B}. (2.13)

Consider the following experiment: I choose one of two coins, and flip it twice. There are
eight possible outcomes, which I label in the following way: {C1, T1, H2} means that I chose
coin 1, the first flip resulted in tails, the second in heads. Provided I give probabilities for
these eight events that are non-negative and sum to 1, equations (1.1) and (1.2) are satisfied.
If, in addition, I agree that the probability of any event is to be the sum of the probabilities
of the events that comprise it, equation (1.3) is satisfied as well. Thus, whatever my choices,
I cannot be made a sure loser.

My choices are as follows:

P{C1T1T2} = P{C2H1H2} = 9/32

P{C1H1H2} = P{C2T1T2} = 1/32

Each of the other four possibilities, namely {C1T1H2}, {C1H1T2}, {C2T1H2} and
{C2H1T2}, is to have probability 3/32. To check that these probabilities satisfy (1.2), note
that 2(9/32) + 2(1/32) + 4(3/32) = 1. Since these are all non-negative, they satisfy (1.1) as
well. Thus I have satisfied the conditions I set in the previous paragraph. Now let’s examine
some consequences of these choices.

The probability of choosing the first coin can be found by addition as follows:

P{C1} = P{C1T1T2}+ P{C1T1H2}+ P{C1H1T2}+ P{C1H1H2}
= 9/32 + 3/32 + 3/32 + 1/32 = 16/32 = 1/2.
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Then P{C2} = 1− P{C1} = 1/2, using (1.7).
We can also calculate the probability that the first flip is a tail:

P{T1} = P{C1T1T2}+ P{C1T1H2}+ P{C2T1T2}+ P{C2T1H2}
= 9/32 + 3/32 + 1/32 + 3/32 = 1/2.

Similarly the calculation for a tail on the second flip gives P{T2} = 1/2. Now let’s
calculate the probability that both flips result in tails, thus:

P{T1T2} = P{C1T1T2}+ P{C2T1T2}
= 9/32 + 1/32 = 10/32 = 5/16.

Now we can examine whether the T1 and T2 are independent. We have

5/16 = P{T1T2} 6= P{T1}P{T2} = (1/2)(1/2) = 1/4.

Therefore T1 and T2 are dependent.
That is not the whole story, however. Let’s compute the probability that the first two

flips are tails, given that the first coin is chosen.

P{T1T2|C1} = P{T1T2C1}/P{C1}
= (9/32)/(1/2) = 9/16.

Also let’s look at P{T1|C1}, which can be calculated as follows:

P{T1|C1} = P{T1C1}/P{C1} = (9/32 + 3/32)/(1/2) = 24/32 = 3/4.

But by a similar calculation, P{T2|C1} = 3/4 as well.
Therefore T1 and T2 are conditionally independent given C1, since

9/16 = P{T1T2|C1} = P{T1|C1}P{T2|C1} = (3/4)(3/4).

In fact, one process that would yield the choices of probabilities I made is to think of the
process in two parts. Think of each coin as equally likely to be chosen. Conditional on coin
1 being chosen, there are two independent flips of coin 1, each of which has probability 3/4
of coming up tails. If coin 2 were chosen, the flips are again independent, with probability
1/4 of tails. (Now you know why I chose the particular numbers I did.)

2.5.1 Summary

EventsA1, A2, . . . , An are conditionally independent given an eventB if every subset of them
satisfies (2.13). Events A1, A2, . . . , An are independent if they are conditionally independent
given S.

2.5.2 Exercises

1. Vocabulary. Explain in your own words what it means for a set of events to be indepen-
dent, and to be conditionally independent given a third event.

2. Make your own example to show that pairwise independence of events does not imply
independence.

3. Suppose A and B are two independent and disjoint events. Suppose P{B} = 1/2. What
is P{A}? Prove your answer.
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4. In the example in section 2.5, carefully write out the calculations for P{T2} and
P{T2|C1}. Justify each step you make by reference to one of the numbered equations in
the book.

5. Suppose you observe two tails in the example just above, but you do not know what
coin was used. Apply Bayes Theorem to find the conditional probability that the coin
was coin 1.

6. Suppose someone regards 0, 1 and 2 heads as being equally likely in two flips of the
same coin and, in the case of exactly one head, considers heads on the first flip to be as
probable as heads on the second flip. Compute the conditional probability of heads on the
second flip given heads on the first flip. What would such a person have to believe about
the coin and the person flipping the coin to sustain these beliefs? Discuss circumstances
under which such beliefs might be plausible.

7. Show that S and φ are independent of every other event.

8. (a) Suppose you flip two independent fair coins. If at least one head results, what is the
probability of two heads?

(b) Suppose the sexes of children in a family are independent, and that boys and girls
are equally likely. If a family with two children has at least one girl, what is the
probability they have two girls?

(c) Again suppose the sexes of children in a family are independent and that boys and
girls are equally likely. Imagine a family with two children who are not twins. Suppose
that the older child is a girl. What is the probability that they have two girls?

9. Suppose A and B are conditionally independent events given a third event C. Does this
imply that A and B are conditionally independent given C? Either prove that it does,
or give a counterexample.

10. Suppose A ⊆ B. Find necessary and sufficient conditions on the pair of probabilities
(P ({A}, P{B}) for A and B to be independent.

11. Imagine three boxes, each of which have three slips of paper in them each with a number
marked on it. The numbers for box A are 2, 4 and 9, for box B 1, 6 and 8, and for box C
3, 5 and 7. One slip is drawn, independently and with equal probability, from each box.

(a) Compute

P{A slip > B slip}
P{B slip > C slip}
P{C slip > A slip}

(b) Is there anything peculiar about these answers? Discuss the implications.

12. Suppose that events A and B are that people have diseases a and b, respectively. Suppose
that having either disease leads to hospitalization H = A ∪ B. If A and B are believed
to be independent events, show that

P (A|BH) < P (A|H).

Thus if hospital populations are compared, a spurious negative association between A
and B might be found. This is called Berkson’s Paradox (Berkson (1946)).

2.6 The Monty Hall problem

This problem comes from a popular U.S. television show called “Let’s Make a Deal.” The
show host, Monty Hall, would hide a valuable prize, say a car, behind one of three cur-
tains. Both of the other two curtains are empty or have a non-prize, such as a goat. The
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contestant is invited to choose one of the curtains. Both of the other curtains are empty if
the contestant’s initial guess is correct. Monty Hall (with great flourish) opens, and, we’ll
assume, always opens, one of the remaining two curtains, showing it to be empty. He then
asks the contestant whether he or she wishes to exchange the curtain originally chosen for
the remaining one. Is it in the interest of the contestant to switch?

We have to specify what Monty Hall does when the contestant correctly chooses the cur-
tain that hides the car. In this case, we’ll suppose that Monty chooses with equal probability
which of the two remaining curtains to open, neither of which contains the car. Therefore
the identity of the unopened and unchosen curtain is irrelevant.

It is natural to suppose, because Monty Hall always opens a curtain which does not
conceal the prize, that no information has been conveyed. Thus there would be two equally
likely curtains, and the contestant can switch or not, with probability 1/2 of winning either
way. This line of reasoning, while plausible, is wrong.

Suppose that the contestant views the three curtains as equally likely to contain the
prize. Then the contestant’s first choice has probability 1/3 of being correct. If his strategy
is not to switch, the contestant wins only in the case that this initial choice was correct,
which continues to have probability 1/3. When the contestant chooses whether to switch,
the choice is between two curtains, of which one contains the prize. The contestant wins
either by switching or by not switching. The probability of winning by switching is then
2/3. Intuitively, by switching, the contestant gets the probability content of both of the
curtains not initially chosen.

Perhaps the point is clearer if expressed in mathematical notation. Define two random
variables, C, an indicator that the curtain you chose initially had the prize, and W , an
indicator that you win the prize. We want to find P{W = 1} for both strategies, “switch”
and “don’t switch.” In both cases, the analysis proceeds by conditioning on C, as follows:

P{W = 1} = P{(W = 1)|(C = 1)}P{C = 1}
+ P{(W = 1)|(C = 0)}P{C = 0},

using 2.9.

Under the “don’t switch” strategy, check that P{(W = 1)|(C = 1)} = 1 and P{(W =
1)|(C = 0)} = 0. Since P{C = 1} = 1/3 and P{C = 0} = 2/3, by substitution P{W =
1} = 1 · 1/3 + 0 · 2/3 = 1/3.

Now under the “switch” strategy, the consequences change as follows:
P{(W = 1)|(C = 1)} = 0 and P{(W = 1)|(C = 0)} = 1. Because
P{C = 1} = 1/3, P{W = 1} = 0 · 1/3 + 1 · 2/3 = 2/3. We conclude that therefore
switching is the better choice.

This point is perhaps even clearer if we consider a more general problem. Imagine that
curtains 1, 2 and 3 have probabilities, respectively, of p1, p2 and p3 of having the car.
By necessity p1 + p2 + p3 = 1. Suppose the contestant’s strategy is to choose a curtain
i and not switch. With this strategy the contestant has probability pi of success, so the
best that can be done is max{p1, p2, p3}. However, if the contestant chooses curtain i and
then switches, his probability of success is 1 − pi. The best curtain to choose maximizes
{1−p1, 1−p2, 1−p3}, and therefore is the least probable curtain. For example, suppose that
the contestant observes that one of the curtains, say curtain 1, does not contain the car, so
p1 = 0. Wisely, the contestant chooses curtain 1, is shown that one of the other curtains
is empty, switches, and wins for sure! Since max{p1, p2, p3} < max{1 − p1, 1 − p2, 1 − p3}
unless some pi = 1, it always pays to choose the least likely curtain, and switch.

The Monty Hall problem became popular after being discussed in a newspaper col-
umn by Marilyn Vos Savant. It generated considerable mail, including letters from Ph.D.
mathematicians eager to prove that her (correct) solution was wrong! (See Tierney (1991).)
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2.6.1 Exercises

1. State in your own words what the Monty Hall problem is.

2. Suppose there are three prisoners. It is announced that two will be executed tomorrow,
and one set free. But the prisoners do not know who will be executed and who will be
set free. Prisoner A asks the jailer to tell him the name of one prisoner (B or C) who
will be executed, arguing that this will not tell him his own fate. The jailer agrees, and
says that prisoner B is to be executed.
Prisoner A reasons that before he had probability 1/3 of being freed, and now he has
probability 1/2. The jailer reasons that nothing has changed, and Prisoner A’s proba-
bility of surviving is still 1/3.
Who is correct, and why? In what ways is this problem similar to, or different from, the
Monty Hall problem?

3. Do a simulation in R to study the Monty Hall problem. Run it long enough to satisfy
yourself about the probability of success with the “switch” and “don’t switch” strategies.

4. Reconsider the simpler version of the Monty Hall problem, assuming p1 = p2 = p3 = 1/3.
Suppose that you have chosen box 1. If the prize is in box 2, Monty Hall must open box
3 and show you that it is empty. Similarly, if the prize is in box 3, Monty Hall must show
you that box 2 is empty. But if the prize is in box 1 (so your initial choice is correct),
Monty Hall has a choice of whether to show you box 2 or box 3. Suppose in this case
you have probability q2,3 that he chooses box 2, and you have probability q3,2 = 1− q2,3

that he chooses box 3.

(a) What is your optimal strategy as a function of q2,3?

(b) What is your probability of getting the prize using your optimal strategy?

(c) Show that when q2,3 = q3,2 = 1/2, your optimal strategy and resulting probability of
getting the prize coincide with those found in the text for the case p1 = p2 = p3 = 1/3.

5. Now consider the general case, where it is not necessarily assumed that p1 = p2 = p3 =
1/3. If you choose box i and the prize is in box i, Monty Hall has a choice between showing
you that box j 6= i is empty and showing you that box k 6= i is empty (where j 6= k).
Suppose you have probability qj,k that he chooses box j, and probability qk,j = 1− qj,k
that he chooses box k.

(a) As a function of p1, p2, p3, q1,2, q1,3 and q2,3 find your optimal strategy.

(b) What is your probability of getting the prize following your optimal strategy?

(c) Show that when q1,2 = q1,3 = q2,3 = 1/2, your optimal strategy and probability of
getting the prize are those found in the text.

2.7 Gambler’s Ruin problem

Imagine two players, A and B. A starts with i dollars, and B starts with n− i dollars. They
play many independent sessions. A wins a session with probability p and gains a dollar from
B. Otherwise A pays a dollar to B with probability q = 1 − p. They play until one or the
other has zero dollars, which means this player is ruined.

Let ai be the probability that A ruins B, if A starts with i dollars. Then the numbers
ai satisfy the following:

a0 = 0 (2.14)

an = 1 (2.15)

ai = pai+1 + qai−1, 1 ≤ i ≤ n− 1. (2.16)

Equation (2.16) is justified by the following argument: Suppose A starts with i dollars.
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If he wins a session, which he will with probability p, his fortune becomes i+ 1 dollars. On
the other hand, if he loses a session, which he will with probability q = 1 − p, his fortune
becomes i− 1 dollars. In both cases, with his new fortune his chance of winning the game
is the same as if he started with his new fortune.

This reasoning is related to (2.7) as follows: Let Ri be the event that A ruins B starting
with i dollars, so ai = P{Ri} for i = 1, . . . , n− 1. Let S be the event that A wins the next
session, so P{S} = p and P{S} = q. The event that A ruins B starting with i dollars given
a success on the next session is exactly the event that A ruins B starting with i+ 1 dollars.
Thus P{Ri | S} = P{Ri+1} = ai+1. Similarly P{Ri | S} = P{Ri−1} = ai−1. Then (2.7)
applies, yielding

ai+1 = P{Ri} = P{Ri | S}P{S}+ P{Ri | S}P{S}
= ai+1p+ ai−1q,

which is (2.16).
Subtracting ai from both sides of (2.16) yields 0 = p(ai+1 − ai) + q(ai−1 − ai), or,

reorganized

ai+1 − ai = r(ai − ai−1), for 1 ≤ i ≤ n− 1, (2.17)

where r = q/p.
Writing out instances of (2.17), we have

a2 − a1 = ra1

a3 − a2 = r(a2 − a1) = r2a1,

etc., and, in general ai − ai−1 = ri−1a1, 1 ≤ i ≤ n. Adding these together to create a
telescoping series,

ai − a1 = (ri−1 + ri−2 + . . .+ r)a1, or

ai = (ri−1 + . . .+ r + 1)a1 =

i−1∑
j=0

rj

 a1.

In particular,

1 = an =

n−1∑
j=0

rj

 a1, so

a1 =
1∑n−1

j=0 r
j
.

Therefore

ai =

∑i−1
j=0 r

j∑n−1
j=0 r

j
i = 0, . . . , n. (2.18)

When r = 1, ai = i/n for i = 0, . . . , n. When r 6= 1, a neater form is available for ai. In
order to use it, a short digression is necessary. A series is called a geometric series if it is
the sum of successive powers of a number.

Both the numerator and denominator of (2.18) are in the form of a geometric series

1 + r + r2 + . . .+ rk = G. (2.19)

I multiply G by (1 − r), but will write the result in a special way to make cancellations
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obvious:

G(1− r) = 1 + r + r2 + . . .+ rk

−r − r2 − . . .− rk − rk+1

= 1 − rk+1.

Thus G(1− r) = 1− rk+1, or

G =
1− rk+1

1− r
. (2.20)

Applying (2.20) to (2.18) yields

ai =
(1− ri)/(1− r)
(1− rn)/(1− r)

=
1− ri

1− rn
=
ri − 1

rn − 1
i = 0, 1, . . . , n, (2.21)

provided r 6= 1.
Formula (2.20) has been derived under the assumption that r 6= 1. This assumption is

necessary in order to avoid dividing by zero in (2.21). However, it is reasonable to hope that
as r approaches 1, ai approaches i/n as an inspection of (2.18) suggests. Let’s see if this is
the case.

As r approaches 1 (written r → 1), ri − 1 → 0, as does rn − 1. Therefore both the
numerator and denominator in (2.21) approach 0. There is a special technique in calculus
to handle this situation, known as L’Hôpital’s Rule.

In general, suppose we want to evaluate

lim
x→x0

f(x)

g(x)
(2.22)

where limx→x0 f(x) = 0 and limx→x0 g(x) = 0. For instance in the Gambler’s Ruin example,
x = r, x0 = 1, f(x) = ri − 1 and g(x) = rn − 1.

We will suppose that f(x) and g(x) are continuous and differentiable at x0. Now

lim
x→x0

f(x)

g(x)
= lim
x→x0

f(x)− f(x0)

g(x)− g(x0)
=

lim
x→x0

f(x)−f(x0)
x−x0

g(x)−g(x0)
x−x0

=
limx→x0

f(x)−f(x0)
x−x0

limx→x0

g(x)−g(x0)
x−x0

=
f ′(x0)

g′(x0)
.

The first step is justified because zero is being subtracted from the numerator and denom-
inator, the second step because the numerator and denominator are being divided by the
same quantity, x− x0. The third step is a property of the limit of ratios, and the last step
comes from the definition of the derivative.

In our application, f ′(x0) = d
dr (ri − 1)

∣∣∣∣
r=1

= iri−1

∣∣∣∣
r=1

= i. Similarly, g′(x0) = d
dr (rn −

1)

∣∣∣∣
r=1

= nrn−1

∣∣∣∣
r=1

= n. Hence

lim
r→1

ri − 1

rn − 1
= i/n, (2.23)

which is the result sought. Hence with the understanding that L’Hôpital’s Rule applies, we
can write

ai =
ri − 1

rn − 1
=

(q/p)i − 1

(q/p)n − 1
i = 0, . . . , n (2.24)

without restriction on r = q/p.
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Let’s see how this result works in an example. Imagine a gambler who has $98, against
a “house” with only $2. However, the house has the advantage in the game: the gambler
has probability 0.4 of winning a session, while the house has probability 0.6. What is the
gambler’s probability of winning the house’s $2 before he goes broke?

Here i = 98, n = 98 + 2 = 100, p = 0.4 and q = 0.6. Then r = q/p = 1.5, and (2.24)
yields

a98 =
(1.5)98 − 1

(1.5)100 − 1
' (1.5)98

(1.5)100
=

1

(1.5)2
= (2/3)2 = 4/9. (2.25)

Thus, despite the gambler’s enormously greater initial stake, he has less than a 50% chance
of winning the house’s $2 before losing his $98 to the house!

2.7.1 Changing stakes

Return now to the general Gambler’s Ruin problem, but suppose now that instead of playing
for $1 each time, the two gamblers play instead for $0.50. Then gambler A starts with 2i
$0.50 pieces, and needs to win a net of 2(n − i) $0.50 pieces to ruin gambler B. Then
in this new game with smaller stakes, gambler A’s probability of ruining gambler B is
(r2i − 1)/(r2n − 1). In greater generality, if dollars are divided into k parts, gambler A has
probability

ai(k) =
rki − 1

rkn − 1
(2.26)

of ruining gambler B.
To show how this works, reconsider the example discussed at the end of section 2.7.

There p = 0.4 and q = 0.6. Again we take i = $98 and n− i = $2, but now suppose k = 2.
Then applying (2.26)

a98(2) =
(1.5)196 − 1

(1.5)200 − 1
≈ (1.5)196

(1.5)200
= (2/3)4. (2.27)

Hence the shift to lower stakes, $0.50 instead of $1.00, has substantially reduced gambler
A’s probability of winning. The purpose of this subsection is to explore why this occurs.

In keeping with the example, suppose that gambler A is the less skilled player, so q > p
and r > 1. Supposing k to be large, we have

ai(k) =
rki − 1

rkn − 1
≈ rki

rkn
= rk(i−n). (2.28)

Since i < n, limk→∞ ai(k) = 0. This shows that if the stakes are very small, the less skilled
gambler is almost sure to lose.

Can a similar analysis apply to the case when the stakes are larger? Returning to our
familiar example, suppose now the players are betting $2 in each session. Then we have

a98(.5) =
(1.5)49 − 1

(1.5)50 − 1
≈ (1.5)49

(1.5)50
= 2/3. (2.29)

Thus shifting to higher stakes has substantially improved the chances for the less skilled
player A.

Although the exact interpretation of the limiting sequence is problematic, the limiting
behavior of (2.26) as k → 0 can be investigated, as follows. By inspection, as k → 0 both the
numerator and the denominator of (2.26) approach 0. Therefore we must apply L’Hôpital’s
Rule. Taking the derivative of the numerator yields

d

dk

{
rki − 1

}
=

d

dk

{
eki log r

}
= eki log r(i log r) = rki(i log r). (2.30)
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Similarly, the derivative of the denominator is

d

dk
{rkn − 1} = rkn(n log r). (2.31)

Therefore

lim
k→0

ai(k) =
rki(i log r)|k=0

rkn(n log r)|k=0
= i/n. (2.32)

Remarkably, then, in this theoretical limit as the stakes get very large, the skill advantage
of the more skilled player disappears, and the less-skilled player has the same probability
of being successful, i/n, as would be the case if p = q = 1/2!

To understand further the behavior of ai(k) it would be good to check that it decreases
as k increases. This is done as follows:

Using (2.30) and (2.31), I have

d

dk
ai(k) =

d

dk

{
rki − 1

rkn − 1

}
=

(rkn − 1)rki · i log r − (rki − 1)rkn · n log r

(rkn − 1)2

=

(
irki

rki − 1
− nrkn

rkn − 1

){(
rki − 1

rkn − 1

)
log r

}
. (2.33)

The second factor, in curly brackets, is positive. Hence I study the sign of the first factor.
The first factor is negative if the function

f(i) =
ixi

xi − 1
(2.34)

is decreasing in i, for fixed x = rk > 1. To examine this, let

∆f(i) =f(i)− f(i+ 1)

=
ixi

xi − 1
− (i+ 1)(xi+1)

(xi+1 − 1)

=
1

(xi − 1)(xi+1 − 1)
{ixi(xi+1 − 1)− xi+1(xi − 1)(i+ 1)}

=K{ix2i+1 − ixi − (i+ 1)x2i+1 + (i+ 1)xi+1}
=K{−ixi − x2i+1 + (i+ 1)xi+1}
=xiK[−i+ xi+1 + (i+ 1)x]

where K =1/(xi − 1)(xi+1 − 1) > 0. (2.35)

If it can be shown that the function

g(x) = −i− xi+1 + (i+ 1)x (2.36)

is negative for all i and all x > 1, then (2.33) will be shown to be negative.

Now g(1) = −i− 1 + (i+ 1) = 0 (2.37)

for all i. Furthermore

g′(x) = −(i+ 1)xi + (i+ 1) = (i+ 1)(1− xi) < 0 (2.38)

for all i and all x > 1. Hence
g(x) < 0 (2.39)
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for all i and x > 1, as was to be shown. Thus we have

d

dk
ai(k) < 0. (2.40)

As the stakes decrease (k increases), the weaker player’s probability of winning, ai(k)
decreases, from ai(0) = i/n to ai(∞) = 0.

Figure 2.5 shows a plot of ai(k) for the example.
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Figure 2.5: The probability of the weaker player winning as a function of the stakes in the
example.

Commands: k=c(seq(.1,.9,.1),1:15)

a=(((1.5)**(k*98))-1)/(((1.5)**(k*100))-1)

plot(k,a,xlab="higher stakes <- k -> lower stakes",

type="l",ylab="A’s probability of ruining B",

main="The weaker player’s chances are better

with higher stakes",

sub="p=0.4,q=0.6, r=q/p=1.5,i=98,n-i=2, n=100")

This finding is qualitatively similar to the finding that in roulette, where a player has a
1/38 probability of gaining 36 times the amount bet, bold play is optimal in having the best
chance of achieving a fixed goal (see Dubins and Savage (1965), Smith (1967) and Dubins
(1968)).

2.7.2 Summary

Gambler A, who starts with i dollars, plays against Gambler B, with n − i dollars, until
one or the other has no money left. A wins a session and a dollar with probability p and
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loses the session and a dollar with probability q = 1− p. A’s probability of ruining B is

ai =
(q/p)i − 1

(q/p)n − 1
.

This formula is to be understood, when q = p, as interpreted by L’Hôpital’s Rule.
The less skilled player has a greater chance of success if the stakes are large than if the

stakes are small.

2.7.3 References

Two fine books on combinatorial probability that contain lots of entertaining examples are
Feller (1957) and Andel (2001).

2.7.4 Exercises

1. Vocabulary. Explain in your own words:

(a) Gambler’s Ruin

(b) Geometric Series

(c) L’Hôpital’s Rule

2. When p = 0.45, i = 90 and n = 100, find ai.

3. Suppose there is probability p that A wins a session, q that B wins, and t that a tie
results, with no exchange of money, where p + q + t = 1. Find a general expression for
ai, and explain the result.

4. Now suppose that the probability that A wins a session is pi if he has a current fortune
of ai, and the probability that B wins is qi = 1− pi. Again, find a general expression for
ai as a function of the p’s and q’s.

5. Use R to check the accuracy of the approximation in (2.25).

6. Consider the Gambler’s Ruin problem from B’s perspective. B starts with a fortune of
n− i, and has probability q of winning a session, and hence p = 1− q of losing a session.
Let bn−i be the probability that B, starting with a fortune of n− i, ruins A. Then

bn−i =
(r′)n−i − 1

(r′)n − 1
,where r′ = p/q = 1/r.

Prove that ai+bn−i = 1 for all integers i ≤ n, and all positive p and q satisfying p+q = 1.
Interpret this result.

2.8 Iterated expectations and independence of random variables

This section introduces two essential tools for dealing with more than one random variable;
iterated expectations and independence. We begin with iterated expectations.

Suppose X and Y are two random independence variables taking only a finite number
of values each. Using the same notation as in section 1.5, let

P{X = xi, Y = yj} = pi,j ,

where

n∑
i=1

pi,j = p+,j > 0 j = 1, . . . ,m,

m∑
j=1

pi,j = pi,+ > 0 i = 1, . . . , n,
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and

m∑
j=1

p+,j =

n∑
i=1

pi,+ = 1.

Now the conditional probability that X = xi, given Y = yj , is

P{X = xi|Y = yj} =
P{X = xi, Y = yj}

P{Y = yj}
=

pi,j
p+,j

. (2.41)

Because this equation gives a probability for each possible value of X provided Y = yj , we
can think of it as a random variable, written X|Y = yj . This random variable takes the
value xi with probability pi,j/p+,j . Hence this random variable has an expectation, which
is written

E[X|Y = yj ] =
∑
i

xipi,j/p+,j .

Now for various values of yj , this conditional expectation can itself be regarded a random
variable, taking the value

∑
i xipi,j/p+,j with probability p+,j .

In turn, its expectation is written as

E{E[X|Y ]} =

m∑
j=1

p+,j

n∑
i=1

xipi,j/p+,j

=

m∑
j=1

n∑
i=1

xipi,j

= E[X]. (2.42)

This is the law of iterated expectations. It plays a crucial role in the next chapter.
To see how the law of iterated expectations works in practice, consider the special case

in which X and Y are the indicator functions of two events, A and B, respectively. To
evaluate the double expectation, one has to start with the inner expectation, E[X|Y ]. (I
remind you that what E[X|Y ] means is the expectation of X conditional on each value of
Y .) Then

E[X|Y = 1] = E[IA|IB = 1]

= 1P{IA = 1|IB = 1}+ 0 P{IA = 0|IB = 1}
= P{IA = 1|IB = 1} = P{A|B}.

Similarly,

E[X|Y = 0] = E[IA|IB = 0] = E[IA|IB = 1] = P{A|B}.

Now I can evaluate the outer expectation, which is the expectation of E[X|Y ] over the
possible values of Y , as follows:

E[E[X|Y ]] = E[E[IA|IB ]]

= P{A|B}P{B}+ P{A|B}P{B}
= P{AB}+ P{AB}
= P{A} = E[IA] = E[X].

The second topic of this section is independence of random variables. Recall from sec-
tion 2.5 that events A and B are independent if learning that A has occurred does not
change your probability for B. The same idea is applied to random variables, as follows:
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When the distribution of X|Y = yj does not depend on j, we have

P{X = xi|Y = yj} =
P{X = xi, Y = yj}

p+,j
=

pi,j
p+,j

must not depend on j, but of course can still depend on i. So denote pi,j/p+,j = ki for some
numbers ki. Now

pi,+ =

m∑
j=1

pi,j =

m∑
j=1

kip+,j = ki

m∑
j=1

p+,j = ki.

Hence we have

P{X = xi|Y = yj} =
pi,j
p+,j

= pi,+ = P{X = xi} for all j.

In this case the random variables X and Y are said to be independent.
If X and Y are independent, and A and B are any two sets of real numbers, the events

X ∈ A and Y ∈ B are independent events. This can be taken as another definition of what
it means for X and Y to be independent.

Intuitively, the idea behind independence is that learning the value of the random vari-
able Y = yj does not change the probabilities you assign to X = xi, as expressed by the
formula

P{X = xi|Y = yj} = P{X = xi}. (2.43)

An important property of independent random variables is as follows: If g and h are
real-valued functions and X and Y are independent, then

E[g(X)h(Y )] =

n∑
i=1

m∑
j=1

g(xi)h(yj)pi,j =

n∑
i=1

m∑
j=1

g(xi)h(yj)pi,+p+,j

=

n∑
i=1

g(xi)pi,+

m∑
j=1

h(yj)p+,j = E[g(X)]E[h(Y )]. (2.44)

When X and Y are independent, (2.44) permits certain expectations to be calculated
efficiently. This will be used in section 2.11 of this chapter, and will reappear as a standard
tool used throughout the rest of the book.

When the random variables are not independent, we get as far as the first equality, but
cannot use the relation pi,j = pi,+p+,j to go further.

The issue of how to define independence for a set of more than two random variables is
similar to the issue of how to define independence for a set of more than two events. For the
same reason as discussed in section 2.5, a definition based on pairwise independence does not
suffice. Consequently we define a set of random variables X1, . . . , Xn as independent if for
every choice of sets of real numbers A1, A2, . . . , An, the events X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈
An are independent events.

Finally, we address the question of a definition for conditional independence. Conditional
independence is a crucial tool in the construction of statistical models. Indeed much of
statistical modeling can be seen as defining what variables W must be conditioned upon to
make the observations X1, . . . , Xn conditionally independent given W .

Two random variables X and Y are said to be conditionally independent given a third
random variable W if X|W is independent of Y |W for each possible value of W . This
relationship is denoted

X ⊥⊥ Y |W.

Again, a set of random variables X1, . . . , Xn are said to be conditionally independent given
W if and only if X1|W, X2|W, . . . ,Xn|W are independent for each possible value of W .
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2.8.1 Summary

When X and Y take only finitely many values, the law of iterated expectations applies, and
says that

E{E[X|Y ]} = E(X).

Random variables X1, . . . , Xn are said to be independent if and only if the events
X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An are independent events for every choice of the sets of
real numbers A1, A2, . . . , An. Random variables X1, . . . , Xn are said to be conditionally
independent given W if and only if the random variables X1|W , X2|W, . . . ,Xn|W are in-
dependent for each possible value of the random variable W .

2.8.2 Exercises

1. Vocabulary. Explain in your own words:

(a) independence of random variables

(b) iterated expectations

2. Show that if X and Y are random variables, and X is independent of Y , then Y is
independent of X.

3. Show that if A and B are independent events, then IA and IB are independent random
variables.

4. Show the converse of problem 3: if IA and IB are independent indicator random variables,
then A and B are independent events.

5. Consider random variables X and Y having the following joint distribution:

P{X = 1, Y = 1} = 1/8

P{X = 1, Y = 2} = 1/4

P{X = 2, Y = 1} = 3/8

P{X = 2, Y = 2} = 1/4.

Are X and Y independent? Prove your answer.

6. For the same random variables as in the previous problem, compute

a) E{X|Y = 1}

b) E{Y |X = 2}
7. Suppose

P{X = 1, Y = 1} = x, P{X = 1, Y = 2} = y, and

P{X = 2, Y = 1} = z,

where x, y and z are three numbers satisfying

x+ y + z = 1, x > 0, y > 0, z > 0.

Are there values of x, y and z such that the random variables X and Y are independent?
Prove your answer.

8. Suppose X1, . . . , Xn are independent random variables. Let m < n, so that X1, . . . , Xm

are a subset of X1, . . . , Xn. Show that X1, . . . , Xm are independent.
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2.9 The binomial and multinomial distributions

The binomial distribution is the distribution of the number of successes (and failures) in n
independent trials, each of which has the same probability p of success. Thus the outcomes of
the trials are separated into two categories, success and failure. The multinomial distribution
is a generalization of the binomial distribution in which each trial can have one of several
outcomes, not just two, again assuming independence and constancy of probability.

Recall from section 1.5 the numbers
(

n
j,n−j

)
= n!

j!(n−j)! . We here study these numbers

further. Consider the expression (x + y)n = (x + y)(x + y) . . . (x + y), where there are n
factors. This can be written as the sum of n+ 1 terms of the form ajx

jy(n−j). The question
is what the coefficients aj are that multiply these powers of x and y. To contribute to the
coefficient of the term xjy(n−j) there must be j factors that contribute an x and (n − j)
that contribute a y. Thus we need the number of ways of dividing the n factors into one
group of size j (which contribute an x), and other group of size (n− j), (which contribute
a y). This is exactly the number we discussed above, n choose j and (n− j). Therefore

(x+ y)n =

n∑
j=0

(
n

j, n− j

)
xjyn−j ,

which is known as the binomial theorem.
Next, consider the following array of numbers, known as Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

Can you write down the next line? What rule did you use to do so?
The number in Pascal’s triangle located on row n + 1 and at horizontal position j + 1

from the left and n− j+1 from the right is exactly the number
(

n
j,n−j

)
. We need the “+1’s”

because n and j start from zero.
Pascal’s triangle can be built by putting 1’s on the two edges, and using the relationship(

n− 1

j − 1, n− j

)
+

(
n− 1

j, n− j − 1

)
=

(
n

j, n− j

)
(2.45)

to fill in the rest of row n. (You are invited to prove (2.45) in section 2.9.3, exercise 1.) This
equation is analogous to the way differential equations are thought of (see, for example,
Courant and Hilbert (1989)). Here the relation

(
n

0,n

)
= 1 is like a boundary condition, and

(2.45) is like a law of motion, moving from the (n − 1)st row to the nth row of Pascal’s
triangle.

Finally, consider n independent flips of a coin with constant probability p of tails and
1−p of heads. Each specific pattern of j tails and n− j heads has probability pj(1−p)n−j .
How many patterns are there with j tails and n− j heads? Exactly

(
n

j,n−j
)
.

Suppose X is the number of tails in n independent tosses. Then

P{X = j} =

(
n

j, n− j

)
pj(1− p)n−j . (2.46)

How do we know that
n∑
j=0

P{X = j} = 1?
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This is true because

1 = (p+ (1− p))n =

n∑
j=0

(
n

j, n− j

)
pj(1− p)n−j =

n∑
j=0

P{X = j},

using the binomial theorem.
In this case X is said to have a binomial distribution with parameters n and p, also

written X ∼ B(n, p). The binomial distribution is the distribution of the sum of a fixed
number n of independent random variables, each of which has the value 1 with some fixed
probability p and is zero otherwise. The number n is often called the index of the binomial
random variable.

We now extend the argument above by imagining many categories into which items
might be placed, instead of just two. Suppose there are k categories, and we want to know
how many ways there are of dividing n items into k categories, such that there are n1 in
category 1, n2 in category 2, etc., subject of course to the conditions that ni ≥ 0, i = 1, . . . , k
and

∑k
i=1 ni = n. We already know that there are n! ways of ordering the items; the first

n1 are assigned to category 1, etc. However, there are n1! ways of reordering the first n1,
which lead to the same choice of items for group 1. There are also n2! ways of reordering
the second, etc. Thus the number sought must be

n!

n1!n2! . . . nk!
,

which is written
(

n
n1,n2,...nk

)
. (Now you can see why, in the case that k = 2, I prefer to write(

n
j,n−j

)
rather than

(
n
j

)
for n!

j!(n−j)! .)

Next, consider the expression (x1 + x2 + . . . + xk)n, where there are n factors. Clearly
this can be written in terms of the sum of products of the form xn1

1 xn2
2 . . . xnkk times some

coefficient. What is that coefficient? To contribute to this factor there must be n1 x1’s,
n2 x2’s, etc., and the number of ways this can happen is exactly

(
n

n1,n2,...nk

)
. Hence we

have the multinomial theorem: (x1 + x2 + . . . + xk)n =
∑(

n
n1,n2...nk

)
xn1

1 xn2
2 . . . xnkk ,

where the summation extends over all (n1, n2, . . . nk) satisfying ni ≥ 0 for i = 1, . . . , k and∑k
i=1 ni = n.
Multinomial coefficients

(
n

n1,n2...nk

)
satisfy the “law of motion”(

n− 1

n1 − 1, n2, . . . nk

)
+

(
n− 1

n1, n2 − 1, . . . nk

)
+ . . .+

(
n− 1

n1, n2, . . . nk − 1

)
=

(
n

n1, n2, . . . nk

)
and the “boundary conditions”(

n

n, 0, 0, . . . 0

)
=

(
n

0, n, 0, . . . 0

)
= . . . =

(
n

0, 0, . . . , 0, n

)
= 1.

Now consider a random process in which one and only one of k results can be obtained.
Result i happens with probability pi, where pi ≥ 0 and

∑k
i=1 pi = 1. What is the probability,

in n independent repetitions of the process, that the outcome will be that result 1 will
happen n1 times, result 2 n2 times, . . ., result k nk times? Each such outcome has probability
pn1

1 pn2
2 . . . pnkk , but how many ways are there of having such a result? Exactly

(
n

n1,n2,...,nk

)
ways. Thus the probability of the specified number n1 of result 1, n2 of result 2, etc. is(

n

n1, n2, . . . , nk

)
pn1

1 pn2
2 . . . pnkk .
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How do we know that these sum to 1? We use the multinomial theorem in the same way
we used the binomial theorem when k = 2:

1 = (p1 + p2 + . . .+ pk)n =
∑(

n

n1, n2, . . . nk

)
pn1

1 pn2
2 . . . pnkk ,

where the summation extends over all (n1, n2 . . . nk) such that ni ≥ 0 for all i, and∑k
i=1 ni = n. In this case the number of results of each type is said to follow the multinomial

distribution.
If X = (X1, . . . , Xk) has a multinomial distribution with parameters n and p =

(p1, . . . , pk), we write X ∼ M(n,p). In this case X is the sum of a fixed number n in-
dependent vectors of length k, each of which has probability pi of having a 1 in the ith

position, and, if it does, it has zeros in all the other positions except the ith.
As an example of the multinomial distribution, suppose in a town there are 40%

Democrats, 40% Republicans and 20% Independents. Suppose that 6 people are drawn
independently at random from this town. What is the probability of 3 Democrats, 2 Repub-
licans and 1 Independent? Here there are n = 6 independent selections of people, who are
divided into k = 3 categories, with probabilities p1 = .4, p2 = .4 and p3 = .2. Consequently
the probability sought is (

6

3, 2, 1

)
(.4)3(.4)2(.2)1 = .12288.

If (X1, X2, . . . , Xk) have a multinomial distribution with parameters n and (p1, . . . , pk),
then Xi has a binomial distribution with parameters n and pi. This is because each of the
n independent draws from the multinomial process either results in a count for Xi (which
happens with probability pi) or does not (which happens with probability p1 + p2 + . . . +
pi−1 + pi+1 + . . .+ pk = 1− pi).

2.9.1 Why these distributions have these names

The Latin word “nomen” means “name.” The prefix “bi” means “two,” “tri” means three
and “multi” means many. Thus the binomial theorem and distribution separates objects
into two categories, the trinomial into three and the multinomial into many.

2.9.2 Summary

X = (X1, . . . , Xk) has a multinomial distribution if X is the sum of n independent vectors
of length k, each of which has probability pi of having a 1 in the ith co-ordinate and 0 in
all other co-ordinates where

∑k
i=1 pi = 1. The special case k = 2 is called the binomial

distribution; the special case k = 3 is called the trinomial distribution.

2.9.3 Exercises

1. Prove that
(

n
j,n−j

)
+
(

n
j+1,n−(j+1)

)
=
(

n+1
j+1,n−j

)
.

2. Prove the binomial theorem by induction on n.

3. Suppose the stronger team in the baseball World Series has probability p = .6 of beating
the weaker team, and suppose that the outcome of each game is independent from the
rest. What is the probability that the stronger team will win at least 4 of the 7 games
in a World Series?

4. Prove
(

n−1
n1−1,n2,...nk

)
+
(

n−1
n1,n2−1,...,nk

)
+ . . .+

(
n−1

n1,n2,...,nk−1

)
=
(

n
n1,n2,...nk

)
.

5. Prove the multinomial theorem by induction on n.
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6. Prove the multinomial theorem by induction on k.

7. When k = 3, what geometric shape generalizes Pascal’s Triangle?

8. Let X have a binomial distribution with parameters n and p. Find E(X).

9. In section 2.5 we considered two possible opinions about the outcome of tossing a coin
twice.

(a) In the first, the probabilities offered were as follows:

P{H1H2} = P{H1T2} = P{T1H2} = P{T1T2} = 1/4.

Does the number of heads in these two tosses have a binomial distribution? Why or
why not?

(b) In the second,

P{H1H2} = P{T1T2} = P{(H1T2 ∪ T1H2)} = 1/3.

Does the number of heads in these two tosses have a binomial distribution? Why or
why not?

10. Suppose that the concessionaire at a football stadium finds that during a typical game,
20% of the attendees buy both a hot-dog and a beer, 30% buy only a beer, 20% buy
only a hot-dog, and 30% buy neither. What is the probability that a random sample of
15 game attendees will have 3 who buy both, 2 who buy only a beer, 7 who buy only a
hot-dog and 3 who buy neither?

2.10 The hypergeometric distribution: Sampling without replacement

There are many ways in which sampling can be done. Two of the most popular are sampling
with replacement and sampling without replacement. In sampling with replacement the
object sampled, after recording data from it, is returned to the population and might be
sampled again. In sampling without replacement, the object sampled is not returned and
therefore cannot be sampled again. Generally theory is easier for sampling with replacement
because one continues to sample from the same population, but common sense suggests that
one gets more information from sampling without replacement. As a practical matter when
the population is large, the difference is negligible, because their chance of resampling the
same object is vanishingly small. Nonetheless, it is worthwhile to understand the distribution
that results from sampling without replacement, which is what this section is about.

Suppose that a bowl contains A apples, B bananas, C cantalopes, D dates and E
elderberries, for a total of F = A+B+C+D+E fruits. Suppose that f fruits are sampled
at random, with each fruit being equally likely to be chosen among those remaining at each
stage, without replacement. There are exactly

(
F

f,F−f
)

ways of doing this.
What proportion of those samples will contain exactly a apples, b bananas, c cantelopes,

d dates and e elderberries?
The A apples have to be divided into the a that will be in the sample and the A − a

that will not. There are exactly
(

A
a,A−a

)
distinct ways to do that. Similarly there are exactly(

B
b,B−b

)
ways to choose the bananas, etc. Thus the probability of getting exactly a apples,

b bananas, etc. is (
A

a,A−a
)(

B
b,B−b

)(
C

c,C−c
)(

D
d,D−d

)(
E

e,E−e
)(

F
f,F−f

)
where f = a+ b+ c+ d+ e. This distribution is known as the hypergeometric distribution
when there are only two kinds of fruit, and the multivariate hypergeometric distribution
when there are more than two. It is denoted HG(A,B,C,D,E).
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As an example of the use of the hypergeometric distribution, a hand in bridge consists
of 13 cards chosen at random without replacement from the 52 cards in the deck. In such a
deck of cards, there are 13 of each suit: spades, hearts, diamonds and clubs. The probability
that a hand of bridge has 6 spades, 4 hearts, 2 diamonds and 1 club is(

13

6, 7

)(
13

4, 9

)(
13

2, 11

)(
13

1, 12

)/(
52

13, 39

)
= .00196,

since there are A = 13 spades, of which a = 6 are chosen, B = 13 hearts, of which b = 4 are
chosen, C = 13 diamonds, of which c = 2 are chosen, and D = 13 clubs, of which d = 1 is
chosen. Then F = A+B + C +D = 52, and f = 6 + 4 + 2 + 1 = 13.

2.10.1 Summary

The hypergeometric distribution specifies the probability of each possible sample when the
sampling is done at random without replacement.

2.10.2 Exercises

1. Suppose there is a group of 50 people, from whom a committee of 10 is chosen at random.
What is the probability that three specific members of the group, R, S and T , are on
the committee?

2. How many ways are there of dividing 18 people into two baseball teams of 9 people each?

3. A deck of cards has four aces and four kings. The cards are shuffled and dealt at random
to four players so that each has 13 cards. What is the probability that Joe, who is one
of these four players, gets all four aces and all four kings?

4. Suppose a political discussion group consists of 30 Democrats and 20 Republicans. Sup-
pose a committee of 8 is drawn at random without replacement. What is the probability
that it consists of 3 Democrats and 5 Republicans?

2.11 Variance and covariance

This section introduces the variance and the standard deviation, two measures of the vari-
ability of a random variable. It also introduces the covariance and the correlation, two
measures of the extent to which two random variables are related.

Suppose X is a random variable, with expectation E[X] = c. The variance of X, written
V [X] is defined as follows:

V [X] = E{(X − c)2}. (2.47)

Because (X − c)2 is non-negative, it follows that

V [X] ≥ 0

for all random variables X. Furthermore V [X] = 0 only if X = c with probability 1. V [X]
can be interpreted as a measure of spread or uncertainty in the random variable X. There’s
an alternative representation of V [X] that’s often useful:

V [X] = E{(X − c)2} = E{X2 − 2Xc+ c2} =

= E[X2]− 2cE[X] + c2

= E[X2]− c2 = E[X2]− (E[X])2; (2.48)

using (1.26) and (1.30).
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Example: Letters and envelopes, once again. As an example, let’s return to letters
and envelopes, and compute the variance of the number of correct matchings of letters and
envelopes.

Recall the notation introduced in section 1.5: Let Ii be the indicator that the ith letter
is in the correct envelope. The number of letters in the correct envelope is I =

∑n
i=1 Ii,

and we showed there that E(I) = 1 for all n. When n = 1, then a random match is sure
to match the only letter with the only envelope, so I is trivial, i.e., P{I = 1} = 1, and
V (I) = 0. Thus we compute V (I) when n ≥ 2. To do so, we need E(I2).

E(I2) = E(

n∑
i=1

Ii)
2 = E

( n∑
i=1

Ii

) n∑
j=1

Ij

 .
This is a crucial step. The indices i and j are dummy indices (that is, any other letter could
be substituted without changing the sum), but using different letters allows us to consider
separately the cases when i = j and when i 6= j.

Then we have

E(I2) = E

( n∑
i=1

Ii

) n∑
j=1

Ij


=

n∑
i=1

n∑
j=1

E(IiIj)

=

n∑
i=j=1

E(IiIj) +

n∑
i,j=1
i6=j

E(IiIj).

Now when i = j, IiIj = I2
i = Ii, so E(IiIj) = E(Ii) = 1/n. However when i 6= j, IiIj is

the indicator of the event that both letters i and j are in their correct envelopes. This has
probability 1

n(n−1) . Hence, if i 6= j,

E[IiIj ] =
1

n(n− 1)
.

Therefore

E(I2) =

n∑
i=1

E(Ii) +

n∑
i,j=1
i6=j

E(IiIj)

= n

(
1

n

)
+ n(n− 1)

(
1

n(n− 1)

)
= 2.

Finally, using (2.48),

V (I) = E(I2)− (E(I))2 = 2− 1 = 1

for all n ≥ 2. In summary, if n = 1, V (I) = 0. If n ≥ 2, V (I) = 1. 2

Now consider two independent random variables, X and Y , with means c1 and c2,
respectively. We know from section 1.5 that

E[X + Y ] = c1 + c2,
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then

V [X + Y ] = E{[(X + Y )− (c1 + c2)]2}
= E{[(X − c1) + (Y − c2)]2}
= E{(X − c1)2 + 2(X − c1)(Y − c2) + (Y − c2)2}
= V [X] + V [Y ] + 2E[(X − c1)(Y − c2)].

Because X and Y are assumed independent, we can take g(x) = X−c1 and h(Y ) = Y −c2
in (2.44) and conclude

E[(X − c1)(Y − c2)] = E[X − c1]E[Y − c2] = 0.

Therefore, when X and Y are independent,

V [X + Y ] = V [X] + V [Y ].

It is easy to forget, but important to remember, that

E[X + Y ] = E[X] + E[Y ]

holds without any restriction on the relationship between X and Y , but

V [X + Y ] = V [X] + V [Y ]

has been shown only under the restriction that X and Y are independent.
Now let’s see what happens when X is transformed to Y = kX + b, where k and b are

constants. We know, from (1.26), that E(Y ) = kE(X) + b. Therefore the variance of Y is

V [Y ] = E[(Y − E(Y ))2]

= E[{(kX + b)− (kE(X) + b)}2]

= E[k(X − E(X))]2

= k2E{[X − E(X)]2}
= k2V [X].

Thus the variance increases as the square of k, or, as we say, scales with k2. A transfor-
mation of the variance, namely its square root, scales with |k|, and is called the standard
deviation. Formally,

SD[X] =
√
V [X].

Then for any constant k,

SD[kX] =
√
V [kX] =

√
k2V [X] = |k|SD[X].

As an example of the computation of a variance, consider the random variable X with the
following distribution:

X =


0 with probability 1/4

2 with probability 1/2

4 with probability 1/4

.

Then

E[X] = 0(1/4) + 2(1/2) + 4(1/4) = 0 + 1 + 1 = 2

E[X2] = 02(1/4) + 22(1/2) + 42(1/4) = 0 + 2 + 4 = 6
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so

V [X] = E[X2]− (E[X])2 = 6− 22 = 2,

using (2.48).
Finally SD[X] =

√
V [X] =

√
2.

Both the variance and the standard deviation can be regarded as measures of the spread
of a distribution.

We now turn to measures of the relationship between two random variables. The first
concept to introduce is the of X and Y , defined to be

Cov[X,Y ] = E[(X − c1)(Y − c2)],

where c1 = E[X] and c2 = E[Y ].
The covariance can be written in another form:

Cov[X,Y ] = E[(X − c1)(Y − c2)] = E[XY − c1Y − c2X + c1c2]
= E[XY ]− c1c2 − c2c1 + c1c2 = E[XY ]− E[X]E[Y ].

Using (2.44), if X and Y are independent, Cov[X,Y ] = 0. However, the converse is not
true.

As an example, consider the following random variables X and Y :

X Y probability
1 0 1/4
0 -1 1/4
0 1 1/4
-1 0 1/4

Then E[X] = E[Y ] = 0, and E[XY ] = 0. Therefore Cov(X,Y ) = E[XY ]− (E[X])(E[Y ]) =
0. However X and Y are obviously not independent, since

Pr{Y = 0|X = 1} = 1,but Pr{Y = 0} = 1/2.

The second measure of the relationship between random variables, the correlation be-
tween X and Y , is written

ρ(X,Y ) =
Cov(X,Y )

SD(X)SD(Y )
.

The advantage of the correlation is that it is shift and scale-invariant as follows: Let
W = aX + b and V = kY + d, where a > 0 and k > 0. Then E(V ) = kE(Y ) + d
and E(W ) = aE(X) + b. Also SD(V ) = kSD(Y ) and SD(W ) = aSD(X). Putting these
relationships together,

Cov (W,V ) =E[WV ]− E[W ]E[V ] = E[(kY + d)(aX + b)]

− E(kY + d)E(aX + b)

=akE(XY ) + adE(X) + bkE(Y ) + bd

− akE(X)E(Y )− adE(X)− bkE(Y )− bd
=akCov (X,Y ).

Hence

ρ(W,V ) =
akCov(X,Y )

aSD(X)kSD(Y )
= ρ(X,Y ).
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Therefore neither the shift parameters b and d, nor the scale parameters a and k matter,
which is what is meant by shift and scale invariance. This property of invariance makes the
correlation especially useful, since the correlation between X and Y is the same regardless
of what units X and Y are measured in.

Correlation is especially useful as a scale-and-shift invariant measure of association. A
high correlation should not be confused with causation, however. Correlation is symmetric
between X and Y , while causation is not. Thus, while smoking and lung cancer have a
positive (and large) correlation, that in itself does not show whether smoking causes lung
cancer, or lung cancer causes smoking, or both, or neither. Additional information about
lung cancer and smoking (such as the mechanism by which smoking leads to lung cancer)
is necessary to sort this out.

I now derive the important inequality −1 ≤ ρ ≤ 1. Suppose W and V are random
variables, with means respectively E(W ) and E(V ) and standard deviations σ(W ) and
σ(V ), respectively. Let X = (W − E(W ))/σ(W ) and Y = (V − E(V ))/σ(V ). Now X
and Y have mean 0, standard deviation (and variance) 1. Furthermore, because X is a
linear function of W and Y is a linear function of V , the invariance argument above shows
ρ(W,V ) = ρ(X,Y ), which I write below simply as ρ. As a consequence, ρ = E(XY ).

Consider the new random variable Z = X − ρY . E(Z) = E(X) − ρE(Y ) = 0. The
variance of Z, which must be non-negative, is

0 ≤ V (Z) = E(X − ρY )2 = E(X2)− 2ρE(XY ) + ρ2E(Y 2)

= 1− 2ρ2 + ρ2 = 1− ρ2.

Consequently
− 1 ≤ ρ ≤ 1. (2.49)

If X is a random variable satisfying 0 < V (X) < ∞, and Y = aX + b and a > 0, then

ρ(X,Y ) = Cov(X,Y)
SD(X)SD(Y ) = aVarX

aSD(X)SD(X) = 1. Similarly if a < 0, ρ(X,Y ) = −1. Hence the

bounds given in (2.49) are sharp, which means they cannot be improved.
The inequality (2.49) is known in mathematics as the Cauchy-Schwarz or Schwarz In-

equality, and has generalizations, also known by the same name.
The next section gives a second proof of this inequality.

2.11.1 Remark

Considerations of the dimensions of the spaces involved shows why uncorrelatedness does
not imply independence. Suppose that X takes on n values and Y takes on m values. Then
the possible values of the set of probabilities {pij} such that P{X = i, Y = j} = pij is
constrained only by pij ≥ 0 and

∑n
i=1

∑m
j=1 pij = 1. Consequently each such element of

the {pij} set can be expressed as vectors of length nm − 1, where 1 has been subtracted
because of the constraint

∑n
i=1

∑m
j=1 pij = 1. Uncorrelatedness, or, equivalently, covariance

zero, gives a constraint on this space of the form

E[XY ] = E[X]E[Y ]

which is a single (quadratic) constraint in the nm− 1 dimensional space.
Now consider the situation in which X and Y are independent. Now the possible values

that the set of probabilities {pi,+}, where P{Xi = i} = pi,+, i = 1, . . . , n may take are
constrained by pi,+ ≥ 0 and

∑n
i=1 pi,+ = 1. Hence the set of {pi,+} can be expressed

as vectors of length n − 1. Similarly the set of probabilities {p+,j}, where P{Y = j} =
p+,j , j = 1, . . . ,m can be expressed as vectors of length m − 1. Under independence, we
have pi,j = pi,+p+,j for i = 1, . . . , n and j = 1, . . . ,m, so under independence, a vector of
length (n− 1) + (m− 1) = n+m− 2 suffices. The difference in the dimension of these two
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spaces is (nm− 1)− (n+m− 2) = nm− n−m+ 1 = (n− 1)(m− 1), which is at least 4 if
n and m are both greater than one. Since independence constrains the space much more, it
is the more powerful assumption.

2.11.2 Summary

This section introduces the variance and the standard deviation, both measures of the spread
or variability of a random variable. It also introduces the covariance and the correlation,
two measures of the degree of association between two random variables.

2.11.3 Exercises

1. Vocabulary. State in your own words the meaning of:

(a) variance

(b) standard deviation

(c) covariance

(d) correlation

2. Find your own example of two random variables that have correlation 0 but are not
independent.

3. Let X and Y have the following values with the stated probabilities:

X Y Probability
1 1 1/9
1 0 1/9

-1 1 1/9
-1 0 1/9
0 1 1/9
0 0 1/9
1 -1 1/9
0 -1 1/9

-1 -1 1/9

(a) Find E(X) and E(Y ).

(b) Find V (X) and SD(X).

(c) Find V (Y ) and SD(Y ).

(d) Find E(XY ) and Cov(X,Y ).

(e) Find ρ(X,Y ).

4. Find the variance of a binomial random variable with parameters n and p.

5. Prove Cov(X,X) = V [X].

6. Prove Cov(X,Y ) = Cov(Y,X).

7. Let a and b be integers such that a < b. Let X be a uniformly distributed random
interval on the integers from a to b, so X has the following distribution:

X =

{
i if a ≤ i ≤ b with probability 1

b−a+1

0 otherwise .

(a) Find E(X).

(b) Find V (X).
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2.12 A short introduction to multivariate thinking

This section introduces an essential tool for thinking about random variables. Here, instead
of thinking about a single random variable X, or a pair of them (X,Y ), we think about a
whole vector of them X = (X1, . . . , Xn). To manage this mathematically, we need to in-
troduce notation for vectors and matrices, and to review some of their properties. We then
move on to use these results to prove again that the correlation between two random vari-
ables is bounded between −1 and 1. Finally we prove a result about conditional covariances
and variances.

2.12.1 A supplement on vectors and matrices

A rectangular array, written A = (ai,j) is displayed as

A =


a1,1 a1,2 . . . a1,n

a2,1

...
am,1 am,2 . . . am,n


and is called a matrix of size m× n, or, more simply, an m× n matrix. Such a matrix has
m rows and n columns. An m× 1 matrix is called a column vector; a 1× n matrix is called
a row vector. Matrices have certain rules of combination, to be explained.

If A = (ai,j) and B = (bi,j) are matrices of order m × n and n × p respectively, then
the product AB is an m× p matrix C = (ci,j) with elements given by ci,j =

∑n
k=1 ai,kbk,j .

Such a product is defined only when the number of columns of A is the same as the number
of rows of B.

It is easy to see that (AB)C = A(BC), since the i, `th element of the matrix (AB)C is

∑
j

(∑
k

ai,kbk,j

)
cj,` =

∑
k

ai,k
∑
j

bk,jcj,`,

which is the i, `th element of A(BC). Then (AB)C and A(BC) can be written as ABC
without confusion.

If A = (ai,j) is an m × n matrix, then A′ = (a′i,j), pronounced “A-transpose,” is the

n×m matrix whose i, jth element is a′i,j = aj,i, for i = 1, . . . , n and j = 1, . . . ,m. (AB)′ is

a p×m matrix whose j, ith element is given by cj,i =
∑n
k=1 bk,jai,k, which is what would be

obtained by multiplying B′ by A′. Hence (AB)′ = B′A′. The transpose operator permits
writing (a1,1, . . . , a1,n)′, a convenient way to write a column vector in horizontal format to
save space.

A matrix is said to be square if the number of rows m is the same as the number of
columns n. A square matrix is said to be symmetric if A = A′, or, equivalently, if ai,j = aj,i
for all i and j.

The identity matrix, denoted by I, is a symmetric matrix, whose i, jth element is 1 if
i = j and 0 otherwise. It is easy to check that

AI = IA = A

for all square matrices A.
For some (but not all) square matrices A, there is an inverse matrix A−1 having the

property that
A−1A = AA−1 = I.

Later, in Chapter 5, we’ll find a characterization of which matrices A have inverses and
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which do not. If A has an inverse, it is unique. To see this, suppose A had two inverses, A−1
1

and A−1
2 . Then

A−1
1 = A−1

1 I = A−1
1 (AA−1

2 ) = (A−1
1 A)A−1

2 = IA−1
2 = A−1

2 .

There is one class of matrices for which it is easy to see that inverses exist. A diagonal
matrix Dλλλ has the vector λλλ down the diagonal, and is zero elsewhere. It is easy to see that
DλλλDµµµ = Dλλλµµµ, where the ith element of λλλµµµ is given by λiµi. Then, provided λi 6= 0 for
all i, the vector with elements µi = 1/λi has the property that DλλλDµµµ = DµµµDλλλ = I, so
(Dλλλ)−1 = Dµµµ.

2.12.2 Covariance matrices

Suppose that Yij is a random variable for each i = 1, . . . ,m and each j = 1, . . . , n. These
random variables can be assembled into a matrix Y whose (i, j)th element is Yi,j . The
numbers E[Yij ], which, for each i and j are the expectations of the random variables Yij ,
can also be assembled into an m×n matrix, with the obvious notation E[Y ]. In particular,
if X = (X1, . . . , Xn)′ is a length n column vector of random variables, then E(X) is also
a column vector of length n, with ith element E(Xi). That is, E(X) = E[(X1, . . . , Xn)′] =
(E(X1), E(X2), . . . , E(Xn))′.

If X is such a column vector of random variables, it is natural to assemble the covariances
of Xi and Xj , Cov(Xi,Xj) into an n×n square matrix, called a covariance matrix. Let Ω be
an n × n matrix whose (i, j)th element is ωi,j = Cov(Xi,Xj). Such a matrix is symmetric,
because Cov(Xi,Xj) = Cov(Xj,Xi).

Now suppose that E(X) = 0 = (0, 0, . . . , 0)′. Then Cov(Xi,Xj) = E(XiXj), and ΩΩΩ =
E(XX′). Let f ′ = (f1, . . . , fn) be a row vector of n constants. Then Y =

∑n
i=1 fiXi = f ′X

is a new random variable, a linear combination of X1, . . . , Xn with coefficients f1, . . . , fn,
respectively. Y has mean E(Y ) = E(f ′x) = f ′EX = 0 and variance V (Y ) = E[f ′XX ′f ] =
f ′E(XX ′)f = f ′Ωf .

Since Var(Y) ≥ 0, we have 0 ≤ f ′ΩΩΩf for all vectors f . Such a matrix Ω is called positive-
semi-definite. A matrix Ω such that f ′Ωf > 0 for all vectors f 6= 0 is called positive definite.

This result can be used to prove again the bounds on the correlation ρ. A general 2× 2
covariance matrix can be written as

Ω =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
where σ2

i = V (Xi), and ρ = ρ(X1, X2). Suppose f =
(

1
σ1
,± 1

σ2

)
. [We’ll do the calculation

for both + and - together, to avoid repetition.]
Then

0 ≤ V (Y ) = fΩΩΩf ′

=

(
1

σ1
,± 1

σ2

)(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)( 1
σ1

± 1
σ2

)
= (σ1 ± ρσ1, ρσ2 ± σ2)

( 1
σ1

± 1
σ2

)
= (1± ρ)± ρ+ 1

= 2± 2ρ.

Therefore
− 1 ≤ ρ ≤ 1. (2.50)
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2.12.3 Conditional variances and covariances

The purpose of this section is to demonstrate the following result:

Cov(X,Y ) = E[Cov(X,Y )|Z] + Cov[E(X|Z), E(Y |Z)], (2.51)

which will be useful later.

Proof. First we will expand out each of the summands using the computational form for
the covariance.

Cov [(X,Y )|Z] =E[XY |Z]− E[X|Z]E[Y |Z]

Then, taking the expecation of both sides,

E [Cov[X,Y |Z]] =E[E[XY |Z]]− E[E[X|Z]E[Y |Z]].

Also,

Cov[E[X|Z], E[Y |Z]] =E[E[X|Z]E[Y |Z]]− EE[X|Z]EE[Y |Z].

Now we can use the formula for iterated expectation (see Section 2.8) to simplify the two
expressions.

EE[X|Z] =E[X],

EE[Y |Z] =E[Y ]

and

EE[XY |Z] =E[XY ].

Hence
E[Cov(X,Y )|Z] + Cov[E[X|Z], E[Y |Z]] =
E[XY ]− E[X]E[Y ] = Cov(X,Y ).

2.12.4 Summary

This section develops vectors and matrices of random variables, and introduces covariance
matrices. From a property of covariance matrices, the important bound for the correlation
ρ, −1 ≤ ρ ≤ 1 is derived. Finally a result about conditional covariances is derived.

2.12.5 Exercises

1. Vocabulary. State in your own words the meaning of:

(a) matrix

(b) matrix muliplication

(c) square matrix

(d) symmetric matrix

(e) inverse of a matrix

(f) diagonal matrix
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(g) covariance matrix

(h) positive semi-definite matrix

(i) positive definite matrix

2. Show that

AI = IA = A

for all square matrices A.

3. Prove V [X] = E[V [X|Z]] + V [E(X|Z)].

4. Recall the distribution given in problem 3 of section 2.11.3:

X Y Probability
1 1 1/9
1 0 1/9

-1 1 1/9
-1 0 1/9
0 1 1/9
0 0 1/9
1 -1 1/9
0 -1 1/9

-1 -1 1/9

Let W = (X,Y ).

(a) What is E[W ]?

(b) Find the covariance matrix of W .

5. Suppose A and B are 2× 2 square matrices.

(a) Find A and B such that AB = BA.

(b) Find A and B such that AB 6= BA.

2.13 Tchebychev’s Inequality and the (weak) law of large numbers

The weak law of large numbers (WLLN) is an important and famous result in probability.
It says that, under certain conditions, averages of independent and identically distributed
random variables approach their expectation as the number of averages grows. Tchebychev’s
Inequality is introduced and used in this section to prove a form of the WLLN.

To start, suppose that X1, X2, . . . , Xn are independent random variables that have the
same distribution. The expectation of each of them is E(X1) = m, and their variance is σ2.
Now consider the average of these random variables, denoted, Xn:

Xn =

n∑
i=1

Xi/n.

Clearly Xn is a new random variable. Its mean is E(Xn) = E(
∑n
i=1Xi/n) =

1
n

∑n
i=1E(Xi) = nm

n = m, and its variance is V (Xn) = V (
∑n
i=1Xi/n) = 1

n2V (
∑n
i=1Xi) =

1
n2

∑n
i=1 V (Xi) = nσ2

n2 = σ2/n. The fact that the variance of Xn decreases as n increases is

critical to the argument that follows. We will consider the random variable Xn −m, which
has mean 0 and variance σ2/n.

Now we switch our attention to Tchebychev’s Inequality. Suppose Y has mean 0 and
variance τ2. (When we apply this inequality, we’re going to think of Y = Xn − m and
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τ2 = σ2/n.) Let P{Y = yi} = pi for i = 1, . . . , n. Then, for any k > 0 we choose,

τ2 = E(Y 2) =

n∑
i=1

y2
i pi =

n∑
i=1
|yi|≤k

y2
i pi +

n∑
i=1
|yi|>k

y2
i pi

≥
n∑
i=1
|yi|>k

y2
i pi ≥ k2

n∑
i=1
|yi|>k

pi = k2P{|Y | > k}.

Here the first inequality holds because we dropped the entire sum for yi < k. The second
inequality holds since the sum is over only those indices i for which |yi| > k and for each of
them, y2

i > k2. Finally the equality holds by substititution.
Rearranged,

τ2/k2 ≥ P{|Y | > k},

which is Tchebychev’s Inequality.
Now let Y = Xn −m. Making this substitution, we have

σ2/nk2 ≥ P{|Xn −m| > k}.

This inequality says that for each k, there is an n large enough so that P{|Xn−m| > k}
can be made as small as we like, so almost all of the probability distribution is piled up at
m. In this sense, Xn approaches m as n gets large.

Phrased formally, the weak law of large numbers says that for every ε > 0 and every
η > 0 there is an N such that for every n ≥ N , P{|Xn −m| > η} < ε. [If this is too formal
for your taste, don’t let it bother you.]

2.13.1 Interpretations

Since the weak law of large numbers is sometimes used to interpret probability, it is useful
to visit that subject at this point. As mentioned in section 1.1.2, some authors propose that
probability of an event A should be defined as the limiting relative frequency with which
A occurs in an infinite sequence of independent trials. Let IAi be the indicator function for
the ith trial. Then IA1 , IA2 , . . . is an infinite sequence of independent and identical trials,
whose average, Xn =

∑n
i=1 IAi/n is the relative frequency with which the event A occurs.

Also E(IAi) = P{Ai = 1} = p, say. Also Var(IAi) = p(1− p). Then the WLLN applies, and
says that the limiting relative frequency of the occurrence of A approaches p.

Let A be an event, and consider an infinite sequence of indicator random variables tA
indicating whether A has occurred in each of infinitely many repetitions. Suppose A has a
limiting relative frequency which I write as pA. Then it is immediate that 0 ≤ pA ≤ 1. Also
if S is the sure event, then ts has a limiting relative frequency, and ps = 1. If A and B are
two disjoint events with sequences tA and tB , respectively, we may associate with A∪B the
sequence which is the component-by-component maximum of tA and tB . This corresponds
to the union of A and B because it is zero if and only if neither A, nor B, nor both, are
one. But the maximum of two binary numbers that are not simultaneously 1 is the same
as the sum. If tA and tB both have limiting relative frequencies, then so does tA∪B , and
pA∪B = pA + pB . Thus limiting relative frequency, in this sense, satisfies the requirements
for coherence, (1.1), (1.2) and (1.3).

There are difficulties, however, with looking to this argument to support a view of
probability that is independent of the observer.

The first difficulty is that, conceived in this way, probability is a function not of events,
but of infinite (or long) sequences of them. Consider two infinite sequences of indicators of
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events, s1 and s2, with respective relative frequencies `1 and `2, where `1 6= `2. Let A be
the indicator of an event not an element of s1 or s2. Consider new sequences s′1 = (A, s1)
and s′2 = (A, s2). These sequences have relative frequencies `1 and `2, respectively. Hence
within this theory the event A does not have a well-defined probability. While this may or
may not be a defect of limiting relative frequency, its use would require a substantial shift
in how probability is discussed and used.

A second issue is that some limitation must be found to the sequences to which limiting
relative frequency is applied. It is necessary to avoid circularity (independence defined in
terms of probability, as in this chapter, but probability defined in terms of sequences of
independent events to get the weak law of large numbers). Consequently there has grown
up a study of “randomness” of a sequence (see von Mises (1939), Richenbach (1948), Church
(1940), Ville (1936, 1939), Martin-Lof (1970) and Li and Vitanyi (1993)). This literature
has not yet, I think, been successful in finding a satisfactory way to think about randomness
as it might apply to a single event.

The frequency view of probability is not operational. There is no experiment I can
conduct to determine the probability of an event A that comports with frequencies. This
contrasts with the subjective view used in this book, which is based on the experiment of
asking at what price you would buy or sell a ticket that pays $1 if A occurs and nothing if
A does not occur.

There is a fourth issue with limiting relative frequency that is examined in section 3.5.3.
As a person who applies probability theory with the intention of making inferences,

I note that many of my colleague statisticians claim to base their viewpoint on relative
frequency without taking into account its limitations and unsettled nature.

From the perspective of this book, the meaning of the weak law of large numbers is as
follows: If you believe that X1, X2, . . . , are independent and identically distributed, with
mean m and variance σ2 , then, in order to avoid sure loss, you also must bet that Xn will
diverge from m only by an arbitrarily small amount as n gets large.

2.13.2 Summary

Tchebychev’s Inequality is used to prove the weak law of large numbers. The weak law of
large numbers says that for a sequence of independent and identically distributed random
variables, the sample average Xn approaches the expectation m as the number, n, of random
variables in the sequence grows.

2.13.3 Exercises

1. Vocabulary. Explain in your own words

(a) Tchebychev Inequality

(b) Weak Law of Large Numbers

2. Recall the rules of “Pick Three” from the Pennsylvania Lottery (see problem 3 in sec-
tion 1.5.2): A contestant chooses a three-digit number, between 000 and 999. A number
is drawn, where each possibility is intended to be equally likely. Each ticket costs $1,
and you win $600 if your chosen number matches the number drawn. Your winnings in
a particular lottery i can be described by the following random variable:

Xi =

{
−$1 with probability .999

$599 with probability .001

(Check this to be sure you agree.)

(a) Find the mean and variance of Xi.
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(b) Suppose that you play the lottery for n days, where n is large. Toward what number
will your average winning tend? Does the WLLN apply? Why or why not?

(c) The advertising slogan of the Pennsylvania Lottery is “you have to play to win.”
Discuss this slogan, together with its counterpart, “you have to play to lose.” Which
is more likely?

3. A multivariate Tchebychev Inequality.
Let X1, . . . , Xn be random variables with E(xi) = µi and V (xi) = σ2

i , for i = 1, . . . , n.
Let Ai = {xi||Xi − µi| ≤

√
nσnδ}, where δ > 0. Prove

P (A1, . . . , An) ≥ 1− δ−2.

Hint: Use Boole’s Inequality from section 1.2.

4. Consider the following random variable, X.

Let X =



Value Probability

−2 1/10

−1 1/5

0 2/5

1 1/5

2 1/10

(a) Compute E(X) and Var(X).

(b) For each k = .5, 1, 1.5, 2, 2.5, compute P{|X| > k}.
(c) For each such k, compute σ2/k.

(d) Compare the answers to (b) and (c). Does the relationship given by the Tchebychev
Inequality hold?

5. Consider the random variable X defined in problem 4.

(a) Write a program in R to draw a random variable with the same distribution as X.

(b) Use that program to draw a sample of size n with that distribuiton, where n = 10.

(c) Compute the average X10 of these 10 observations.

(d) Do the computation in (c) m = 100 times. Use R to draw a plot of these 100 values
of X10.

(e) Do the same for n = 100, drawing m = 100 times. Again draw a plot of the resulting
100 values of X100.

(f) Compare the plots of (d) and (e). Does the comparison comport with the WLLN’s?



Chapter 3

Discrete Random Variables

“Don’t stop thinking about tomorrow”
—Fleetwood Mac

“Great fleas have little fleas upon their backs to bite ’em
And little fleas have lesser fleas
and so on, ad infinitum”

—Augustus DeMorgan

3.1 Countably many possible values

Since section 1.5 of Chapter 1, the random variables considered have been limited to those
taking at most a finite number of possible values. This chapter deals with random variables
taking at most countably many values; the next chapter deals with the continuous case,
in which random variables take uncountably many values. However, since the material of
sections 1.1 to 1.4 was developed without reference to the limitation imposed in section 1.5,
those results still apply.

There is a superficially attractive position that holds that everything we do in probability
and statistics occurs in a space of a finite number of possibilities. After all, computers express
numbers to only a finite number of significant digits, all measurements are taken from a
discrete, finite set of possibilities, and so on. Why then do we need to bother with random
variables taking infinite numbers of possible values?

One answer is that much of what we want to do is more conveniently expressed in a space
of infinite possibilities. But, as will soon be apparent, random variables taking infinitely
many values have costs in terms of additional assumptions. Additionally, it seems to me
that it is the “job” of mathematics to accept the assumptions that are most reasonable for
the application, and not the “job” of the application to accept mathematically convenient,
but inappropriate assumptions.

I think a better answer to this question is that even in a discrete world, infinite spaces
of possibilities come up very naturally. For example, consider independent flips of a coin,
each with probability p > 0 of success. Define the random variable F , which is the number
of failures before the first success. The event that F = k is the event that the first k flips
were failures and that the (k + 1)st was a success. Therefore

P{F = k} = (1− p)kp , for k in some set.

Over what set is it natural to think of this random variable as ranging? I think it natural
to think of k as having any finite value, and therefore as having no upper bound. Thus I
would write

P{F = k} = (1− p)kp k = 0, 1, 2, . . . .

What would be the consequence of imposing a finite world on F? After all, the argument

79
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might be that the probability that F is very large goes to zero exponentially fast and hence
truncating it at some large number would do no harm. And of course if F were simulated
on a computer, there is some upper bound for the simulated F beyond which the computer
would report an overflow or other numerical problem.

While all of this is true, it is also true that if we decided to truncate F by eliminating
the upper tail, choosing to omit only ε > 0 of the probability in the tail, the truncation
point would depend on p (and we might not know p). Thus, considering every sample space
to be finite gets awkward and inconvenient, even in this simple example.

Allowing F to take any integer value leads to a random variable that we will study later
in more detail, the geometric random variable F . Because

∞∑
k=0

P{F = k} =

∞∑
k=0

(1− p)kp = lim
j→∞

j∑
k=0

(1− p)kp

= p lim
j→∞

1− (1− p)j+1

p
(using 2.20)

= lim
j→∞

[1− (1− p)j+1]

= 1,

if you flip long enough, you’re sure of getting a success. In this chapter we study random
variables that take a countably infinite number of values, as does F .

Intuitively one might think that the extension to an infinite number of possibilities should
be trivial, and some results do extend easily. But others do not. Accordingly this chapter is
organized to help you see which results extend, which don’t and why. First (section 3.1.1) I
explain that there are different “sizes” of infinite sets. This leads to the surprise that there
are as many positive even integers as there are positive integers, and that there are “many”
more real numbers than positive numbers. Section 3.2 examines some peculiar behavior of
probabilities on infinite sets. Section 3.3 introduces an additional assumption (countable
additivity) that resolves the peculiarities. The discussion of the properties of expectations
leads to a discussion of why an expectation is defined only when the expectation of the
absolute value is finite. Finally generating functions, cumulative distribution functions and
some standard discrete probability distributions are discussed.

3.1.1 A supplement on infinity

Above I have used the word “countable” without explaining what is meant. So this sup-
plement describes the mathematical theory of infinity, and, along the way, which sets are
countable (also called “denumerable”) and which are not.

We all understand how many elements there are in a finite set. For example, the set
A = {1, 3, 8} consists of three elements. Suppose B = {2, 4, 13}. Then the elements of
A and B can be put in one-to-one correspondence with each other, for instance with the
mapping 1 ↔ 4, 8 ↔ 2, 3 ↔ 13. The existence of such a mapping formally assures us that
A and B have the same number of elements, namely three.

Now we apply the same idea to infinite sets. The simplest, and most familiar such set is
the set of positive natural numbers:

1, 2, 3, . . . .

In this section, I’ll refer to this set as the natural numbers. (Sometimes 0 is included as
well.) The set of natural numbers is defined to be countable. Every set that can be mapped
in one-to-one correspondence with the natural numbers is also countable. For example,
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consider the set of even natural numbers. Consider the following mapping:

1 2 3 4 5 n
l l l l l . . . l
2 4 6 8 10 2n

Clearly each natural number is mapped into an even natural number, and each even natural
number is mapped into a natural number. Thus there is a one-to-one map between the
natural numbers and the even natural numbers, so the set of even natural numbers is
countable.

Another important set in mathematics is the set of positive rational numbers, that is,
the set of numbers that can be expressed as the ratio of two natural numbers. Surprisingly,
the set of rational numbers is also countable, as the following construction shows: Consider
displaying the rational numbers in the following matrix:

1 2 3 4 5 . . .

1
2

2
2

3
2

4
2

5
2

1
3

2
3

3
3

4
3

5
3

1
4

2
4

3
4

4
4

5
4 . . .

...

where the rational number p/q is placed in the pth column and qth row. Now we traverse
this matrix on adjacent upward sloping diagonals, eliminating those rational numbers that
have already appeared. Hence the first few elements of this ordering of the positive rational
numbers would be

1,
1

2
, 2,

1

3
, [2/2 = 1 is omitted], 3,

1

4
,

2

3
,

3

2
, 4, etc.

In this way, every positive rational number appears once in the countable sequence, so the
positive rational numbers are countable. So are all the rational numbers.

The final set we will discuss is the set of real numbers. It turns out that the set of real
numbers is not countable. While this may seem like a nearly impossibly difficult fact to
prove, the proof is remarkably simple. It proceeds by contradiction. Thus we suppose that
the real numbers are countable, and show that the assumption leads to an impossibility. So
let’s suppose that the real numbers can be put in one-to-one correspondence with the natural
numbers. Then every real number must appear somewhere in the resulting sequence. We’ll
now produce a real number that we can show is not in the sequence, which will establish
the contradiction.

Suppose the first real number in the sequence has a decimal expansion that looks like

N1.a1a2 . . . ,

where the dot is the decimal point. So a1 is some natural number between 0 to 9. Let a be a
natural number that is not 0, 9 nor a1. (There are at least seven such choices. Choose your
favorite.) Now consider the second number in the sequence. It has a decimal expansion of
the form

N2.b1b2b3 . . . .

Choose a number b that is not 0, 9 nor b2. (Again, you have at least seven choices.) Keep
doing this process indefinitely.
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Now consider the number with the decimal expansion.

x = .abc . . . .

If this number were in the sequence, it would have to be the nth in the sequence for some
n. The nth element in its decimal expansion is chosen to be different from the nth element
in the decimal expansion of the nth number in the sequence. Therefore x does not appear
in the sequence. Therefore this proposed sequence does not have the number x in it. Since
the proposed mapping from the natural numbers to the reals is arbitrary, there is no such
mapping. Hence the real numbers are not countable. In this argument, we avoided 0 and 9,
so there would be no ambiguity arising from equalities like

2.4999 . . . = 2.5000 . . . .

Thus the real numbers are not countable.

3.1.2 Notes

This way of thinking about infinite sets is due to Cantor. A friendly introduction is found
in Courant and Robbins (1958, pp. 77-88).

3.1.3 Summary

Two sets (finite or infinite) have the same number of elements if there is a one-to-one
mapping between them. The sets that have a one-to-one mapping with the natural numbers
are called countable or denumerable. The even natural numbers and the rational numbers
are countable, but the real numbers are not.

3.1.4 Exercises

1. Vocabulary: Explain in your own words the meaning of:

(a) natural number

(b) rational number

(c) real number

(d) countable set

2. Find mappings that show that each of the following is countable:

(a) the positive and negative natural numbers . . .− 3,−2,−1, 0, 1, 2, 3, . . .

(b) all rational numbers, both positive and negative

3. Show that the set of positive real numbers can be put in one-to-one correspondence with
the set of real numbers x, 0 < x < 1. Hint: think about the function g(x) = 1

x − 1.

4. Show that the set of real numbers satisfying a < x < b for some a and b, can be put in
one-to-one correspondence with the set of real numbers y satisfying c < y < d for every
c and d.

3.2 Finite additivity and countably infinite random variables

This section reviews the axioms of Chapter 1 in the context of random variables that take
on more than a finite number of values. It turns out that some rather strange consequences
ensue, in particular a dynamic sure loss. The next sections show what additional assumption
removes the possibility of dynamic sure loss, and the other bizarre behavior uncovered in
this section.
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Coherence is defined in Chapter 1 by prices (probabilities) satisfying the following equa-
tions:

P{A} ≥ 0 for all A ⊆ S, (1.1)

P{S} = 1, where S is the sure event (1.2)

and

P{A ∪B} = P{A}+ P{B}, where A and B are disjoint. (1.3)

When S has only a finite number of elements, one can specify the whole distribution by
specifying the probability of each element, where these probabilities are non-negative and
sum to 1. Then the probability of any set A can be found by adding the probabilities of the
elements of A, using (1.3) a finite number of times.

However, when S has a countable number of elements, like the integers, that strategy no
longer gives the probability of every set A. Since the strategy works on every finite subset,
it can be extended to complements of finite sets. A cofinite set is a set that contains all but
a finite number of elements. The probability of every cofinite set is also determined by the
strategy of adding up the probabilities of a finite number of disjoint sets and subtracting
the result from 1. But there are many subsets of the integers whose probabilities cannot be
determined this way. These are infinite sets whose complement is also infinite. Examples of
such sets include the even integers (whose complement is the odd numbers), and the prime
numbers (whose complement is every number that is the product of two or more prime
numbers larger than one).

A uniform distribution on the set of all integers is key to the example that is discussed
below. Recall the definition of a uniform distribution on the finite set {1, 2, . . . , n}, as given
in problem 7 in section 2.11.3: each point has probability 1/n. What happens when we look
for a uniform distribution on the infinite set {1, 2, . . .}? The only way each point can have
the same probability is for each point to have probability zero. Then, using (1.3), each finite
set has probability zero. By (1.2), the set S = {1, 2, . . .} has probability one, as does every
cofinite set.

There are many ways in which the probability of infinite sets whose complement is
infinite might be specified. For example, one could extend the specification of probability
by considering, for fixed k, each set of the type {kn + i, n ∈ {0, 1, 2, . . .}, 0 ≤ i ≤ k − 1}.
These sets are called residue classes mod k, or cylinder sets mod k. (Thus if k = 2 and
i = 0, the even numbers result; if k = 2 and i = 1, the odd numbers result.) It is consistent
with coherence to give each residue class mod k the probability 1/k. Indeed, using advanced
methods it is possible to show that there is a whole class of coherent probabilities satisfying
these constraints. (See Kadane and O’Hagan (1995); Schirokauer and Kadane (2007).) Since
the example that follows is true of each member of that class, it won’t matter which of them
one has in mind.

Now that you know about uniform distributions on the integers, I can introduce you to
the central example of this section. It illustrates the anomalies that can occur when one
attempts to apply coherence to random variables with countably many possible values.

Suppose there are two exclusive and exhaustive states of the world, each of which
currently has probability 1/2 to you, A and A. Let X be a random variable taking the
value 1 if A occurs and 0 if A occurs. Then E{X} = (1/2)(1) + (1/2)(0) = 1/2. Now let
Y be a random variable taking values on the natural numbers as follows: {Y |X = 0}
has a uniform distribution on the integers, while P{Y = j|X = 1} = 1/2(j+1), for
j = 0, 1, 2, . . .. These numbers, 1/2, 1/4, 1/8, etc. sum to 1. To verify that these choices
are coherent, notice that all probabilities are non-negative, so (1.1) is satisfied. Also
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P{S} = P{X = 1} + P{X = 0} = 1/2 + 1/2 = 1 so (1.2) is also satisfied. Only finite
and cofinite sets have probabilities determined by (1.3), but this is all we need for the
example.

Now we’re in a position to do the critical calculation. Let’s see what happens if Y is
known to take a specific value, say 3:

P{X = 1|Y = 3} = P{X=1 and Y=3}
P{Y=3}

= P{Y=3|X=1}P{X=1}
P{Y=3|X=1}P{X=1}+P{Y=3|X=0}P{X=0}

= (1/2)41/2
(1/2)4(1/2)+0(1/2) = 1.

Furthermore, the same result applies if any other value for Y is substituted instead of 3.
This leads to a very odd circumstance: The value of a dollar ticket on A is $0.50 to you
at this time. But if tonight you observe the random variable Y , tomorrow you would, in
order not to be a sure loser, value the same ticket at $0. It seems that you should anticipate
being a dynamic sure loser, as you would buy from me for 50 cents the ticket you know you
expect to be valueless to you tomorrow, regardless of the value of Y observed.

Dynamic sure loss (defined formally in section 3.5) faces you with the following difficult
question: Would you pay $0.25 never to see Y ? It would seem that this would be a good
move on your part. But it is a very odd world in which you would pay not to see data.
To be sure of not seeing Y , you would have to make a deal with every other person in the
world, or at least those who know Y , not to tell you. This would lead to a thriving market
for non-information! Dynamic sure loss is uncomfortable.

Our example involves dynamic sure loss, but it is coherent. Therefore, avoidance of
dynamic sure loss involves an additional constraint, beyond coherence, on the prices offered
for tickets. It must apply when random variables, such as Y , take infinitely many possible
values. The needed constraint is developed in the next section. First, however, we need
to understand what went wrong. The heart of the example above is the random variable
X, which is an indicator random variable, with expectation E(X) =

(
1
2

)
1 +

(
1
2

)
0 = 1/2.

However, the conditional expectation E(X|Y = k) = 1 for all k. Hence this example violates
the theorem given in section 2.8 that

E[X] = E{E[X|Y ]}. (3.1)

Let’s see where the proof of the iterated expectation law breaks down when Y can take an
infinite number of possible values.

Recall the notation
P{X = xi, Y = yj} = pi,j .

In this example,

P{X = 1, Y = j} = (1/2)j+2 j = 0, 1, 2, . . .
P{X = 0, Y = j} = 0 j = 0, 1, 2, . . .

Then the p+,j ’s and pi,+’s are the marginal totals of these probabilities, and take the values

p+,j = p1,j + p0,j = (1/2)j+2,
p1,+ =

∑∞
j=0 p1,j = 1/2, as the sum of a geometric series

p0,+ =
∑∞
j=0 p0,j = 0.

Hence
∑∞
j=0 p+,j = 1/2 and p1,+ + p0,+ = 1/2. Thus the constraint, imposed in section

2.8, that
∑
p+,j =

∑
pi,+ = 1 is violated. Why does this matter? We can compute the

conditional probability that X = xi, given Y = yj ; indeed, that is done above. The answers
are

P{X = 1|Y = j} = 1 and P{X = 0|Y = j} = 0 for all j.
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Thus for each value of k, X|Y = k is a random variable taking the value 1 with probability
1, and hence has expectation 1. However, the next line in section 2.8 creates a problem:
“Now, for various values of yj , the conditional expectation itself can be regarded as a
random variable, taking the value

∑
i xipi,j/p+,j with probability p+,j .” In our example∑

i xipi,j/p+,j = (1)(1/2)j+2

(1/2)j+2 = 1 for all j. The issue is that because in the example
∑
p+,j =

1/2, not 1, this conditional expectation is not a random variable. Half the probability has
escaped, and has vanished from the calculation. Hence our assumptions are not strong
enough to conclude that E(X) = E{E(X|Y )}.

There is another way to understand this example. A partition of the sure event S is
a class of non-empty subsets Hj of S that are disjoint and whose union is S. Thus every
element of S is a member of one and only one Hj .

There’s one other mathematical concept we’ll need. The supremum of a set of real
numbers B is the smallest number y such that x ≤ y for all x ∈ B, and is written supB.
Similarly the infinum of B (written inf B) is the largest number z such that z ≤ x for all
x ∈ B. Hence inf[0, 1] = inf(0, 1] = 0 and sup[0, 1) = sup[0, 1] = 1. For unbounded sets B,
it is possible that inf B = −∞ and/or supB =∞. If B = ∅, inf B =∞ and supB = −∞.

In our example, we have P{X = 1} = 1/2, but P{X = 1
∣∣Y = j} = 1 for all j.

Further, the events Hj = {Y = j} are a partition of the sure event S. In general, the
conglomerative property is said to be satisfied by an event A and a partition H = {Hj}
if

inf
j
P{A|Hj} ≤ P{A} ≤ sup

j
P{A|Hj}.

In the example, P{X = 1} = 1/2 < infj P{X = 1
∣∣Y = j} = 1, so the conglomerative

property fails in the example.
Every event A and every partition {Hj} of S satisfies the conglomerative property if S

has only finitely many elements and P is coherent. To show this, note that the index j can
take only finitely many values because qS has only finitely many elements. Suppose there
are J members of the partition {Hj}. Then

P{A} =EIA = EE(IA|Hj) =

J∑
j=1

E(IA|Hj)P{Hj}

=

J∑
j=1

P{A|Hj}P{Hj}.

This displays P{A} as a weighted sum of the numbers P{A|Hj}, j = 1, . . . , J . The weight
on P{A|Hj} is P{Hj}, where P{Hj}’s are non-negative and sum to one. Therefore

min
j=1,...,J

P{A|Hj} ≤ P{A} ≤ max
j=1,...,J

P{A|Hj}

and the conglomerative property is satisfied, since inf = min and sup = max for a finite set.
The next section introduces an additional assumption, countable additivity, and shows

that the conglomerative property holds if countable additivity is assumed.

3.2.1 Summary

This section discusses an example in which your prices are coherent, but you are a dynamic
sure loser, in the sense that you will accept bets at prices that ensure loss after new infor-
mation becomes available. In the same example, you would rationally pay not to see data.
It also violates the conglomerative property. The next three sections discuss what to do
about this.
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3.2.2 References

For more information about finitely additive probabilities on the integers, see Kadane and
O’Hagan (1995) and Schirokauer and Kadane (2007). For the peculiar consequences of mere
finite additivity in the example discussed in this section see Kadane et al. (1996) and Kadane
et al. (2008). DeFinetti (1974) pointed to conglomerability as an important property.

3.2.3 Exercises

1. Vocabulary: Explain in your own words:

(a) dynamic sure loss

(b) conglomerability

(c) cofinite set

(d) residue class, mod k

(e) partition

(f) uniform distribution

Why are these important?

2. Make your own example in which the conglomerative property fails.

3. Calculate P{X = 1, Y = 8} and P{X = 0, Y = 8} in the example discussed in this
section.

4. Verify p1,+ = 1/2 from the example.

3.3 Countable additivity and the existence of expectations

To avoid an uncomfortable example like that shown in section 3.2 requires accepting an
additional constraint on the prices you would pay for certain tickets. Reasonable opinions
can differ about whether the constraint is worthwhile: more “regular” behavior, but only
for assignments of probability that satisfy the additional constraints.

The additional constraint on P that prevents the “pathological” behavior shown in 3.2
is called countable additivity and is defined as follows: Let A1, A2, . . . be a (infinite, but
countable) collection of disjoint sets.

Then

P (∪∞i=1Ai) =

∞∑
i=1

P (Ai). (3.2)

First, we must show that if your probabilities are countably additive, then they also are
finitely additive. That is, I propose:

Theorem 3.3.1. If P (·) satisfies (1.1), (1.2) and (3.2), then it is coherent, i.e., it satisfies
(1.1), (1.2) and (1.3).

Before proving the theorem, I will first prove the following lemma (A lemma is a path.
Remember a dilemma? That’s two paths, presumably hard to choose between.): If (1.1),
(1.2) and (3.2) hold, then P (∅) = 0.

Proof. Let A1, A2, . . . be such that Ai = ∅ for all i = 1, 2, . . . The Ai’s are disjoint and
their union is ∅. Therefore, using (3.2),

P (∅) =

∞∑
i=1

P (∅).

The only value for P (∅) that can satisfy this equation is P (∅) = 0. This concludes the
proof of the lemma.
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Now I will prove the theorem. Since (1.1) and (1.2) are assumed, they need not be proved.
I can assume that (3.2) holds for every countable infinite sequence of disjoint events, and
must prove (1.3) for every finite sequence of disjoint events. Suppose A1, A2, . . . , An is a
given finite collection of disjoint sets. I choose to let An+1 = An+2 = . . . = ∅. Then
A1, A2, . . . is an infinite collection of disjoint sets, and ∪∞i=1Ai = ∪ni=1Ai. Therefore

P (∪ni=1Ai) = P (∪∞i=1Ai) =

∞∑
i=1

P (Ai)

=

n∑
i=1

P (Ai) +

∞∑
i=n+1

P (Ai) =

n∑
i=1

P (Ai),

so (1.3) holds. 2

Not every finitely additive probability is countably additive, however. For example, uni-
form distributions on the integers cannot be countably additive. Therefore the converse of
this theorem is false.

Since every countably additive probability is finitely additive, any result or theorem
proved for finitely additive probabilities holds for countably additive probabilities as well.
By the same token, every countably additive example is an example for finite additivity as
well.

The final sentence of the previous section promised a result showing that countably
additive probabilities satisfy the conglomerative property. Here is that result.

Theorem 3.3.2. If P satisfies countable additivity (3.2), it satisfies the conglomerative
property with respect to every set A and every countable partition {Hj}.

Proof. Let {Hj} be a partition and A a set. Then

A = ∪∞j=1AHj .

The sets {AHj} are disjoint. Then, using countable additivity,

P (A) =

∞∑
j=1

P{AHj} =

∞∑
j=1

P{A|Hj}P{Hj}.

This displays P (A) as a weighted sum of the numbers P{A|Hj}. The weights are P{Hj},
which are non-negative and sum to 1. Hence

inf
j
P{A|Hj} ≤ P (A) ≤ sup

j
P{A|Hj}

and the conglomerative property is satisfied.

There is a simple argument that connects countable additivity with avoidance of sure
loss. Since every countably additive probability is finitely additive, sure loss is impossible
using countable additivity. The relevant question, then, is whether avoiding sure loss requires
countable additivity. Let A1, A2 . . . be a countable sequence of disjoint events, and let A0 =
∪∞i=1Ai.

Let pi be your probability for the event Ai, i = 0, 1, 2, . . .. Now suppose your opponent
buys from you α tickets on Ai, for i = 1, 2, . . . and sells to you α tickets on A0. Then your
winnings are

W =

∞∑
i=1

α(IAi − pi)− α(IA0
− p0) (3.3)

= α[

∞∑
i=1

IAi − IA0 ] + α[p0 −
∞∑
i=1

pi].
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Now
∞∑
i=1

IAi = IA0 , (3.4)

so W = α[p0 −
∑∞
i=1 pi], and is non-stochastic.

A negative value of W would indicate sure loss. The only way to avoid it, for both
positive and negative α, is

p0 =

∞∑
i=1

pi, (3.5)

which is the formula for countably additivity.
DeFinetti (1974, Volume 1, p. 75) would object to (3.3) because it involves being ready

to bet on infinitely many events at once. If one is willing to bet on countably many events
at once, why not uncountably many? This leads to “perfect” additivity, which in turn bans
continuous uncertain quantities. I don’t find this argument particularly appealing, in that
I could imagine stopping at countable infinities.

There is a second objection to (3.3), that I find more persuasive. It is discussed in section
3.3.3.

Viewed in this light, what I have called dynamic sure loss is not so surprising. It involves
an infinite partition, and displays a sure loss that develops if countable additivity is not
assumed.

In order to progress, it is now necessary to review the theorems of Chapters 1 and 2,
to see what modifications are required by the extension of random variables to countable
many values under the assumption of countable additivity. For some of the proofs serious
rethinking is needed, while in others allowing n =∞ suffices.

As an example of the latter, let’s look at the third form of Bayes Theorem given in
section 2.4. Recall that the first form yields the result

P{A|B} = P{B|A}P{A}/P{B}, (3.6)

when P{B} > 0.
Now suppose that A1, A2, . . . are mutually exclusive and exhaustive sets. Then B can

be written as

B = ∪∞i=1BAi. (3.7)

The BAi’s are disjoint. Then

P{B} =

∞∑
i=1

P{BAi} =

∞∑
i=1

P{B|Ai}P{Ai}, (3.8)

where the first equality uses (3.2). Now substituting (3.8) into (3.6) and replacing A by A1

yields

P{A1|B} =
P{B|A1}P{A1}∑∞
i=1 P{B|Ai}P{Ai}

. (3.9)

This result generalizes (2.10).
However, things are not so easy for the properties of random variables, and especially

for expectations of random variables. The first issue occurs in formula (1.24), the definition
of the expectation of a random variable, which reads as follows:

E(W ) =

n∑
i=1

wipi, (1.24)
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where P{W = wi} = pi for i = 1, . . . n and
∑n
i=1 pi = 1. Now why can’t we substitute

n =∞ in (1.24) and go about our business?
First, let’s be careful about what such a sum would mean. If u1, u2, u3, . . . are the terms

of such a series, and S1 = u1, S2 = u1 + u2, S3 = u1 + u2 + u3, etc. are the partial sums,
then what is meant by S =

∑∞
i=1 ui is S = limn→∞ Sn? Such a limit does not always exist.

This is unlike the case of (1.24), which always exists, because it is a finite sum.
We begin with an example to show that S does not always exist.. Consider the sum

T =

∞∑
i=1

1/i2.

It is not immediately obvious whether T is finite or infinite. It is finite, as the following
argument shows:

Let u1 = 1− 1/2 ; u2 = 1/2− 1/3; . . . un = 1
n −

1
n+1 .

Each of these is positive, and its partial sums are

Sn =

n∑
i=1

ui = 1− 1/(n+ 1)

which converges to 1 as n→∞. However,

un =
1

n
− 1

n+ 1
=

1

n(n+ 1)
>

1

(n+ 1)2
, so

1 + Sn = 1 +

n∑
i=1

ui > 1 +

n+1∑
i=2

1/i2 =

n+1∑
i=1

1/i2.

Taking the limit as n→∞ of both sides, we have

2 = lim
n→∞

(1 + Sn) ≥ lim
n→∞

n+1∑
i=1

1/i2 = T.

So T is no greater than 2. For our purposes, it doesn’t matter exactly what the value of
T is; we care only that it is finite for this argument.

This means that the following is a probability distribution on the natural numbers N :

P{W = i} = pi =
1

Ti2
i = 1, 2, . . . .

Now let’s investigate the expectation of W :

E(W ) =

∞∑
i=1

wipi =

∞∑
i=1

i · 1

Ti2
=

1

T

∞∑
i=1

1

i
.

What can be said about the sum
∑∞
i=1

1
i ?

We group terms together in this sum, taking together the 2n−1 terms that end in 1
2n . We

then bound these terms below by 1
2n , and add. This yields an infinite number of summands

of 1
2 , as follows:

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ . . . ≥

1 +
1

2
+ (

1

4
+

1

4
) + (

1

8
+

1

8
+

1

8
+

1

8
) + . . . =

1 +
1

2
+

1

2
+

1

2
+ . . . =∞.
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Hence
∑∞
i=1

1
i diverges to infinity. In this case, E(W ) is said not to exist. Therefore we

have an example of a random variable whose expectation does not exist. The important
lesson to learn is that when random variables have countably many values, the expectation
may or may not exist.

More mischief can happen when W can take both positive and negative values. To give
a flavor of the difficulties, consider the sum

1− 1 + 1− 1 + 1− 1 . . . .

The terms in this sum can be grouped in two natural ways. The grouping

(1− 1) + (1− 1) + (1− 1) . . .

makes it seem that the sum must be 0. However the grouping

1 + (−1 + 1) + (−1 + 1) + (−1 + 1)

makes it seem that the sum must be 1. Indeed, the even partial sums are 0, while the odd
partial sums are 1, so limn→∞ Sn does not exist.

We now begin an examination of the convergence of series, so that we can determine for
which random variables we may usefully write an expectation.

Theorem 3.3.3. Let u1, u2, . . . be terms in an infinite series. Denote by a1, a2, . . . the posi-
tive terms among u1, u2, . . . taken in the order of their occurrence. Similarly let −b1,−b2, . . .
be the negative terms, again in order of occurrence.

If
∑
|un| <∞, then

∑
an and

∑
bn are both convergent, and∑
un =

∑
an −

∑
bn.

Proof. If
∑
|un| = M <∞, then for all N ,

N∑
n=1

|un| ≤M.

Now consider a partial sum of the a’s,
∑m
i=1 ai. Since each of the a’s is a un for some n,

there is an N large enough so that each of the terms a1 . . . , am occur in u1 . . . , uN . But∑m
i=1 ai ≤

∑N
j=1 |uj | ≤M . It then follows that

∑∞
i=1 ai converges. Similarly each bi occurs

somewhere in the sequence
∑∞
n=1 un, so by the same argument

∑
bn converges.

Finally suppose that in the sum u1 + . . .+un there are rn positive terms and sn negative
ones. Then

u1 + u2 + . . .+ un = a1 + . . .+ arn − (b1 + . . .+ bsn).

Letting n→∞, we have

∞∑
n=1

un =

∞∑
n=1

an −
∞∑
n=1

bn as claimed.

There is one more property of series critical for the application to the expectation of
random variables. The expectation of a random variable, which we are thinking of as

E(W ) =

∞∑
i=1

wipi

cannot depend on the order of the terms in the summation. The next theorem shows that
if a series is absolutely convergent, or, equivalently, if

∑
|un| <∞, then the order of terms

doesn’t matter.
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Theorem 3.3.4. Let the series
∑
un be convergent, with sum s and suppose

∑
|un| <∞.

Let
∑
vn be a series obtained by rearranging the order of terms in

∑
un ( i.e., every vi is

some uj and every uj is some vi). Then
∑
vn is convergent, with sum s.

Proof. Consider first the situation in which all the u’s (and hence all the v’s) are non-
negative. Since s =

∑
un and each vi is some uj , the partial sums of the series

∑
vn must

each be less than s. Therefore the series
∑
vn converges, and its sum s′ must satisfy s′ ≤ s.

But this argument can be reversed, yielding s ≤ s′. Hence s = s′.
Now consider the case in which the u’s can be negative. By Theorem 3.3.3, we can write∑

un =
∑

an −
∑

bn.

Similarly for the rearranged series, we can write∑
vn =

∑
a′n −

∑
b′n.

But a′n is a rearrangement of an and b′n is a rearrangement of bn. Hence
∑
an =

∑
a′n and∑

bn =
∑
b′n. Therefore

∑
vn converges, and to the same sum as

∑
un.

The case not yet considered is when
∑
|un| is not convergent, but

∑
un converges. The

following (classic) example shows that odd things happen to rearrangements under these
conditions.

We already know, from section 2.7, the sum of a finite geometric series:

k∑
i=0

ri =
1− rk+1

1− r
=

1

1− r
− rk+1

1− r
.

From elementary calculus, we know∫ x

0

dt

1 + t
= log(1 + t)|x0 = log(1 + x)− log 1 = log(1 + x).

Then

log(1 + x) =

∫ x

0

1

1 + t
dt =

∫ x

0

1

1− (−t)
dt

=

∫ x

0

[
n∑
i=0

(−t)i +
(−t)n+1

1 + t

]
dt

=

n∑
i=0

∫ x

0

(−t)idt+

∫ x

0

(−t)n+1

1 + t
dt

=

n∑
i=0

− (−x)i+1

i+ 1
+

∫ x

0

(−t)n+1

1 + t
dt

=x− x2

2
+
x3

3
+ . . .+

(−1)n(−x)n+1

n+ 1
+Rn

where Rn =
∫ x

0
(−1)n+1tn+1

(1+t) dt. Now

|Rn| ≤
∫ x

0

tn+1dt =
xn+2

n+ 2
,

which goes to zero for 0 ≤ x ≤ 1, as n→∞. Therefore, taking the limit as n→∞, we may
write

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . . , 0 ≤ x ≤ 1
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and in particular

log 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . . (3.10)

This series (called the alternating harmonic series) converges but is not absolutely conver-
gent since

∑∞
i=1

1
i =∞. Therefore it may serve as an example not covered by Theorems 3.3.3

and 3.3.4. It is convenient to re-express (3.10) as follows:

log 2 =

∞∑
i=1

(−1)i+1

i
=

∞∑
k=0

[
1

4k + 1
− 1

4k + 2
+

1

4k + 3
− 1

4k + 4

]
. (3.11)

There are three operations we may perform on a convergent series. We may multiply
each term by a constant, and get the constant times the sum. Thus we may write

1

2
log 2 =

1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ . . . . (3.12)

Another thing we may do, without changing the sum, is to add zeros where we wish. Hence
I can write

1

2
log 2 = 0 +

1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ 0 +

1

10
+ . . . . (3.13)

Again it is convenient to re-express (3.13) as follows:

1

2
log 2 =

∞∑
k=0

[
0

4k + 1
+

1

4k + 2
+

0

4k + 3
− 1

4k + 4

]
. (3.14)

Term-by-term addition of two convergent series yields a series that converges to the sum
of the two series. To see this, suppose {an} is a series converging to A, and {bn} is a series
converging to B. Then I claim that {cn}, where cn = an + bn, is a series converging to
C = A+B. Then we have

lim
n→∞

n∑
i=1

ai = A and lim
n→∞

n∑
i=1

bi = B.

Therefore

lim
n→∞

n∑
i=1

ci = lim
n→∞

n∑
i=1

(ai + bi) = lim
n→∞

(
n∑
i=1

ai +

n∑
i=1

bi

)

= lim
n→∞

n∑
i=1

ai + lim
n→∞

n∑
i=1

bi = A+B = C.

Returning to our example, I now add (3.11) and (3.14) term-by-term, and obtain

3

2
log 2 =

∞∑
k=0

[
1

4k + 1
+

0

4k + 2
+

1

4k + 3
− 2

4k + 4

]

=

∞∑
k=0

[
1

4k + 1
+

1

4k + 3
− 1

2k + 2

]
. (3.15)

The terms 1
4k+1 + 1

4k+3 , for k = 0, 1, . . . , give the sum of the reciprocals of the odd integers,

once each, and each with a coefficient of +1. Similarly, −1
2k+2 , for k = 0, 1, 2, . . . , gives the

reciprocals of the even integers, once each, and each with a coefficient of −1. Thus (3.15) is
a rearrangement of (3.10). Hence a rearrangement of the series for log 2 yields a series for
3
2 log 2.

The next theorem shows that the situation is in fact much worse than is hinted by this
example: if

∑
|un| is not convergent, but

∑
un converges, a rearrangement of the terms in

un can be found to yield any desired sum R. More formally,
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Theorem 3.3.5. (Riemann’s Rainbow Theorem) Suppose that
∑
un converges, but

∑
|un|

does not. Let R be any real number. Then there is a rearrangement of the terms in un such
that the partial sums approach R.

Proof. First, it is clear that un → 0, because un = sn−sn−1. Since
∑
un converges to some

number s, s = limn→∞ sn = limn→∞ sn−1. Hence limn→∞ un = limn→∞(sn − sn−1) =
lim sn − lim sn−1 = s− s = 0.

We may separate the positive and negative terms in un as in the proof of Theorem 3.3.3
into an and −bn, respectively. Now because

∑
|un| does not converge, at least one of

∑
an

and
∑
bn must not converge. Indeed, neither can converge, since if only one converged,∑

un would be either ∞ or −∞, and hence would not converge.
The idea of the construction is as follows: If R ≥ 0, we start with an’s (in order) and

append to the series as many a’s as required to lift the partial sum sn to be above R for
the first time. Then we append just as many b’s as necessary to reduce the partial sum to
be below R. This process is repeated indefinitely. Since un → 0, it follows that an → 0 and
bn → 0. I show below that the consequence is that the partial sums from this construction
approach R. Similarly, if R < 0, begin with the b’s.

Because
∑
un converges, we have un → 0. Then for every ε > 0 there is some N such

that for all n ≥ N, |un| < ε.
Suppose R ≥ 0. The construction above specifies a particular order of the terms in the

rearrangement. Let wn be the nth term in the rearranged series, and let vn be the nth partial
sum, so that

vn =

n∑
i=1

wi.

Because we have assumed R ≥ 0, we have w1 = v1 = a1. Because
∑
ai =∞ and ai > 0 for

all i, after some positive, finite number t1 of terms, we have

vt1 > R

for the first time. By construction,

|vt1 −R| = vt1 −R < at1 .

Then we subtract some positive, finite number s1 of b-terms from the sum, until, for the
first time

vt1+s1 =

t1∑
i=1

ai −
s1∑
J=1

bj ≤ R.

Again, note that

|R− vt1+s1 | = R− vt1+s1 < bs1 .

Now the process proceeds by adding some finite, positive number of a-terms, so, that,
for the first time, for t2 > t1,

ut2+s1 =

t2∑
i=1

ai −
s1∑
j=1

bj ≤ R,

and, once again,

|ut2+s1 −R| = R− ut2+s1 ≤ at2 .

After at most 2N switches of sign, suppose
∑N
i=1(ti + si) = M . Then for all n ≥ M ,

we have |wn| < ε. [This is where we use that ti > 0 and si > 0. Because of that, after 2N
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switches of sign, each of u1, . . . , uN has already appeared among w1, . . . , wM .] At the first
switch of sign after the 2N th, we also have

|R− vm′ | < |wm′ | < ε, (3.16)

where m′ is the index of the next sign switch. I now proceed by induction on n to show

|R− vn| < ε

for all n ≥ m′.
Equation (3.16) gives the result for n = m′. Now suppose the result is true for n. We

have the following facts:

(i) |vn −R| < ε [ inductive hypothesis]

(ii) |wn+1| < ε

(iii) vn −R and wn have opposite signs.

If x and y are two numbers with opposite signs, then

|x+ y| ≤ max{|x|, |y|}.

Let x = vn −R and y = wn+1. Then

|vn −R+ wn+1| ≤ max{|vn −R, |wn+1|} < ε.

But vn −R+ wn+1 = vn+1 −R. Therefore

|vn+1 −R| < ε.

This completes the induction.
Consequently, for all n ≥ m′,

|vn −R| < ε.

But this shows
lim
n→∞

vn = R.

If R < 0, the only change is to start with the b’s first. Again, we have

lim
n→∞

vn = R.

Since R is arbitrary, this completes the proof of the theorem.

We now return to the topic that necessitated this investigation into the convergence of
series, namely the expectation of random variables taking a countable number of possible
values. The results of Theorems 3.3.4 and 3.3.5 are as follows:

(i) Consider a series u1, u2, . . . that is absolutely convergent, which means
∑
|un| < ∞.

Suppose that
∑
ui converges to s. Let v1, v2, . . . be a rearrangement of u1, u2, . . .. Then∑

vn also converges to s.

(ii) If the series u1, u2, . . . converges but is not absolutely convergent, then there is a rear-
rangement of u1, u2, . . . that converges to any number R you choose.

Hence if we allow convergent but not absolutely convergent series for the expectation of
a random variable, it would also be necessary to specify the order in which the terms are
to enter the series. Since the order of the summands wipi has no probabilistic meaning,
we choose the second possibility, and require absolute convergence before we regard the
expectation as being defined. It is for this reason that we must have E|W | < ∞ as a
condition before E(W ) is regarded as defined.
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3.3.1 Summary

Theorems 3.3.4 and 3.3.5 can be summarized in the following statement. Suppose
∑
un

converges. Then every rearrangement of the terms in un converges to the same limit if and
only if

∑
|un| converges.

Therefore we say that the random variable W , which satisfies P{W = wi} = pi, i =
1, 2, . . . and

∑
pi = 1 has an expectation provided

E(|W |) =

∞∑
i=1

|wi|pi <∞. (3.17)

3.3.2 References

Much of this discussion comes from Taylor (1955, chapter 17), and from Courant (1937) to
which the reader is referred for further details. Both Courant (1937) and Hardy (1955) use
the term “conditional convergence” to refer to what I have called convergence.

3.3.3 Can we use countable additivity to handle countably many bets simultaneously?

Sections 1.1 and 1.7 show that you cannot be made a sure loser for any finite set of gambles
if and only if your probabilities are coherent, or, equivalently, if and only if they are finitely
additive. Since countably additive probabilities are a subset of finitely additive probabilities,
it follows that if your probabilities are countably additive, you cannot be made a sure loser
for any finite set of gambles. It is natural to hope that, if your probabilities are countably
additive, you might avoid being a sure loser against a countable set of gambles. This is not
the case, however, as the following example, due to Beam (2007), shows.

Let c be a real number (whose selection will be discussed later).
Recalling (3.7), the series

1− 1/2 + 1/3− 1/4 + 1/5 . . .

converges (and in fact, converges to log 2). However, this series does not converge absolutely.
Using Theorem 3.5, there is a rearrangement of these terms, which can be expressed as a
permutation in of the integers n, such that

∞∑
n=1

(−1)in · 1

in
= c.

Let an = (−1)in+1 and An = (0, 1/in), and let w have a uniform distribution on (0, 1).
(Continuous random variables, such as a uniform distribution on (0, 1) used here, are intro-
duced in Chapter 4. For our purposes here, the only property needed is that P{0 < w} = w
for 0 < w < 1.) Thus P (An) = 1/in. We now study the payoff from these bets, which is∑

n≥1

an(IAn − P (An)). (3.18)

Suppose wε(0, 1) is the random outcome. Then only finitely many of the terms of the form
anIAn(w) are non-zero, so the contribution∑

n>1

anIAn(w)

is independent of the ordering in.
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In particular, there is a value of k ≥ 1 such that 1
k > w ≥ 1/(k + 1), so

∑
n≥1

anIAn(w) =

k∑
i=1

(−1)i+1I(0,1/i)(w) =

k∑
i=1

(−1)i+1 = I{k is odd}(w).

Then ∑
n≥1

an(IAn − P (An))(w) = c+ I{k is odd}(w). (3.19)

Thus, choosing an order of the terms in so that c > 0 leads to a sure gain, while c < −1
leads to a sure loss. Since the permutation in corresponds to the order in which the bets
are settled, this means that whether this countably infinite set of bets is favorable or not
depends on the order of settlement, which is unsatisfactory.

3.3.4 Exercises

1. Vocabulary: Explain in your own words:

(a) convergent series

(b) absolutely convergent series

2. Let T =
∑∞
i=1 1/i2. Recall 0 < T ≤ 2.

Let Y be defined as follows:

y =


Y = i, if i is even, with probability 1/T i2

= −i, if i is odd, with probability 1/T i2

= 0 otherwise

(a) Show that Y is a random variable, that is, show

∞∑
i=−∞

P{Y = i} = 1.

(b) Does E(Y ) exist? Explain why or why not.

3. Let T ∗ =
∑∞
i=1

1
i3 .

(a) Show that T ∗ <∞.

(b) Define W as follows:

P{W = i} =
1

T ∗i3
i = 1, 2, . . .

Show that W is a random variable.

(c) Show that E(W ) exists.

(d) Show that E(W 2) does not exist.

4. (Rudin (1976, p. 196)) Consider the following two-dimensional array of numbers:

−1 0 0 0 . . .
1/2 −1 0 0 . . .
1/4 1/2 −1 0 . . .
1/8 1/4 1/2 −1 . . .

...
...

...
...

...

(a) Show that the row sums are respectively −1,−1/2,−1/4,−1/8, . . ..
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(b) Show that the sum of the row sums is −2.

(c) Show that each column sum is 0, and therefore that the sum of the column sums is
0.

(d) Explain why the sum in (b) is different from the sum in (c), using the theorems of
this section.

5. In Chapter 1, at equation 1.8, a proof is given that P{B} = 0. Is it necessary to prove
the Lemma that is part of the proof of Theorem 3.3.1? Why or why not?

3.3.5 A supplement on calculus-based methods of demonstrating the convergence of series

There is a reason that will be immediate from calculus as to why
∑

1/j2 converges but∑
1/j diverges. Both sums can be thought of as bounded by the area under a step function

whose height at some positive number x is respectively 1
bxc2 or 1

bxc where bxc is the largest

integer smaller than or equal to x. Since the function

g(x) =

{
1 0 < x < 1
1
x2 x > 1

is everywhere greater than or equal to 1
bxc2 , the area under it is at least as large as

∑
1
i2 .

But this is simply 1 +
∫∞

1
1
x2 dx = 1− ( 1

x )|∞1 = 1 + 1 = 2, so
∑

1/i2 is bounded above by 2
and hence converges.

Similarly, the function

f(x) =

{
1/2 0 < x < 2

1
x+1 x > 2

is always less than 1/x, so its integral is a lower bound to the sum. But∫ ∞
0

f(x)dx = 1 +

∫ ∞
2

1

x+ 1
dx = 1 +

∫ ∞
1

1

x
dx = 1 + log(x)|∞1 =∞.

Hence
∑

1/j diverges.

These arguments can be generalized to show that
∑∞
i=1

1
jp converges for p > 1 and

diverges if p ≤ 1.

3.4 Properties of expectations of random variables taking at most countably
many values, assuming countable additivity

This section explores the properties of expectation stated in sections 1.5 and 1.6 to see
which of them extend to random variables taking a countable number of possible values,
assuming that the underlying probability is countably additive.

1. Suppose X is a random variable having an expectation. Let k and b be constants, and
let Y = kX + b. Then Y has an expectation, and its value is

E(Y ) = kE(X) + b.

Proof. Suppose P{X = xi} = pi, i = 1, 2, . . . , with
∑
pi = 1. Then
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P{Y = kxi + b} = pi, i = 1, 2, . . . From this,

E|Y | =
∞∑
i=1

|kxi + b|pi

≤
∞∑
i=1

(|kxi|+ |b|)pi

=|k|
∞∑
i=1

|xi|pi +

∞∑
i=1

|b|pi

=|k|E|X|+ |b| <∞.

Therefore the expectation of Y exists. Its value is

E(Y ) =

∞∑
i=1

(kxi + b)pi

=k

∞∑
i=1

xipi + b

∞∑
i=1

pi

=kE(X) + b.

2. Suppose X and Y are random variables whose expectations exist. Then X + Y is a
random variable whose expectation exists, and

E(X + Y ) = E(X) + E(Y ).

Proof. The argument is parallel to that in section 1.5.
Let

pi,j = P{X = x1, Y = yj} for i = 1, . . . and j = 1, . . . .

The events {X = xi, Y = yj}, for j = 1, . . . are disjoint and

{X = xi} = ∪∞j=1{X = xi, Y = yj}.

Consequently, using countable additivity, it follows that

P{X = xi} =

∞∑
j=1

P{X = xi, Y = yi}

=

∞∑
j=1

pi,j = pi,+ , i = 1, 2, . . .

Similarly, reversing the roles of X and Y , we have

p+,j =

∞∑
i=1

pi,j , j = 1, 2, . . .
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Now

E|X + Y | =
∞∑
i=1

∞∑
j=1

|xi + yj |P{X = xi, Y = yj}

=

∞∑
i=1

∞∑
j=1

|xi + yj |pi,j

≤
∞∑
i=1

∞∑
j=1

(|xi|+ |yj |)pi,j

=

∞∑
i=1

∞∑
j=1

|xi|pi,j +

∞∑
i=1

∞∑
j=1

|yj |pi,j

=

∞∑
i=1

|xi|
∞∑
j=1

pi,j +

∞∑
j=1

|yj |
∞∑
i=1

pi,j

=

∞∑
i=1

|xi|pi,+ +

∞∑
j=1

|yj |p+,j

= E|X|+ E|Y | <∞.

Therefore X + Y has an expectation. Its value is

E(X + Y ) =

∞∑
i=1

∞∑
j=1

(xi + yj)P{X = xi, Y = yj}

=

∞∑
i=1

∞∑
j=1

pi,j(xi + yj)

=

∞∑
i=1

xipi,+ +

∞∑
j=1

yjp+,j = E(X) + E(Y )

Again, by induction, if X1 . . . Xk are random variables having expectations, then X1 +
. . .+Xk has an expectation, whose value is

E(X1 + . . .+Xk) =
k∑
i=1

E(Xi).

This result holds regardless of any dependencies between the Xi.

3. Suppose X is non-trivial and has an expectation. Then

minX < E(X) < maxX.

(We must extend the possible values of min X to include −∞, and of max X to include
∞.)

Proof. Since X is non-trivial, it takes at least two distinct values each with positive
probability. Then

−∞ ≤minX =

∞∑
i=1

pi(minX) <

∞∑
i=1

pixi = E(X)

<

∞∑
i=1

pi(maxX) = maxX ≤ ∞.
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4. If X is non-trivial and has an expectation c, then there is some positive probability ε > 0
and some η > 0 such that X exceeds c by η, and such that c exceeds X by the fixed
amount η, that is P{X − c > η} > ε and P{c−X > η} > ε.

Proof. Let Ai = { 1
i > X − c ≥ 1

i+1} i = 0, 1 . . .∞, where 1
0 is taken to be ∞. The Ai’s

are disjoint, and

∪∞i=1Ai = {X − c > 0}.

Similarly let Bj = { 1
j > c−X ≥ 1

j+1}, j = 0, 1, . . . ,∞. The Bj ’s are disjoint and

∪∞j=1Bj = {c−X > 0}.

Since X is non-trivial, P{X 6= c} > 0. But

0 < P{X 6= c} = P{X > c}+ P{X < c}

=

∞∑
i=0

P{Ai}+

∞∑
j=0

P{Bj},

using countable additivity.
Hence there must be some i or j such that P{Ai} > 0 or P{Bj} > 0. Suppose first that
P{Ai} > 0. If it were the case that P{Bj} = 0 for all j, then

0 = E(X − c) ≥ (1/(i+ 1))P{Ai} > 0

contradiction.
Therefore if P{Ai} > 0 for some i, there is a j such that P{Bj} > 0.
Conversely, if P{Bj} > 0, but P{Ai} = 0 for all i, then

0 = E(c−X) ≥ (1/(j + 1))P{Bj} > 0

contradiction. Therefore there is both an i such that P{Ai} > 0 and a j such that
P{Bj} > 0.
Now taking ε = min(P{Ai}, P{Bj}) > 0 and η = min{ 1

i+1 ,
1
j+1} > 0 suffices.

5. If g is a real valued function, then Y = g(X) has expectation

E(Y ) =
∑

g(xk)P{X = xk}

where x1, x2, . . . are the possible values of X, provided E(|Y |) <∞.

Proof. This proof is very similar to the proof of theorem 1.6.3 in section 1.6.
The values of Y = g(X) with positive probability are countable, since the values of X
with positive probability are countable. Let those values be yj , j = 1, 2, . . .. Let Ikj be
an indicator for the event X = xk and Y = yj for j = 1, 2, . . . and k = 1, 2, . . .. Note
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that yjIkj = g(xk)Ikj . Then

E(Y ) =

∞∑
j=1

yjP{Y = yj}

=

∞∑
j=1

yjE(

∞∑
k=1

Ikj)

=E

∞∑
j=1

∞∑
k=1

yjIkj

=E

∞∑
j=1

∞∑
k=1

g(xk)Ikj

=

∞∑
k=1

g(xk)E(

∞∑
j=1

Ikj)

=

∞∑
k=1

g(xk)P{X = xk}.

The reordering of the terms does not affect the sum because we have E|Y | <∞.

6. Let X and Y be random variables taking at most countably many values. Suppose that
E[X] and E[X|Y = yj ] exist for all possible values of Y . Then

E[X] = E{E[X|Y ]}.

Proof. Let P{X = xi, Y = yj} = pi,j i, j = 1, 2, . . . where
∑∞
i=1 pi,j = p+,j and∑∞

j=1 pi,j = pi,+ for all i and j, and
∑∞
i=1 pi,+ =

∑∞
j=1 p+,j = 1.

Without loss of generality, we may eliminate any values of X that have zero probability.
Hence we may assume pi,+ > 0 for i = 1, 2, . . .. Similarly, we may eliminate any values
of Y with zero probability, and thus assume p+,j > 0.
Now the conditional probability that X = xi, given Y = yj , is

P{X = xi|Y = yj} =
P{X = xi, Y = yj}

P{Y = yj}
= pi,j/p+,j .

For each fixed value of yj , X|Y = yj is a random variable, taking the value xi with
probability pi,j/p+,j .
Now E[X] exists by assumption, and satisfies E[X] =

∑∞
i=1 xipi,+ =

∑∞
i=1 xi

∑∞
j=1 pi,j .

Because E|X| <∞, we may interchange the order of summation, so

E[X] =

∞∑
j=1

∞∑
i=1

xipi,j

=

∞∑
j=1

p+,j

∞∑
i=1

xipi,j/p+,j

=E{E[X|Y ]}

This result is sometimes called the law of iterated expectation.

7. Let X and Y be independent random variables, and g(X) and h(Y ) are functions of X
and Y , respectively. Suppose both g(X) and h(Y ) have expectations. Then the expec-
tation of g(X)h(Y ) exists, and

E[g(X)h(Y )] = E[g(X)]E[h(Y )].
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Proof. If X and Y are independent,

P{X = xi, Y = yj} = P{X = xi}P{Y = yj} = sitj .

Then

E|g(X)h(Y )| =
∞∑
i=1

∞∑
j=1

|g(xi)||h(yj)|sitj

=

∞∑
i=1

|g(xi)|si
∞∑
j=1

|h(yj)|tj

=E|g(X)|E|h(Y )| <∞.

Therefore the expectation of g(X)h(Y ) exists.
Then

E[g(X)h(Y )] =

∞∑
i=1

∞∑
j=1

g(xi)h(yj)sitj =

∞∑
i=1

g(xi)si

∞∑
j=1

h(yj)tj

=E[g(X)]E[h(Y )]

8. Suppose E|X|k <∞ for some k. Let j < k. Then E|X|j <∞.

Proof. Let P{X = i} = pi. Then

E|X|j =
∑
|Xi|jpi =

∑
|Xi|jpiI(|Xi| ≤ 1) +

∑
|Xi|jpi I(|Xi| ≥ 1)

≤ 1 +
∑
|Xi|kpi I(|Xi ≥ 1)

≤ 1 + E|X|k <∞

In particular, if E(X2) <∞ then E|X| <∞.

9. All the properties of covariances and correlations given in section 2.11 hold for all dis-
crete random variables provided that each of the sums is absolutely convergent, that is,
provided E(X2) <∞, E(Y 2) <∞ and E(|XY |) <∞.
Thus, once the question of the existence of expectations is clarified, the properties of
expectations of random variables taking countably many values, under countable addi-
tivity, are the same as those of random variables taking only finitely many values under
finite additivity.

3.4.1 Summary

This section proves the properties of expectations of discrete random variables that may
have countably many values, under the assumption of countable additivity.

3.5 Dynamic sure loss

Having found the correct condition for the existence of expectations of discrete random
variables and having checked their properties, it is now possible to return to the subject of
dynamic sure loss and countable additivity.

Before we do so, though, I must address a subtle point about what is to be considered
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a sure loss or a sure gain. Suppose that U has a finitely-additive uniform distribution on
the positive numbers, and suppose X = 1/U . What shall we think of a gain or loss in the
amount X?

While it is certainly true that Pr{X > 0} = 1, so we can be sure that X is positive, it
is also true that for any positive amount η > 0, P{X > η} = 0. Thus if X is a gain you
will experience, you are sure to gain something, but you are also sure that gain will be less
than η = 1 millionth of a penny. Is such a gain (or loss, for that matter) worth noticing?

This comes up in thinking about what it means to avoid sure loss when betting on
random variables that can take a countable number of values. I prefer to count as a gain
that there is positive probability ε > 0 that you will gain at least some amount η > 0. This
distinction makes no difference in the context of Chapter 1, where random variables take
only a finite number of values. Consequently the Fundamental Theorem of that chapter uses
this concept without comment. However in the context of this chapter, it does matter, and
I believe that insisting on positive probability ε > 0 of gaining some positive amount η > 0
is the best choice.

Dynamic sure loss is said to exist if (1) there is an event A and a partition {Bi} such
that P (A) > P (A|Bi) + η for all i and some η > 0 or if (2) there is an event A and a
partition Bi such that P (A) < P (A|Bi)− η for all i, and some η > 0. If (1) holds, then A
suffices for (2), and conversely.

If (1) holds, then I can sell you a ticket on A, and buy from you tickets on A|Bi for each
i. Whatever i ensues, I am sure to come out at least η > 0 ahead. Conversely, if (2) holds,
I can buy a ticket on A from you, and sell you tickets on A|Bi. Again, whatever i ensues, I
am sure to come out at least η > 0 ahead.

Next, I show that dynamic sure loss is incompatible with countable additivity. Let IA be
an indicator random variable for A. Suppose your price for a ticket on A is p, which means

E(IA) = p.

Let Y be a random variable that takes the value i when Bi occurs. Then a ticket on A if
Bi occurs has price

E(IA|Bi) = E(IA|Y = i).

Using property 6 of section 3.4, we can put these together as

p = E(IA) = E
[
E[IA|Y ]

]
.

The random variable
E[IA|Y ]

might be trivial (meaning that E[IA|Y = i] = p for all i), in which case dynamic sure
loss cannot ensue. However, if E[IA|Y ] is not trivial, then property 4 of section 3.4 applies.
Property 4 applied in this notation says that there is a set Bi and a positive probability
ε > 0 such that P{Bi} > ε and

p = P{A} < P{A|Bi} − η,

for some η > 0. Therefore there is at least one i for which

p = P{A} < P{A|Bi} − η,

so (1) in the definition of dynamic sure loss does not occur. The argument for why (2)
cannot occur is similar.

Hence there is no sure loss. This argument proves the following result:

Theorem 3.5.1. If P is countably additive, then no dynamic sure loss is possible.
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Now what about the converse? Can there be assurance against dynamic loss if P is
finitely but not countably additive?

I cite a theorem that shows that nonconglomerability is characteristic of those probabil-
ities that are finitely but not countably additive.

Theorem 3.5.2. (Schervish et al. (1984)) Suppose P (·) is a coherent probability that is
finitely but not countably additive. Then there is a set A and a countable partition B1, B2, . . .
of disjoint sets whose union is S, on which conglomerability fails.

Since conglomerability fails, it is not the case that

inf
j
P (A|Bj) ≤ P (A) ≤ sup

j
P (A|Bj).

Therefore either
inf
j
E(A|Bj) > P (A) (3.20)

or
sup
j
E(A|Bj) < P (A). (3.21)

If (3.20) is the case, then (2) in the definition of dynamic sure loss holds, with

η = (inf
j
E(A|Bj)− P (A)).

Similarly, if (3.21) holds, then (1) in the definition of dynamic sure loss holds, with η =
P (A)− supj E(A|Bj). Hence dynamic sure loss exists.

3.5.1 Summary

Consider a coherent probability P (·). P avoids dynamic sure loss if and only if P is countably
additive.

3.5.2 Discussion

Given these results, how is it reasonable to view countable additivity? The strategy of
extending the results of Chapter 1 to a countable number of bets does not work, as shown
both by the example in section 3.3.3, and by the consideration that covering a countable
number of bets could require infinite resources.

I think from a foundational point of view that both finite and countable additivity
are worth exploring. Perhaps dynamic sure loss, non-conglomerability, etc. will come to be
regarded as so damaging as to preclude the use of probabilities that are finitely but not
countably additive. Perhaps not. Meanwhile the vast preponderance of work on probability
is done in the context of countable additivity. It would be useful to have a corresponding
effort into the more general case of finite additivity.

While the remainder of this book concentrates on countable additivity, it does so mostly
out of ignorance about which results might extend to the full finitely additive case, and
which do not.

3.5.3 Other views

The dominant view in probability and statistics at this time comes from Kolmogorov (1933),
who takes countable additivity as an axiom. Similarly DeGroot (1970) regards it as an
assumption of continuity.

There is, however, a vociferous minority centered around DeFinetti (1974) and carried on
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by Coletti and Scozzafava (2002). These authors take finite additivity as basic, and regard
countable additivity as an (unwarranted) restriction on the opinions you are permitted to
express. Perhaps the most eloquent expression of this view is given by DeFinetti in 1970,
section 3.11.

Goldstein (1983) advocates finitely additive probability together with property 4. How-
ever, Kadane et al. (2001) show that property 4 implies countable additivity. Heath and
Suddereth (1978) propose using finitely additive probability for those events and parti-
tions in which dynamic sure loss does not occur. (And see Kadane et al. (1986) for further
comment.)

It is notable that limiting relative frequency does not support a limitation of probabil-
ity to countable additivity. To see this, let ti be a sequence with a 1 in position i and 0
elsewhere, for i = 1, 2, . . .. These sequences are mutually exclusive, since a 1 never occurs in
the same position for two of them. Each such ti has limiting relative frequency 0. However
the sum of the ti’s has a 1 in each position, and hence limiting relative frequency 1. Thus
countable additivity is contradicted. Provided the issues mentioned in 2.13.1 can be over-
come, a principled frequentist treatment would either accept finite additivity and give up
conglomerability, or would explain how only countable additivity is consistent with limiting
relative frequency.

3.6 Probability generating functions

For the remainder of this chapter, we restrict attention to distributions on N , the set of
natural numbers. On this set, we introduce a function that can be used to summarize a
distribution, called the probability generating function.

Suppose X is a random variable taking values on the non-negative integers, so that

P{X = j} = pj j = 0, 1, . . . ,∞ (3.22)

and
∞∑
j=0

pj = 1. (3.23)

Consider the function

αX(t) = EtX = p0 + p1t+ p2t
2 + . . . . (3.24)

This function is called the probability generating function for X.
Some immediate properties of α are as follows:

1. αX(1) = 1. This follows from (3.23).

2. If X and Y are independent random variables, then

αX+Y (t) = αX(t)αY (t).

Proof.

αX+Y (t) =Et(X+Y ) = EtXtY = EtXEtY

=αX(t)αY (t)

using property 7 of 3.5.

3. If αX(t) = αY (t), then X and Y have the same distribution. This relies on the uniqueness
of power series.
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4. The next property relies on differentiation of α. First I will show a formal calculation,
which demonstrates why a statistician would want to do this. Then I will cite a theorem
showing when the differentiation is valid.

d

dt
αX(t) =

d

dt


∞∑
j=0

pjt
j

 =

∞∑
j=1

jpjt
j−1

(differentiating through an infinite sum, which is not yet justified).

α′X(1) =
d

dt
αX(t)|t=1 =

∞∑
j=1

jpj = E(X).

Taking a second derivative, (again, only formally)

d2

dt2
αX(t) =

∞∑
j=2

j(j − 1)pjt
j−2 , so

α′′X(1) =E[X(X − 1)] = EX2 − EX.

Hence (again formally)

V [X] = E(X2)− [E(X)]2 = α′′X(1) + α′X(1)− [α′X(1)]2.

Thus if the formal calculation can be justified, both the mean and variance of X can
be found easily from the probability generating function. The justification of the formal
calculation is discussed next.

A power series
∑∞
n=0 ant

n is said to have radius of convergence ρ if it is convergent
for all |t| < ρ and divergent for all |t| > ρ. Then the following theorem applies:
If
∑∞
n=0 ant

n has radius of convergence ρ, then it has derivatives of all orders on [−r, r],
where r < ρ, and dk

dtk
[
∑∞
n=0 ant

n] =
∑∞
n=k

ann!
(n−k)! t

n−k, k = 1, 2, . . . ,−r ≤ t ≤ r. (See

Khuri (2003, Theorem 5.4.4, pp. 176-177).)
Hence we can conclude: If αX(t) has radius of convergence ρ > 1, then

E[X] =α′X(1)

V [X] =α′′X(1) + α′X(1)− [α′X(1)]2.

What happens when the mean of a random variable does not exist? Section 3.3 dis-
cusses such an example, namely P{W = i} = 1

Ti2 i = 1, 2, . . .. Then in this example the
probability generating function of W is

αW (t) =

∞∑
i=1

1

T

ti

i2
.

By the ratio test, Khuri (2003, p. 174, 175) we have

lim
i→∞

|ai+1

ai
| = lim

i→∞

(i+ 1)2

i2
= lim
i→∞

(
1 + 2/i+ 1/i2

)
= 1.

Therefore ρ = 1. Consequently the Theorem does not apply. αW (t) cannot be differen-
tiated at 1. This example shows why the condition that αX(t) should have a radius of
convergence ρ > 1 is critical for finding the moments of X.
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3.6.1 Summary

The probability generating function αX(t) = E[tX ] has the following properties:

1. αX(1) = 1.

2. If X and Y are independent

αX+Y (t) = αX(t)αY (t).

3. If αX(t) = αY (t) then X and Y have the same distribution.

4. When αX(t) has radius of convergence ρ > 1,

E(X) =α′X(1)

V (X) =α′′X(1) + α′X(1)− (α′X(1))2.

3.6.2 Exercises

1. Vocabulary. Define in your own words:

(a) radius of convergence

(b) probability generating function

2. If you knew the distribution of X, can you always find αX(t)? If you knew αX(t), can
you always find the distribution of X?

3. Consider the random variable X, which takes the value 1 with probability p, and the
value 0 with probability q = 1− p. Find the probability generating function of X. [Such
a random variable is called a Bernoulli random variable with parameter p.]

4. Let S = X1 + X2 + . . . + Xn be the sum of n independent random variables each of
which is a Bernoulli random variable with parameter p. Find the probability generating
function of S, using property 2.

5. Find the probability generating function of S directly, using

P{S = j} =

(
n

j, n− j

)
pjqn−j j = 0, 1, . . . , n, where q = 1− p.

6. Using the answer to (4) and/or (5), find E[S] and V [S].

3.7 Geometric random variables

Section 3.1 has already introduced the geometric distribution without naming it, namely
the number F of failures before the first success in a sequence of independent Bernoulli
trials each with known probability p > 0 of success. The probability distribution of F is
given by

P{F = k} = (1− p)kp k = 0, 1, 2, . . . (3.25)

Then the probability generating function of F is

αF (t) = E(tX) =

∞∑
k=0

tk(1− p)kp

=p

∞∑
k=0

[t(1− p)]k =
p

1− t(1− p)
. (3.26)

(The reason (3.25) is called a Geometric random variable is that the sum involved in show-
ing that (3.25) sums to one is a geometric sum, as is the sum involved in its probability
generating function.)
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The latter geometric sum converges if t(1−p) < 1 and diverges if t(1−p) > 1. Hence the
radius of convergence is ρ = 1/(1 − p) > 1. Therefore we can differentiate (3.26) as many
times as we please at t = 1. In particular, we can now apply property 4 of section 3.6 to
find the mean and variance of F , as follows.

E(F ) =
d

dt
αF (t)|t=1 =

d

dt

[
p

1− t(1− p)

]
|t=1

=p

[
1− p

(1− t(1− p))2

]
|t=1 =

p(1− p)
p2

=
1− p
p

. (3.27)

This is a reasonable result. It says that the smaller p is (i.e., the harder it is to get a
success), the longer one should expect to wait for a success.

d2αF (t)

dt2
|t=1 =

d

dt

[
p(1− p)

(1− t(1− p))2

]
|t=1

=p(1− p)
[

2(1− t(1− p))(1− p)
(1− t(1− p))4

]
|t=1

=
2p(1− p)2p

p4
=

2(1− p)2

p2
. (3.28)

Then

V (F ) =
d2αF (t)

dt2
|t=1 + E(F )− (E(F ))2

=
2(1− p)2

p2
+

1− p
p
− (

1− p
p

)2

=
(1− p)2

p2
+

(1− p)
p

=
(1− p)2 + (1− p)p

p2
=

(1− p)
p2

. (3.29)

The geometric distribution has an important memoryless property. Suppose a sequence
of independent Bernoulli random variables have been observed, the first k of which have
resulted in failures. Then the probability that the first success will occur after exactly t
more failures is the same as if one had started over at that point. (Such a time is called
a recurrence time. These are an important tool in probability theory.) The memoryless
property for the geometric distribution can be expressed formally as follows:

If F has a geometric distribution with parameter p, then for any integers k and t:

P{F = k + t|F ≥ k} = P{F = t}. (3.30)

3.7.1 Summary

A geometric distribution is given by (3.25). Its probability generating function is p/[1 −
t(1− p)].

Its mean and variance are (1− p)/p and (1− p)/p2, respectively. It has the memoryless
property (3.30).

3.7.2 Exercises

1. Suppose a person plays the Pennsylvania Lottery every day, waiting for a win. (See
problem 3 in section 1.5.2 for the rules.) Suppose that the person has played the lottery
for k days, with no success so far. The person feels “due” for a win, that is, the person
thinks incorrectly that the probability of a win is increased by the fact of having lost k
days in a row. Is this line of reasoning consistent with the assumption that each day’s
drawing is independent of all the others? Explain why or why not.
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2. Prove (3.30).

3. Suppose a person is waiting at a bus stop. The person believes that the event of a bus
coming in each five-minute period is independent of each other five-minute period, and
that the probability that a bus will come in any given five-minute period is p, where p
is assumed to be known. This belief is different from believing that the buses operate on
a fixed schedule. Having waited 20 minutes already, is the bus more likely, less likely or
equally likely to come in the next five-minute period. Why?
Now suppose that the person is unsure what the value of p is, so that the person is gaining
information about p during the wait. Argue intuitively why the person might reasonably
believe that the bus is more, equally or less likely to come in the next five-minute period.

4. Prove that if F has a geometric distribution with known probability p of success on each
trial, then

P{F ≥ k} = (1− p)k.

3.8 The negative binomial random variable

The geometric distribution has the following generalization: Let r be a fixed positive integer.
Let F be the number of failures until the rth success among a sequence of independent
Bernoulli trials, each of which has probability p > 0 of success. Clearly the geometric
distribution is the special case r = 1.

How can it happen that the rth success is preceded by exactly n failures? It must be
that among the first n + r − 1 trials there are exactly n failures and r − 1 successes, and
the last trial is a success. The probability of this event is

P{F = n} =

(
n+ r − 1

n, r − 1

)
pr−1(1− p)n · p n = 0, 1, 2, . . .

=

(
n− r + 1

n, r − 1

)
pr(1− p)n n = 0, 1, 2, . . . (3.31)

Now suppose X1, X2, . . . , Xr are r independent geometric random variables each with
parameter p. Then it is immediately obvious that F has the same distribution as X1 +X2 +
. . .+Xr.

This convenient fact has the following consequences: If F has a negative binomial dis-
tribution with parameters p and r, then

αF (t) =

[
p

1− t(1− p)

]r
(3.32)

E(F ) = r(1− p)/p (3.33)

and

V (F ) = r(1− p)/p2. (3.34)

Since F has a finite mean, F is finite with probability 1. Therefore the following infinite
sum can be derived:

∞∑
n=0

(
n− r + 1

n, r − 1

)
pr(1− p)n = 1.

This is an example of using probabilistic reasoning to prove a mathematical fact in an
intuitive way.
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3.8.1 Summary

A negative binomial random variable has distribution given by (3.31), probability mass
function by (3.32), mean (3.33) and variance by (3.34).

3.8.2 Exercises

1. Is it reasonable to suppose that the negative binomial distribution has the memoryless
property? Why or why not?

2. Prove your answer to problem 1.

3. Suppose X has a negative binomial distribution with parameters r and p, and Y has a
negative binomial distribution with parameters s and p. Show that X+Y has a negative
binomial distribution with parameters r + s and p.

4. Hypergeometric Waiting Time. Suppose a bowl of fruit contains five apples, three ba-
nanas and four cantaloupes. Suppose these fruits are sampled without replacement,
choosing each fruit equally likely from those that remain. Find the distribution for the
number of fruit selected before the third apple is chosen.

5. Do the same problem as 4 when there are a apples, b bananas and c cantaloupes in
the bowl. Find the distribution of the number of fruit selected before the a∗th apple is
selected, for each a∗, 0 ≤ a∗ ≤ a.

3.9 The Poisson random variable

Every sequence of non-negative numbers that has a finite sum can be made into a probability
distribution by dividing by that sum. In formula (1.34), we encountered the sum

eλ = 1 + λ+
λ2

2!
+
λ3

3!
+ . . . (1.33)

Therefore there is a random variable X having distribution given by

P{X = k} =
e−λλk

k!
k = 0, 1, 2, . . . . (3.35)

Such a random variable is said to have the Poisson distribution with parameter λ > 0.
The probability generating function of X is

αX(t) =EtX =

∞∑
j=0

e−λλj

j!
tj = e−λ

∞∑
j=0

(λt)j

j!

=e−λeλt = eλ(t−1). (3.36)

The radius of convergence for this sum is ρ =∞, so differentiation at t = 1 is justified.
Then

E(X) =
dαX(t)

dt
|t=1 = λeλ(t−1)|t=1 = λ. (3.37)

Also
d2αX(t)

dt2
|t=1 =

d

dt
λeλ(t−1)|t−1 = λ2eλ(t−1)|t=1 = λ2.

Consequently

V (X) =
d2αX(t)

dt2
|t=1 + E(X)− (E(X))2

=λ2 + λ− λ2 = λ. (3.38)
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Hence both the mean and variance of the Poisson distribution are λ.

The Poisson distribution is often used as a model for the distribution of rare events.
Consider the number of successes in a sequence of n independent Bernoulli trials in which
the probability of success, p, is decreasing to 0 but the number of trials in the sequence, n,
is increasing without limit in such a way that np approaches some number λ.

From equation 2.46 for the binomial distribution for the sum of n independent Bernoulli
trials,

P{Xn = j} =

(
n

j, n− j

)
pj(1− p)n−j j = 0, 1, . . . , n

=
n!

j!(n− j)!
(
λ

n
)j(1− λ/n)n(1− λ/n)−j

=
λj

j!

{[
n(n− 1) . . . (n− j + 1)

n n n

]
(1− λ/n)−j

}
(1− λ/n)n. (3.39)

Now as n→∞, the factor in curly brackets approaches 1. In addition, limn→∞(1−λ/n)n →
e−λ, a fact which follows from the Taylor expansion of log(1+x) (see section 2.2) as follows:

log lim
n→∞

(1− λ/n)n = lim
n→∞

log(1− λ/n)n

= lim
n→∞

n log(1− λ/n)

= lim
n→∞

n[−λ/n+HOT ] = −λ.

Again, remember that “HOT” stands for Higher Order Terms.

Returning to (3.39),

lim
n→∞

P{Xn = j} =
λj

j!
e−λ, (3.40)

which is the Poisson probability.

Example: Letters and envelopes again. Finally, we return to the problem of the letters
and envelopes. To review, n letters are matched to n envelopes randomly, and our interest
is in the number of correctly matched letters and envelopes. Recall that in sections 1.5, 1.6
and 2.11, respectively, we found three results about this problem:

1. Po,n the probability that no letter gets matched to its correct envelope, satisfies
limn→∞ Po,n = e−1.

2. The expected number of correct matchings is 1 for all n.

3. The variance of the number of current matchings is 1 for all n ≥ 2.

Now we seek a general formula for limn→∞ Pk,n, the probability that exactly k envelopes
and letters match, as the number of them, n, goes to infinity.

We have

Pk,n =

(
n

k, n− k

)
·
(

1

n

)k
P0,n−k,

because there are
(

n
k,n−k

)
ways of choosing which k letters and envelopes will match, each of

those that match have probability 1/n of doing so, and the other n−k letters and envelopes
have probability P0,n−k of not matching.

Then

Pk,n =
1

k!

[
n(n− 1) . . . (n− k + 1)

n n n

]
P0,n−k.
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Again the expression in square brackets approaches 1, so

lim
n→∞

Pk,n =
1

k!
e−1, k = 0, 1, . . .

which is a Poisson distribution with parameter 1. 2

An incautious reader might conclude that the limiting distribution had to have mean 1
because each of the random variables in the sequence has expectation 1. However this infer-
ence is not valid, as the following example shows: Let Xn take the value n with probability
1/n, and otherwise take the value 0. Then

E(Xn) = n(1/n) + 0(1− 1/n) = 1 for all n.

However limn→∞ P{Xn = 0} = 1, so the limiting random variable is trivial, putting all its
mass at 0, and has mean 0.

3.9.1 Summary

The Poisson distribution with parameter λ has mean and variance λ, and probability gen-
erating function eλ(t−1). It is used as a distribution for rare events, and is the limiting
distribution for binomial random variables as p→ 0 and n→∞ in such a way that np→ λ
for some λ. Additionally a Poisson distribution with parameter 1 is the limiting distribution
for the number of randomly matched letters and envelopes.

3.9.2 Exercises

1. Suppose that X1 and X2 are independent Poisson random variables with parameters λ1

and λ2, respectively.

(a) Find the probability generating function of X1 +X2.

(b) What is the distribution of X1 +X2?

(c) What is the conditional distribution of X1 given that X1 +X2 = k?

2. Suppose that a certain disease strikes .01% of the population in a year, and suppose
that occurrences of it are believed to be independent from person to person. Find the
probability of three or more cases in a given year in a town of 20,000 people.
Note: This problem gives a slight flavor of the problems faced in the field of epidemiology.
They are often confronted with the difficult problem of determining whether an apparent
cluster of persons with a specific disease is due to natural variation or to some unusual
underlying common cause, and, if so, what that common cause is.

3. Recall the rules for “Pick Three” from the Pennsylvania Lottery (see problem 3 in
section 1.5.2). Suppose that 2000 players choose their three digit numbers independently
of the others on a particular day.

(a) Find the mean and variance of the number of winners.

(b) Find an approximation to the probability of at least three winners on that day.

3.10 Cumulative distribution function

3.10.1 Introduction

This section introduces a useful analytic tool and an alternative way of specifying the
distribution of a random variable, the cumulative distribution function, abbreviated cdf.

Suppose X is a discrete random variable. Then the cdf of X, written F (x), is a function
defined by

FX(x) = P{X ≤ x} (3.41)
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Thus the cdf has the following properties:

(i) lim
x→−∞

FX(x) = 0.

(ii) lim
x→∞

FX(x) = 1.

(iii) FX(x) is non-decreasing in x.

(iv) If P{X = xi} = pi > 0, then FX(x) has a jump of size pi at xi, so FX(x+ ε)−FX(x−
ε) = pi for all sufficiently small, positive ε.

Suppose X and Y are two random variables. It is important to understand the distinction
between (i) X and Y are the same random variable and (ii) X and Y have the same
distribution. For example, suppose X and Y are both 1 if a flipped coin comes up heads,
and are 0 otherwise. If they refer to the same flip of the same coin, then X = Y . If they
refer to different flips of the same coin, it is reasonable to suppose that they have the same
distribution, but of course it is possible that one coin would show heads and the other tails.
When X and Y have the same distribution, this is equivalent to the condition FX(t) = FY (t)
for all t.

3.10.2 An interesting relationship between cdf’s and expectations

Suppose X is a random variable taking values on the non-negative integers. Then

E(X) =

∞∑
j=0

(1− FX(j))

provided the expectation of X exists.

Proof. Suppose P{X = i} = pi i = 0, 1, . . . , where
∑∞
i=0 pi = 1.

E(X) =
∑∞
i=0 ipi =

∑∞
i=0

∑i−1
j=0 pi =

∑
0≤j<i<∞ pi

=
∑∞
j=0

∑∞
i=j+1 pi =

∑∞
j=0(1− FX(j)).

The first equality is just the definition of expectation. The second equality makes use of
the fact that the number of integers j starting at 0 and ending at i−1 is exactly i. The third
equality reorganizes the double sum into a single sum over both indices, in preparation for
the fourth equality, which reverses the order of summation (justified by Theorem 3.3.4).
Finally, the fifth equality makes use of the definition of the cdf.

3.10.3 Summary

The cdf is defined by equation 3.41, and has properties (i), (ii), (iii) and (iv). Additionally
random variables taking values on the non-negative integers have an expectation satisfying
E(X) =

∑∞
j=0(1− FX(j)) provided the expectation exists.

3.10.4 Exercises

1. Suppose X has a binomial distribution with n = 2, for some p, 0 < p < 1. Find the cdf
of X.

2. Use the cdf of X found in exercise 1 to find the expectation of X. Check your answer
against the expectation of X where X has a binomial distribution found in exercise 8 of
section 2.1.2.
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3.11 Dominated and bounded convergence for discrete random variables

We now examine the circumstances under which we may write

lim
n→∞

E(Xn) = E lim
n→∞

Xn. (3.42)

In section 1.8, we saw that 1.37 holds if Xn and hence X = limn→∞Xn have domain limited
to a finite set. This section considers what happens when this constraint is relaxed, to allow
a countable but infinite domain. Since the domain is countable, without loss of generality
we may consider it to be the natural numbers 1, 2, . . ..

From the example given at the end of section 3.9, we already have a hint that restrictions
need to be imposed on the random variables Xn for (3.42) to hold. Suppose that integer i
occurs with probability pi, for i = 1, 2, . . .. If only finitely many pi’s are positive, then the
theorem proved in section 1.8 applies, and assures us that (3.42) holds. Suppose then, that
pi > 0 for infinitely many values of i. Without loss of generality, renumbering if necessary,
we may assume that pi > 0 for all i = 1, 2, . . ..

Suppose Xn =

{
c/pn with probability pn,

0 otherwise
for some number c to be discussed later.

Then the limiting random variable X takes the value 0 with probability 1, and hence

E(X) = E( lim
n→∞

Xn) = 0.

However
E(Xn) = pn(c/pn) + (1− pn)(0) = c.

Hence, if c 6= 0, (3.42) fails to hold. This example shows that restrictions on Xn are necessary
if (3.42) is to hold in the countable case. A hint about the issue lies in the fact that pn → 0
as n→∞, so c/pn →∞. Considerations of this type lead to the following.

Theorem 3.11.1. (Dominated convergence for random variables with a countable domain.)

Let ain be a double sequence of numbers, and let Xn be a random variable such that

(i) P{Xn = ain} = pi for all n = 1, 2, . . . , and all i = 1, . . . .
Also suppose that for each i, i = 1, . . .

(ii) limn→∞ ain = ai.
Let X be the random variable such that P{X = ai} = pi.
Finally suppose that there is a random variable Y such that

(iii) P{Y = bi} = pi, |ain| ≤ bi and E(Y ) exists.

Then (a) E(X) exists
and
(b) (3.42) holds.

Proof. (a)
∑∞
i=1 pi|ai| ≤

∑∞
i=1 pibi < ∞ since E(Y ) exists. Hence E(X) exists, and (a) is

proved.

(b) Let ε > 0 be given. Then let M be large enough so that
∑∞
i=M+1 pibi < ε/4.

|
∑∞
i=1 piain −

∑∞
i=1 piai| ≤

∑M
i=1 pi|ain − ai|+

∑∞
i=M+1 pi|ain − ai|.

Then using ain → ai for each i = 1, . . . ,M there exists an Ni such that for all n ≥ Ni,
|ain − ai| < ε/2M . Let N = maxi=1,...,M Ni. Then for i = 1, . . . ,M and for all n ≥ N ,
|ain − ai| < ε/2M . Then for all n ≥ N ,∣∣∣∣ ∞∑

i=1

piain −
∞∑
i=1

piai

∣∣∣∣ ≤ M∑
i=1

pi(ε/2M) +

∞∑
i=M+1

2pibi

≤ M(ε/2M) + 2(ε/4)

= ε.
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This proves (b).

Corollary 3.11.2. (Bounded convergence for random variables with a countable domain.)

Using the same notation as in the theorem, and assumptions (i) and (ii), replace as-
sumption (iii) with (iii′):

|ain| ≤ d, for some number d.

Then (a) and (b) hold.

Proof. Let Y = d with probability 1. Then E(Y ) = d <∞, so condition (iii) holds.

3.11.1 Summary

When the domain of the random variables is countably infinite, P{Xn = ain} = pi, and
lim ain = ai for i = 1, . . .

lim
n→∞

E[Xn] = E[X]

where P{X = ai} = pi, for i = 1, . . . , provided either

(I) there exists a random variable Y such that

P{Y = bi} = pi, |ain| ≤ bi for all n = 1, 2, . . . , and all i = 1, . . .

and
E(Y ) exists (dominated convergence), or

(II) |ain| ≤ d for all n = 1, 2, . . . , and all i = 1, . . . and some constant d (bounded conver-
gence).

3.11.2 Exercises

1. Vocabulary. Explain in your own words:

(a) bounded convergence

(b) dominated convergence

2. Let pi > 0 for i = 1, 2, . . . and
∑∞
i=1 pi = 1.

Let ai,n =

{
0 n < i

1/pi i ≥ n
(i) Find ai = limn→∞ ai,n.

(ii) What is the distribution of X = limn→∞Xn?

(iii) Find a positive lower bound for E(Xn).

(iv) Is it possible that (3.42) holds? Explain why or why not? How does this example
relate to bounded convergence? to dominated convergence?





Chapter 4

Continuous Random Variables

“Take it to the limit, one more time”
—The Eagles

“Does anyone believe that the difference between the Lebesgue and Riemann integrals can have
physical significance, and that whether say, an airplane would or would not fly could depend on
this difference? If such were claimed, I should not care to fly in that plane.”

—Richard Wesley Hamming

4.1 Introduction

Suppose we want to model the idea of an instant in time uniformly distributed within a
particular hour. We could use the idea of a randomly chosen minute by letting each minute
have probability 1/60. If we wanted to measure time in tenths of seconds, we could let each
tenth of a second have probability 1/600, etc. But it is often convenient to think of time as a
continuous matter, even though as a practical matter time can be measured only up to some
degree of precision, and whatever that degree of precision, the result is some finite set of
possibilities. Looking to continuous random variables means that we seek a treatment that
does not depend on the precision of measurement, pretending that time can be measured
arbitrarily accurately.

A natural way of making this intuition precise is to think of the probability of this
random time T falling between time a and b (expressed in minutes but thought of as real
numbers) as

P{a ≤ T ≤ b} =
b− a

60
=

∫ b

a

1

60
dx. (4.1)

Here the integral is taken in the ordinary, Riemann sense, which is discussed more precisely
below.

More generally, if fX(x) is any (Riemann-integrable) function, then we wish to define

P{X ∈ A} =

∫
A

fX(x)dx (4.2)

to be the probability that the random variable X lies in the set A for all sets A for which the
integral is defined (typically, in the one-dimensional case, intervals and unions of intervals).
Probabilities defined this way are called Riemann probabilities. Now (4.1) is a special case
of (4.2), where

fT (x) =

{
1/60 0 < x < 60

0 otherwise
. (4.3)

There are conditions that must be imposed on fX(x) in order to have a hope that (4.2)
might represent probabilities. A function fX(x) is called a probability density function
(pdf), or more simply a density function, if it has the following properties:

117
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1. f(x) ≥ 0 for all x. (Otherwise it would be possible to find a set with negative probability.)

2.
∫
< f(x)dx = 1, so that the probability over the whole space is 1, as it must be.

There is a consequence of equation (4.2) that deserves some discussion. Consider some real
number a, and ask what the meaning is of fX(a). It is NOT the probability that X = a.
Indeed, for every continuous random variable, the probability that X = a is zero for all a,
since

P{Xε{a}} =

∫ a

a

fX(x)dx = 0. (4.4)

However, we can say that if we imagine a small interval around a of length ∆x, say the
interval (a− (∆x)/2, a+ (∆x)/2), we have

P{Xε(a− (∆x)/2, a+ (∆x)/2)} =

∫ a+(∆x)/2

a−(∆x)/2

fX(x)dx
.
= (fX(a))(∆x),

for continuous functions fX(x).
The statement (4.2) is simultaneously a statement of an uncountable number of proba-

bilities, and hence, in the terms of this book, of an offer to buy or sell an uncountable number
of dollar tickets at prices specified by (4.2). Therefore, we must be somewhat careful in re-
lating these statements to our previous theory. Conditions 1 and 2 on fX(x) obviously imply
(1.1) (non-negative probabilities) and (1.2) (the sure event has probability one). However
the additivity properties of (4.2) are less obvious.

One of the elementary properties of the Riemann integral is finite additivity. Thus if
g(x) and h(x) are Riemann integrable functions, then so is g(x) + h(x), and∫ [

g(x) + h(x)dx

]
=

∫
g(x)dx+

∫
h(x)dx. (4.5)

(For completeness, a formal proof of (4.5) is provided in section 4.7.1.)
Riemann probabilities are probabilities defined with respect to a density f(x) integrated

with a Riemann integral.
Formula (4.5) has the following consequence for Riemann probabilities:

Theorem 4.1.1. Let f(x) be a density function, and let A and B be disjoint sets with
defined Riemann probabilities with respect to the density f(x). Then

P{A ∪B} = P{A}+ P{B}.

Proof. Let g(x) = IA(x)f(x) and h(x) = IB(x)f(x). Then

P{A ∪B} =

∫ (
IA(x) + IB(x)

)
f(x)dx (4.6)

=

∫ (
g(x) + h(x)

)
dx =

∫
g(x)dx+

∫
h(x)dx (4.7)

= P{A}+ P{B} (4.8)

Corollary 4.1.2. Let f(x) be a density function, and let A1, . . . , An be a finite collection
of disjoint sets with defined Riemann probabilities with respect to the density f(x). Then

P{∪ni=1Ai} =

n∑
i=1

P{Ai}.
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Proof. By induction on n using Theorem 4.1.1.

There is a sense in which Riemann probabilities are countably additive, and a sense in
which they are not. This subject is postponed until section 4.7, at which point more tools
will have been developed.

Later this chapter goes into the theory of Riemann integration much more carefully.

4.1.1 The cumulative distribution function

Recall from section 3.10 that the cumulative distribution function (cdf) FX(x) of a random
variable X is defined as follows:

FX(x) = P{X ≤ x}. (4.9)

Cumulative distribution functions have the following properties:

(i) limx→−∞ FX(x) = 0.

(ii) limx→∞ FX(x) = 1.

(iii) If x1 ≤ x2, then FX(x1) ≤ FX(x2). (non-decreasing)

(iv) FX(x) = limy>x,y→x FX(y). (continuous from above)

Property (iv) follows from the fact the cumulative density function FX(x) defined in
(4.9) is the probability of the event {X ≤ x}, not the event {X < x}. When there is a lump
of probability at x, the distinction matters. Thus when y > x, the lump of probability at x
is included in FX(y) for each y, as well as being included in FX(x). However, if z < x, FX(z)
does not include the lump of probability at x. With the cumulative distribution function as
defined in (4.9) (which is the traditional choice), FX(x) is said to be continuous from above
(as in property (iv)), but not necessarily from below.

The cumulative distribution function of the random variables studied in Chapters 1 to
3 rise only at the discrete points x at which P{X = x} > 0. The cumulative distribution
functions of the random variables X considered in this chapter arise from density functions
fX(x). There is a third case, cdf’s that are continuous but do not have associated densities.
These are called singular, and their study is postponed.

In addition, there are random variables that mix types. For example, consider a random
variable that with probability 1

2 takes the value 0, and with probability 1
2 is uniform on the

interval (0, 1). This random variable has cdf

F (x) =


0 x < 0
1
2 x = 0
1
2 + x

2 0 < x < 1

1 x ≥ 1

It is easy to check that the cdf satisfies the four conditions stated above.

4.1.2 Summary and reference

The sense of integral being used here is the usual Riemann integral, defined when the limit
of the lower sum of rectangular areas below the curve equals that of the upper sum. This is
explained in many calculus books, of which my favorite is Courant (1937), see Chapter II.

The kinds of continuous random variable X addressed here, known more precisely as
absolutely continuous random variables, are characterized by their densities fX(x), which
gives the probability of a set A to be

∫
A
fX(x)dx.

Densities satisfy the following conditions:
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1. f(x) ≥ 0 for all x.

2.
∫
< f(x)dx = 1.

Cumulative distribution functions are defined in (4.9), and have the four properties
stated above.

4.1.3 Exercises

1. Vocabulary. Explain in your own words:

(a) probability density function

(b) absolutely continuous random variable

2. Show whether each of the following satisfy the conditions to be a probability density:

(a) f(x) =


0 x < 0

x 0 ≤ x ≤ 2

0 x > 2

(b) f(x) =

{
1/2 −1 < x < 1

0 otherwise

(c) f(x) =

{
2x
3 −1 < x < 2

0 otherwise

(d) f(x) =

{
e−x x > 0

0 otherwise

3. For each of the functions f(x) in problem 2 that satisfies the conditions to be a proba-
bility density, find the cumulative density function.

4.2 Joint distributions

Suppose X and Y are two random variables defined over the same probability space. Then
we can consider their joint cumulative distribution function

FX,Y (x, y) = P{X ≤ x, Y ≤ y}. (4.10)

What properties must such a cumulative distribution function have?
First, it must have the appropriate relationship to the univariate cumulative distribution

functions:
FX,Y (x,∞) = P{X ≤ x, Y ≤ ∞} = P{X ≤ x} = FX(x) (4.11)

FX,Y (∞, y) = P{X ≤ ∞, Y ≤ y} = P{Y ≤ y} = FY (y). (4.12)

The distribution functions FX and FY are called marginal cumulative distribution functions.
Similarly,

FX,Y (−∞, y) = FX,Y (x,−∞) = 0 for all x and y.

Now suppose we wish to find the probability content of a rectangle of the form a < X ≤
b, c < Y ≤ d. Then

P{a < X ≤ b, c ≤ Y ≤ d}
= P{a < X ≤ b, Y ≤ d} − P{a < X ≤ b, Y ≤ c}
= P{X ≤ b, Y ≤ d} − P{X ≤ a, Y ≤ d} − P{X ≤ b, Y ≤ c}
+ P{X ≤ a, Y ≤ c}
= FX,Y (b, d)− FX,Y (a, d)− FX,Y (b, c) + FX,Y (a, c).

(4.13)
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Since the probability of every event is non-negative, (4.13) must be non-negative for every
choice of a, b, c and d. This is the bivariate generalization of condition (iii) of section 4.1
that every univariate cumulative distribution function must be non-decreasing. Of course
FX,Y (x, y) is symmetric, in the sense that FX,Y (x, y) = FY,X(y, x).

Now suppose that X and Y have a probability density function f defined over the xy
plane and satisfying

P{(X,Y )εA} =

∫ ∫
A

fX,Y (s, t)dsdt. (4.14)

Here s and t are simply dummy variables of integration: any other symbols would do as
well.

Such a probability density function satisfies

fX,Y (x, y) ≥ 0 for −∞ < x <∞ and −∞ < y <∞ (4.15)

and ∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y)dxdy = 1. (4.16)

In this case, every single point, every finite collection of points and every one-dimensional
curve in the xy plane has probability zero.

A marginal probability density can be found from a joint probability density as follows:

fX(x) =

∫
{(x,y)|−∞<y<∞}

fX,Y (x, y)dy =

∫ ∞
−∞

fX,Y (x, t)dt. (4.17)

By symmetry of course

fY (y) =

∫ ∞
−∞

fX,Y (s, y)ds. (4.18)

As an example, suppose

fX,Y (x, y) =

{
cx(y + y2) if 0 < x < 2, 0 < y < 1

0 otherwise

We’ll find:

(a) the value of c that makes fX,Y a joint density function

(b) the cumulative distribution function FX,Y

(c) P{X < Y }.
To do (a), we start with

1 =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y)dxdy =

∫ 2

0

∫ 1

0

cx(y + y2)dydx

=

∫ 2

0

cx

(
y2

2
+
y3

3

)
|10 dx =

∫ 2

0

cx

(
1

2
+

1

3

)
dx

=
5c

6

∫ 2

0

xdx =
5c

6

x2

2
|20=

5c

6
· 2 =

5c

3
.

Therefore c = 3
5 .

Addressing (b), we have, for 0 < x < 2 and 0 < y < 1,



122 CONTINUOUS RANDOM VARIABLES

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t)dtds

=

∫ x

0

∫ y

0

3

5
s(t+ t2)dtds

=

∫ x

0

3

5
s

∫ y

0

(t+ t2)dtds

=

∫ x

0

3

5
s

(
t2

2
+
t3

3
|y0
)
ds

=

∫ x

0

3

5
s

(
y2

2
+
y3

3

)
ds

=
3

5

(
y2

2
+
y3

3

)∫ x

0

sds

=
3

5

(
y2

2
+
y3

3

)
x2

2
.

Additionally,

FX,Y (x, y) = 0 if x < 0 or y < 0

FX,Y (x, y) = 1 if x > 2 and y > 1

FX,Y (x, y) =
x2

4
if 0 < x < 2 and y > 1

FX,Y (x, y) =
6

5

(
y2

2
+
y3

3

)
if x > 2 and 0 < y < 1.

Together, these equations define F over the whole xy plane.

To do (c),

P{X < Y } =

∫ ∫
0<x<y<1

fX,Y (x, y)dydx

=

∫ 1

0

∫ 1

x

3x

5
(y + y2)dydx

=

∫ 1

0

3x

5

(
y2

2
+
y3

3

)
|1x dx

=

∫ 1

0

3x

5

(
1

2
+

1

3
− x2

2
− x3

3

)
dx

=
3

5

∫ 1

0

(
5x

6
− x3

2
− x4

3

)
dx

=
3

5

(
5x2

12
− x4

8
− x5

15

)
|10

=
3

5

(
5

12
− 1

8
− 1

15

)
=

3

5

(50− 15− 8)

120

=

(
3

5

)(
27

120

)
=

27

200
.

This completes the example.
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4.2.1 Summary

The joint cumulative distribution function of two random variables X and Y is defined by

FX,Y (x, y) = P{X ≤ x, Y ≤ y}.

It satisfies equations (4.11), (4.12) and (4.13). The marginal cdf can be calculated from the
joint cdf as follows:

FX,Y (x,∞) = FX(x) ;FX,Y (∞, y) = FY (y).

When (X,Y ) are jointly continuous and have probability density fX,Y (x, y), then

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (x, y)dydx.

Marginal densities can be calculated from the joint density as follows:

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy

and

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx.

4.2.2 Exercises

1. Vocabulary. Define in your own words:

(a) Riemann probability

(b) joint cumulative distribution function

(c) marginal cumulative distribution function

(d) joint probability density function

(e) marginal probability density function

2. Suppose X and Y are continuous random variables that are uniform within the unit
circle, that is

fX,Y (x, y) =

{
c if x2 + y2 ≤ 1

0 otherwise

(a) Find c.

(b) Find the marginal probability density function of X.

(c) Find the cumulative distribution function of X.

(d) Find P{X < Y }.
3. Suppose X and Y are continuous random variables having the probability density

fX,Y (x, y) =

{
k | x+ y | −1 < x < 1,−2 < y < 1

0 otherwise

(a) Find k.

(b) Find the marginal probability density function of Y .

(c) Find P{Y > X + 1
2}.
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4.3 Conditional distributions and independence

We have already studied discrete conditional distributions in sections 1.6, 2.8 and 3.4. We
now wish to find an analog for continuous distributions. In particular, we seek a conditional
density fY |X(y | x).

The principal issue here is that the event {X = x} has probability zero. Therefore we’ll
consider XεN∆(x) where N∆(x) = (x− ∆

2 , x+ ∆
2 ) is a neighborhood of size ∆ > 0 around

x. We assume that the density fX(x) of X at the point x, is positive and continuous there.
Considering the limit as ∆→ 0 gives us the concept we want. Therefore we have

fY |X(y | x) = lim
∆→0

d

dy
P{Y ≤ y | XεN∆(x)}. (4.19)

This relationship can be simplified as follows:

fY |X(y | x) = lim
∆→0

d

dy
P{Y ≤ y | XεN∆(x)}

= lim
∆→0

d

dy

P{Y ≤ y,XεN∆(x)}
P{XεN∆(x)}

= lim
∆→0

d

dy

FX,Y (x+ ∆
2 , y)− FX,Y (x− ∆

2 , y)

FX(x+ ∆
2 )− FX(x− ∆

2 )

=
lim∆→0

d
dy

[
FX,Y (x+ ∆

2 , y)− FX,Y (x− ∆
2 , y)

]
/∆

lim∆→0

[
FX(x+ ∆

2 )− FX(x− ∆
2 )
]
/∆

=
fX,Y (x, y)

fX(x)
,

using the limit definition of derivative. Hence we have

fY |X(y | x) =
fX,Y (x, y)

fX(x)
. (4.20)

It’s important to check that fY |X is a probability density. It certainly is non-negative.
In addition, ∫ ∞

−∞
fY |X(y | x)dy =

∫ ∞
−∞

fX,Y (x, y)

fX(x)
dy =

fX(x)

fX(x)
= 1. (4.21)

Therefore fY |X(y | x) satisfies the conditions for a density, for each value of x.
Of course, having found the conditional density, there is a related cdf:

FY |X(y | x) = P{Y ≤ y | x} =

∫ y

−∞
fY |X(y | x)dy. (4.22)

Discrete random variables X and Y are defined to be independent in section 2.8 if any
event defined on X is independent of any event defined on Y , or, equivalently, if

P{XεA, Y εB} = P{XεA}P{Y εB} (4.23)

for any events A and B. This definition is also used for continuous random variables.
Suppose that X and Y are independent random variables. Then

FX,Y (x, y) = P{X ≤ x, Y ≤ y} = P{X ≤ x}P{Y ≤ y}
= FX(x)FY (y). (4.24)
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If X and Y have a joint probability density function fX,Y (x, y), then X and Y are inde-
pendent if and only if fX,Y (x, y) = fX(x)fY (y). In this case

P{XεA, Y εB} =

∫
IAB(x, y)fX,Y (x, y)dxdy

=

∫
IA(x)IB(y)fX(x)fY (y)dxdy

=

∫
IA(x)f(x)dx

∫
IB(y)fY (y)dy

=P{XεA}P{Y εB} (4.25)

for all sets A and B for which the integrals are defined.

A consequence of (4.25) is that when X and Y have a joint density and are independent,

fY |X(y | x) =
fX,Y (x, y)

fX(x)
=
fX(x)fY (y)

fX(x)
= fY (y), (4.26)

so the conditional density of Y given X does not depend on x. This is the analog of 2.43 in
section 2.8.

As an example, consider again X and Y with the joint density defined in section 4.2.2,
exercise 2. The density is uniform in the shaded area of Figure 4.1 The square box is the
region {1 > X > 1/

√
2, 1 > Y > 1/

√
2}, and has zero probability. However P{1 > X >

1/
√

2} and P{1 > Y > 1/
√

2} are both positive. Therefore X and Y are not independent.
(To understand the commands given for figure 4.1, you should know that R ignores the rest
of a line after the “#” symbol.)

This can also be checked by observing that the conditional distribution of X and Y
depends on Y (see section 4.2, problem 2). This phenomenon is deceptive, because the
density appears to factor (if you forget about the range x2 +y2 ≤ 1 of positive probability).
Thus it is essential to write out the range of values for each function, in order not to be led
astray.

Now suppose instead thatX and Y have a uniform distribution on the square−1 < x < 1
and −1 < y < 1, so that

fX,Y (x, y) =

{
` −1 < x < 1, −1 < y < 1

0 otherwise
.

Since the space (−1, 1)× (−1, 1) is a square box with lengths of side 2, it is easy to see that
its area is 4, so ` = 1/4.
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Figure 4.1: Area of positive density in example is shaded. The box in the upper right corner
is a region of zero probability.

Commands:

s=((-50:50)/50)*pi # gives 101 points between -pi and pi

x=cos(s)

y=sin(s) # x and y define the circle

plot(x,y,type="n") # draws the coordinates of the plot

polygon(x,y,density =10,angle=90) # shades the circle

w=1/sqrt(2)

lines(c(w,w),c(w,1),lty=1) # these draw the four lines

# of the box in the upper right corner

lines(c(w,1),c(w,w),lty=1)

lines(c(w,1),c(1,1),lty=1)

lines(c(1,1),c(w,1),lty=1)

Also

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy

=

∫ 1

−1

1

4
dy =

y

4
|1−1=

1

2
for − 1 < x < 1.

Hence

fX(x) =

{
1
2 −1 < x < 1

0 otherwise
.
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By symmetry,

fY (y) =

{
1
2 −1 < y < 1

0 otherwise
.

Therefore

fX(x)fY (y) =

{
1
4 −1 < x < 1,−1 < y < 1

0 otherwise
.

Hence fX,Y (x, y) = fX(x)fY (y) so X and Y are independent.

Thus, in the circle, uniform distributions are not independent, but in the square, they
are independent.

Now reconsider the problem 3 of section 4.2.2. Here X and Y have the probability
density function

fX,Y (x, y) =

{
k | x+ y | −1 < x < 1,−2 < y < 1

0 otherwise
.

While this density is positive over the rectangle −1 < x < 1,−2 < y < 1, the function
| x+ y | does not factor into a function of x times a function of y. Hence X and Y are not
independent in this case.

4.3.1 Summary

The conditional density of Y given X (where both X and Y are continuous) is given by

fY |X(y | x) =
fX,Y (x, y)

fX(x)
.

X and Y are independent if

fY |X(y | x) = fY (y).

4.3.2 Exercises

1. Vocabulary: State in your own words, the meaning of:

(a) the conditional density of Y given X.

(b) independence of continuous random variables.

2. Reconsider problem 2 of section 4.2.

(a) Find the conditional probability density of Y given X: fY |X(y | x).

(b) Find the cumulative conditional probability density of Y given X: FY |X(y | x).

(c) use your answer to (a) and (b) to address the question of whether X and Y are
independent.

3. Reconsider problem 3 of section 4.2.

(a) Find the conditional probability density of X given Y , fX|Y (x | y).

(b) Find the cumulative probability density of X given Y , FX|Y (x | y).

(c) Use your answer to (a) and (b) to address the question of whether X and Y are
independent.
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4.4 Existence and properties of expectations

The expectation of a random variable X with probability density function (pdf) fX(x) is
defined as

E(X) =

∫ ∞
−∞

xfX(x)dx. (4.27)

It should come as no surprise that this expectation is said to exist only when

E(| X |) =

∫ ∞
−∞
| x | fX(x)dx <∞. (4.28)

The reason for this is the same as that explored in Chapter 3, namely that where (4.28) is
violated, the value of (4.27) would depend on the order in which segments of the real line
are added together. This is an unacceptable property for an expectation to have.

If (4.28) is violated, then

∞ =

∫ ∞
−∞
| x | fX(x)dx =

∫ 0

−∞
| x | fX(x)dx+

∫ ∞
0

| x | fX(x)dx

=

∫ 0

−∞
(−x)fX(x)dx+

∫ ∞
0

xfX(x)dx. (4.29)

Hence at least one of the integrals in (4.29) must be infinity. Suppose first that∫ ∞
0

xfX(x)dx =∞.

Then if g(x) ≥ xfX(x) , for all xε(0,∞), then
∫∞

0
g(x)dα = ∞. Thus no function greater

than or equal to xfX(x) can have a finite integral on (0,∞).
Therefore the Riemann strategy, approximating the integrand above and below by piece-

wise constant functions, and showing that the difference between the approximations goes
to zero as the grid gets finer, fails when (4.28) does not hold. A similar statement ap-
plies to approximating −xf(x) from above, and hence approximating xf(x) from below.
Consequently we accept (4.28) as necessary for the existence of the expectation (4.27).

I now show that each of the properties given in section 3.4 (except the fourth, whose
proof is postponed to section 4.7) for expectations of discrete random variables holds for
continuous ones as well. The proofs are remarkably similar in many cases.

1. Suppose X is a random variable having an expectation, and let k be any constant. Then
kX is a random variable that has an expectation, and E(kX) = kE(X).

Proof. We divide this according to whether k is zero, positive or negative.
Case 1: If k = 0, then kX is a trivial random variable, take the value 0 with probability
one. Its expectation exists, and is zero. Therefore

E(kX) = 0 = kE(X).

Case 2: k > 0.
Then Y = kX has cdf

FY (y) = P{Y ≤ y} = P{kX ≤ y} = P{X ≤ y/k}
= FX(y/k).
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Differentiating both sides with respect to y,

fY (y) =
fX(y/k)

k
,

so Y has pdf 1
kfX(y/k).

Therefore

E(| Y |) =

∫ ∞
−∞

| y |
k
fX(y/k)dy.

Let x = y/k. Then

E(| Y |) =

∫ ∞
−∞

k | x | fX(x)dx = kE(| X |) <∞.

Therefore the expectation of Y exists. Also, using the same substitution,

E(Y ) =

∫ ∞
−∞

y

k
fX(y/k)dy =

∫ ∞
−∞

kxfX(x)dx

= kE(X).

Case 3: k < 0.
Now Y = kX has cdf

FY (y) = P{Y ≤ y} = P{kX ≤ y} = P{X > y/k}
= 1− FX(y/k).

Again differentiating, fY (y) = −fX(y/k)/k, so Y has pdf − 1
kfX(y/k).

Then the expectation of | Y | is

E(| Y |) =

∫ ∞
−∞
| y | fY (y)dy = −1

k

∫ ∞
−∞
| y | fX(y/k)dy.

Again, let x = y/k, but because k < 0 this reverses the sense of the integral. Hence

E(| Y |) = −1

k

∫ −∞
∞

| kx | fX(x)kdx

=

∫ ∞
−∞
| kx | fX(x)dx =| k |

∫ ∞
−∞
| X | fX(x)dx

=| k | E | X |<∞.

Therefore Y has an expectation, and it is

E(Y ) =

∫ ∞
−∞
−y
k
fX(y/k)dy =

∫ −∞
∞

−k
k
kxfX(x)dx

= k

∫ ∞
−∞

xfX(x)dx = kE(X).

2. If E(| X |) < ∞ and E(| Y |) < ∞, then X + Y has an expectation and E(X + Y ) =
E(X) + E(Y ).
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Proof.

E | X + Y | =
∫ ∞
−∞

∫ ∞
−∞
| x+ y | fX,Y (x, y)dxdy

≤
∫ ∞
−∞

∫ ∞
−∞

(| x | + | y |)fX,Y (x, y)dxdy

=

∫ ∞
−∞
| x |

∫ ∞
−∞

fX,Y (x, y)dydx

+

∫ ∞
−∞
| y |

∫ ∞
−∞

fX,Y (x, y)dxdy

=

∫ ∞
−∞
| x | fX(x)dx+

∫ ∞
−∞
| y | fY (y)dy

= E(| X |) + E(| Y |) <∞

E(X + Y ) =

∫ ∞
−∞

∫ ∞
−∞

(x+ y)fX,Y (x, y)dxdy

=

∫ ∞
−∞

xfX,Y (x, y)dydx+

∫ ∞
−∞

yfX,Y (x, y)dxdy

=

∫ ∞
−∞

xfX(x)dx+

∫ ∞
−∞

yfY (y)dy = E(X) + E(Y )

Of course, again by induction, if X1, . . . , Xk are random variables having expectations,
then X1 + . . .+Xk has an expectation whose value is

E(X1 + . . .+Xk) =

k∑
i=1

E(Xi).

3. Let minX = max{x|F (x) = 0} and maxX = min{x|F (x) = 1}, which may, respectively,
be −∞ and ∞. Also suppose X is non-trivial. Then

minX < E(X) < maxX.

Proof.

−∞ ≤ minX =

∫ ∞
−∞

(minX)f(x)dx <

∫ ∞
−∞

xf(x)dx = E(X)

<

∫ ∞
−∞

(maxX)f(x)dx = maxX ≤ ∞.

4. Let X be non-trivial and have expectation c. Then there is some positive probability
ε > 0 that X exceeds c by a fixed amount η > 0, and positive probability ε > 0 that c
exceeds X by a fixed amount η > 0.
The proof of this property is postponed to section 4.7.

5. Let X and Y be continuous random variables. Suppose that E[X] and E[X | Y ] exist.
Then

E[X] = EE[X | Y ].
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Proof.

E[X | Y ] =

∫ ∞
−∞

xfX|Y (x | y)dx

=

∫ ∞
−∞

x
fX,Y (x, y)

fY (y)
dx

EE[X | Y ] =

∫ ∞
−∞

∫ ∞
−∞

x
fX,Y (x, y)

fY (y)
dxfY (y)dy

=

∫ ∞
−∞

∫ ∞
−∞

xfX,Y (x, y)dydx

=

∫ ∞
−∞

xfX(x)dx

= E[X].

6. If g is a real valued function, Y = g(x) and Y has an expectation, then

E(Y ) =

∫ ∞
−∞

g(x)fX(x)dx.

Proof. We apply 5, reversing the roles of X and Y , so we write 5 as

E(Y ) = EXE[Y | X].

Now Y | X = g(X). So E[Y | X] = g(X).
Hence EXE[Y | X] = EXg(X) =

∫∞
−∞ g(x)fX(x)dx.

But EXE[Y | X] = E(Y ).

7. If X and Y are independent random variables, then E[g(X)h(Y )] = E[g(X)]E[h(Y )],
provided these expectations exist.

Proof.

E[g(X)h(Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fX,Y (x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fX(x)fY (y)dxdy

=

∫ ∞
−∞

g(x)fX(x)dx

∫ ∞
−∞

h(y)fX(y)dy

= E[g(X)]E[h(Y )].

8. Suppose E | X |k<∞ from some k. Let j < k. Then E | X |j<∞.

Proof.

E | X |j =

∫
| x |j fX(x)dx

=

∫
| x |j fX(x)I(| x |≤ 1)dx+

∫
| x |j fX(x)I(| x |> 1)dx

≤ 1 +

∫
| x |k fX(x)I(| x |> 1)dx

≤ 1 + E(| X |k) <∞.
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9. All the properties of covariances and correlations given in section 2.11 hold for all con-
tinuous random variables as well, provided the relevant expectations exist.

4.4.1 Summary

The expectation of a continuous random variable X is defined to be

E(X) =

∫ ∞
−∞

xfX(x)dx

and is said to exist provided E | X |<∞. It has many of the properties found in Chapter 3
of expectations of discrete random variables.

4.4.2 Exercises

1. Reconsider problem 2 of section 4.2, continued in problem 2 of section 4.3.

(a) Find the conditional expectation and the conditional variance of Y given X.

(b) Find the covariance of X and Y .

(c) Find the correlation of X and Y .

2. Reconsider problem 3 of section 4.2, continued in problem 3 of section 4.3.

(a) Find the conditional expectation and the conditional variance of Y given X.

(b) Find the covariance of X and Y .

(c) Find the correlation of X and Y .

4.5 Extensions

It should be obvious that there are very strong parallels between the discrete and contin-
uous cases, between sums and integrals. Indeed the integral sign, “

∫
” was originally an

elongated “S,” for sum. There are senses of integral, particularly the Riemann-Stieltjes
integral introduced in section 4.8, that unite these two into a single theory.

Many applications rely on the extension of the ideas of this chapter to vectors of random
variables. Thus, for example, we can have XXX = (X1, . . . , Xk), which is just the random
variable (X1, . . . , Xk) considered together. If xxx = (x1, . . . , xk) is a point in k-dimensional
real space, we can write

FXXX(xxx) = P{XXX ≤ xxx} = P{X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk}.

Similarly there can be a multivariate density function fXXX(xxx), with marginal and condi-
tional densities defined just as before.

This generalization is crucial to the rest of this book. Open your mind to it.

4.5.1 An interesting relationship between cdf’s and expectations of continuous random
variables

Suppose X is a continuous variable on [0,∞).
Then

E(X) =

∫ ∞
0

(1− FX(x))dx

provided the expectation of X exists.
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Proof.

E(X) =

∫ ∞
0

xfX(x)dx =

∫ ∞
0

∫ x

0

dyfX(x)dx

=

∫
0<y<x<∞

fX(x)dxdy =

∫ ∞
0

∫ ∞
y

fX(x)dxdy

=

∫ ∞
0

(1− FX(y))dy =

∫ ∞
0

(1− FX(x))dx.

Not only is the result similar to the discrete case set forth in section 3.10.2, but also the
steps in the proof are the same, with sums replaced by integrals.

4.6 Chapter retrospective so far

Many of the difficult issues involved in moving beyond random variables taking only finitely
many values occur in Chapter 3, which concentrates on random variables taking at most
countably many values. The further extension, in this chapter, to continuous random vari-
ables, mainly just recapitulates Chapter 3, substituting integrals for infinite sums, for each
of the properties we have taken up so far. However, the story is more complex for the
dominated and bounded convergence theorems, which are studied next.

4.7 Bounded and dominated convergence for Riemann integrals

The purpose of this section is to explore how close one can come to the results of section 3.11
on dominated and bounded convergence using Riemann integration. The answer is that one
can get nearly, but not quite, all the way. To make precise exactly how close one can come
requires a series of lemmas and theorems of increasing strength. But first it is necessary
to introduce further material on limits, leading to a useful tool in studying convergence,
namely Cauchy’s criterion, and to be precise about what is meant by a Riemann integral.
These are the subjects of the next two supplements.

4.7.1 A supplement about limits of sequences and Cauchy’s criterion

Up to this point it has been possible to discuss limits of sequences directly from the defini-
tion. For the purpose of the remainder of this chapter, however, it is necessary to go more
deeply into this concept.

Before doing so, it is useful to give some guidance about quantified expressions. Consider
for example, the definition of continuity of a function f at a point x0: for all ε > 0, there
exists a δ > 0, such that for all x, if | x − x0 |< δ, then | f(x) − f(x0) |< ε. How should
such an expression be handled?

If a quantified expression is given as an assumption, then you get to choose each of the
“for all” variables, but your opponent gets to choose each of the “there exists” variables.
On the other hand, to prove a quantified expression, your opponent chooses each of the “for
all” variables, while you choose each of the “there exists” variables. This principle is used
repeatedly in the material to come.

The order of quantifiers in a quantified expression matters. For example, when I am
trying to prove that a function f is continuous at a point x0, my choice of δ > 0 can depend
on f , x0 and ε. And whatever choice of δ I make, my opponent’s choice of x can depend on
my choice of δ.

The first new idea to introduce is that of a point of accumulation: An infinite set of
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numbers a1, a2, . . . has a point of accumulation ξ if, for every ε > 0 no matter how small,
the interval (ξ − ε, ξ + ε) contains infinitely many ai’s.

Theorem 4.7.1. Let a1, a2, . . . be a bounded set of numbers. Then it has a point of accu-
mulation.

Proof. Suppose first that the numbers a1, a2, . . . are in the interval [0,1]. Consider all num-
bers whose decimal expansion is of the form 0.0, 0.1, . . . , 0.9. There are ten sets of numbers,
at least one of which has infinitely many ai’s. Suppose that each member of that set has the
decimal expansion 0.b1. Now consider the ten sets of numbers whose decimal expansion are
0.b10, 0.b11, 0.b12, . . . , 0.b19. Again at least one of these ten sets has infinitely many a’s, say
those with decimal expansion 0.b1b2. This process leads to a number ξ = 0.b1b2, . . . that is
a point of accumulation, because, no matter what ε > 0 is taken, there are infinitely many
a’s within ε of ξ.

If the interval is not [0, 1], but instead [c, c + d], then the point ξ = c + d(0.b1b2, . . .)
suffices, whose points x in [c, c + d] have been transformed into points on [0, 1] with the
transformation (x− c)/d.

Applied to sequences of points, an, we say that it has a point of accumulation ξ if for
every ε > 0, infinitely many values of n satisfy | ξ − an |< ε. This, then, includes the
possibility that infinitely many an’s equal ξ.

With that definition, we have the following:

Theorem 4.7.2. A bounded sequence an has a limit if and only if it has exactly one point
of accumulation.

Proof. We know from Theorem 4.7.1 that a bounded sequence has at least one accumulation
point ξ. Suppose first that ξ is the only accumulation point. We will show that it is the
limit of the an’s. Let ε > 0 be given, and consider the points an outside the set (ξ− ε, ξ+ ε).
If there are infinitely many of them, then the subsequence of an’s outside (ξ − ε, ξ + ε) has
an accumulation point, which is an accumulation point of the an’s. This contradicts the
hypothesis that the an’s have only one accumulation point. Therefore there are only finitely
many values of n such that an is outside the interval (ξ − ε, ξ + ε). But this is the same as
the existence of an N such that, for all n greater than or equal to N , | ξ − an |< ε. Thus ξ
is the limit of the an’s.

Now suppose that the sequence an has at least two points of accumulation, ξ and η.
Then let | ξ− η |= a. By choosing ε < a/3, no point will have all but a finite number of the
an’s within ε of it, so there is no limit. This completes the proof.

Perhaps it is useful to give some examples at this point. The sequence an = 1/n has the
limit 0, which is, of course, its only accumulation point. Similarly the sequence bn = 1−1/n
has limit 1. Now consider the sequence cn that, for even n, that is, n’s of the form n = 2m
(where m is an integer) takes the value 1/m, and for odd n, that is, n’s of the form n =
2m+ 1, takes the value 1− 1/m. This sequence has two accumulation points, 0 and 1, and
hence no limit. In all three cases, the accumulation point is not an element of the sequence.

Up to this point, checking whether a sequence of real numbers converges to a limit has
required knowing what the limit is. The Cauchy criterion for convergence of a sequence
allows discussion of whether a sequence has a limit (i.e., convergence) without specification
of what that limit is. The Cauchy criterion can be stated as follows:

A sequence a1, a2, . . . , satisfies the Cauchy criterion for convergence if, for every ε > 0,
there is an N such that

| an − am |< ε

if n and m are both greater than or equal to N .
The importance of the Cauchy criterion lies in the following theorem:
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Theorem 4.7.3. A sequence satisfies the Cauchy criterion if and only if it has a limit.

Proof. Suppose a1, a2, . . . , is a sequence that has a limit `. Let ε > 0 be given. Then there
is an N such that for all n greater than or equal to N , | an − ` |< ε/2. Then for all n and
m greater than or equal to N ,

| an − am |≤| an − ` | + | `− am |< ε/2 + ε/2 = ε.

Therefore the sequence a1, a2, . . . satisfies the Cauchy criterion.
Now suppose a1, a2, . . . satisfies the Cauchy criterion. Then, choose some ε > 0. There

exists an N such that | an − am |< ε if n and m are greater than or equal to N . Hold an
fixed. Then except possibly for a1, . . . , aN−1, all the am’s are within ε of an. Therefore the
a’s are bounded. Hence Theorem 4.7.1 applies, and says that the sequence an has a limit
point ξ. Suppose it has a second limit point η. Let a =| ξ − η | and choose ε < a/3. Then
there are infinitely many n’s such that | ξ − an |< ε and infinitely many m’s such that
| η − am |< ε. For those choices of n and m, we have | an − am |> a/3, which contradicts
the assumption that the a’s satisfy the Cauchy criterion. Therefore there is only one limit
point ξ, and limn→∞ an = ξ.

If, in the proof of Theorem 4.7.1, the largest b had been chosen when several b’s corre-
sponded to the decimal expansion of an infinite number of a’s, the resulting ξ would be the
largest point of accumulation of the bounded sequence an. This largest accumulation point
is called the limit superior, and is written limn→∞an. Similarly always choosing the smallest
leads to the smallest accumulation point, called the limit inferior, and written limn→∞an.
A bounded sequence an has a limit if and only if limn→∞an = limn→∞an.

An interval of the form a ≤ x ≤ b is a closed interval; an interval of the form a < x < b
is an open interval. Intervals of the form a < x ≤ b or a ≤ x < b are called half-open.

Lemma 4.7.4. A closed interval I has the property that it contains every accumulation
point of every sequence {an} whose elements satisfy an ∈ I for all n.

Proof. Suppose that I = {x | a ≤ x ≤ b}, and let an be a sequence of elements in I. Let
b∗ = limn→∞an.

If b∗ ≤ b we are done. Therefore suppose that b∗ > b. Let ε = (b∗ − b)/2. Then because
an ≤ b for all n, | b∗ − an |> ε for all n, so b∗ is not the limn→∞an, contradiction. Hence
b∗ ≤ b.

A similar argument applies to a∗ = limn→∞an, and shows a ≤ a∗. Consequently a ≤
a∗ ≤ b∗ ≤ b, so if c is an arbitrary accumulation point of an, we have a ≤ a∗ ≤ c ≤ b∗ ≤ b,
so c ∈ I, as claimed.

Open and half-open intervals do not have this property. For example, if I = {x | a <
x < a+ 2}, the sequence an = a+ 1/n satisfies an ∈ I for all n, but limn→∞ an = a 6∈ I.

A second lemma shows that bounded non-decreasing sequences have a limit:

Lemma 4.7.5. Suppose an is a non-decreasing bounded sequence. Then an has a limit.

Proof. We have that there is a b such than an ≤ b for all n. Also we have an+1 ≥ an for all n.
Let x ≤ b be chosen to be lim an and suppose, contrary to the hypothesis, that y = lim an
satisfies y < x. Let ε = (x − y)/2 > 0. Then by definition of the lim, there are an infinite
number of n’s such that x− an < ε. Take any such n. Because the an’s are non-decreasing,
x − an+1 < ε, x − an+2 < ε, etc. Thus for all m ≥ n, x − am < ε. But then there cannot
be infinitely many n’s such that | y− an |< ε. Contradiction to the definition of lim. Hence
x = y, and {an} has a limit.

Lemma 4.7.6. Suppose Gn is a non-increasing sequence of non-empty closed subsets of
[a, b], so Gn ⊇ Gn+1 for all n. Then G = ∩∞n=1Gn is non-empty.
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Proof. Let xn = inf Gn. The point xn exists because Gn is non-empty and bounded. Fur-
thermore, xnεGn, because Gn is closed. The sequence {xn} is non-decreasing, because
Gn ⊇ Gn+1. It is also bounded above by b. Therefore by Lemma 4.7.5, xn converges to
a limit x. Choose an n and k > n. Then xk ∈ Gk ⊆ Gn. Then xεGn because Gn is closed.
Since xεGn for all n, xεG.

4.7.2 Exercises

1. Vocabulary. Explain in your own words:

(a) accumulation point of a set

(b) accumulation point of a sequence

(c) Cauchy criterion

(d) limit superior

(e) limit inferior

2. Consider the three examples given just after the proof of Theorem 4.7.2. For each of
them, identify the limit superior and the limit inferior.

3. Prove the following: Suppose bn is a non-increasing bounded sequence. Then bn has a
limit.

4. Let U ≥ L. Let X1, X2, . . . be a sequence that is convergent but not absolutely con-
vergent. Show that there is a reordering of the x’s such that U is the limit superior of
the partial sums of the x’s, and so that L is the limit inferior. Hint: Study the proof of
Riemann’s Rainbow Theorem 3.3.5.

5. Consider the following two statements about a space X :

(a) For every xεX , there exists a yεX such that y = x.

(b) There exists a yεX such that for every xεX , y = x.

i. For each statement, find a necessary and sufficient condition on X such that the
statement is true.

ii. If one statement is harder to satisfy than the other (i.e., the X ’s satisfying it are
a narrower class), explain why.

4.7.3 References

The approach used in this section is from Courant (1937, pp. 58-61).

4.7.4 A supplement on Riemann integrals

To understand the material to come, it is useful to be more precise about a concept con-
sidered only informally up to this point, Riemann integration, the ordinary kind of integral
we have been using.

A cell is a closed interval [a, b] such that a < b, so the interior (a, b) is not empty. A
collection of cells is non-overlapping if their interiors are disjoint. A partition of a closed
interval [a, b] is a finite set of couples (ξk, Ik) such that the Ik’s are non-overlapping cells,
such that ∪nk=1Ik = [a, b], and ξk is a point such that ξkεIk.

If δ > 0, then a partition π = (ξi, [ui, vi]; i = 1, . . . , n) for which, for all i = 1, . . . , n

ξi − δ < ui ≤ ξi ≤ vi < ξi + δ

is a δ-fine partition of [a, b].
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If f is a real-valued function on [a, b], then a partition π has a Riemann sum∑
π

f =

n∑
i=1

f(ξi)(vi − ui). (4.30)

Definition: A number A is the Riemann integral of f on [a, b] if for every ε > 0 there
is a δ > 0 such that, for every δ-fine partition π,

|
∑
π

f −A |< ε.

Many of the treatments of the Riemann integral use an equivalent formulation that looks at
the lim of the Riemann sums of functions at least as large as f and the lim of the Riemann
sums of functions no larger than f . If these two numbers are equal, then the Riemann
integral of f is defined and equal to both of them.

A function such as (4.30), which is constant on a finite number of intervals, is called a
step function. Riemann integrals are limits of areas under step functions as the partition
that defines them gets finer.

As practice using the formal definition of Riemann integration, suppose g(x) and h(x)
are Riemann integrable functions. Then we’ll show that g(x) + h(x) is integrable, and that∫ (

g(x) + h(x)

)
dx =

∫
g(x)dx+

∫
h(x)dx.

Proof. Let a =
∫
g(x)dx and b =

∫
h(x)dx. Let ε > 0 be given. Then there is a δg > 0 such

that, for every δg-fine partition πg,

|
∑
πg

g − a |< ε/2.

Similarly there is a δh > 0 such that, for every δh-fine partition πh,

|
∑
πh

h− b |< ε/2.

Let δ = min(δg, δh) > 0, and let π be an arbitrary δ-fine partition. Then π is both a δg-fine
and δh-fine partition. Then

|
∑
π

(
g(x) + h(x)

)
− (a+ b) |≤|

∑
π

g(x)− a | + |
∑
π

h(x)− b |< ε/2 + ε/2 = ε.

Since this is true for all δ-fine partitions π, and for all ε > 0, g(x) + h(x) has a Riemann
integral, and it equals a+ b.

4.7.5 Summary

This supplement makes more precise exactly what is meant by the Riemann integral of a
function.

4.7.6 Exercises

1. Vocabulary: state in your own words what is meant by:

(a) Riemann sum

(b) Riemann integral

(c) Step function

2. Use the definition of Riemann integral to find
∫ 1

0
xdx. Hint: You may find it helpful to

review section 1.2.2.
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4.7.7 Bounded and dominated convergence for Riemann integrals

Having introduced the Cauchy criterion and given a rigorous definition of the Riemann
integral, along with some of its properties, we are now ready to proceed to the goal of this
section, bounded and dominated convergence for Riemann integration. I do so in a series
of steps, proving a rather restricted result, and then gradually relaxing the conditions. We
start with some facts about some special sets called elementary sets.

A subset of R is said to be elementary if it is the finite union of bounded intervals (open,
half-open or closed). Two important properties of elementary subsets are:

(i) if F is an elementary set and if | g(x) |≤ K for all xεF , then |
∫
F
g(x) |≤ K | F |, where

| F | is the sum of the lengths of the bounded intervals comprising F , and is called the
measure of F .

(ii) if F is an elementary set and ε > 0, there is a closed elementary subset H of F such
that | H |>| F | −ε.
The first is obvious. To show the second, if F is elementary, it is the finite union of

intervals, say I1, . . . , IN . Choose ε > 0. Suppose the endpoints of Ii are ai and bi, where
ai ≤ bi, and Ii is open or closed at each end. If ai = bi, Ii must be {ai} and is closed. If
ai < bi, then, choose ε′i so that 0 < ε′i < min{ε/2N, (bi − ai)/2}.

Consider I ′i = [ai + ε′i, bi − ε′i] ⊂ Ii. Let H = ∪ni=1I
′
i, a
′
i = ai + ε′i and b′i = bi − ε′i.

H is closed because it is a finite union of closed intervals, and

| H |=
N∑
i=1

(b′i − a′i) =

N∑
i=1

[(bi − ai)− 2ε′i] =| F | −2

N∑
i=1

ε′i >| F | −ε.

Definition: A sequence An is contracting if and only if A1 ⊇ A2 ⊇ . . ..
Lemma 4.7.7. Suppose An is a contracting sequence of bounded subsets of R, with an
empty intersection. For each n, define

αn = sup{| E || E is an elementary subset of An}.

Then αn → 0 as n→∞.

Proof. The sequence αn is non-increasing. Suppose the lemma is false. Then there is some
δ > 0 such that αn > δ for all n. For each n, let Fn be a closed elementary subset of An
such that

| Fn |> αn − δ/2n,

and let

Hn = ∩ni=1Fn.

Now Hn ⊆ An and Hn’s are a decreasing sequence of closed intervals. To show each Hn is
not empty, consider

(a) for every n, if F is an elementary subset of An\Fn, then | F | + | Fn |=| F ∪ Fn |≤ αn
and | Fn |> αn − δ/2n. Consequently | F |< δ/2n.

(b) For every n, if G is an elementary subset of An\Hn, then since

G = (G\F1) ∪ (G\F2) ∪ . . . ∪ (G\Fn),

it follows that | G |≤
∑n
i=1 | G\Fi |≤

∑n
i=1 δ/2

i < δ.
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For every n, because αn > δ, the set An must have an elementary subset Gn such that
| Gn |> δ so it follows that each Hn is non-empty. Then Hn is a decreasing sequence of
non-empty closed intervals, and Hn ⊆ An. It follows from Lemma 4.7.6 that ∩∞n=1Hn is
non-empty. Therefore ∩∞n=1An is non-empty, a contradiction.

Theorem 4.7.8. Suppose fn is a sequence of Riemann integrable functions, suppose fn →
f point-wise, that f is Riemann integrable, and that for some constant K > 0 we have
| fn |≤ K for every n. Then ∫ b

a

fn →
∫ b

a

f.

Proof. Let gn =| fn − f |. Then gn ≥ 0 for all n and gn → 0 point-wise. Therefore there is
no loss of generality in supposing fn ≥ 0 and f = 0. Let ε > 0 and for each n, define

An = {xε[a, b] | fi(x) ≥ ε

2(b− a)
for at least one i ≥ n}.

Now Lemma 4.7.7 applied to An says that there is an N such for all n greater than or equal
to N , and F is an elementary subset of An, we have | F |< ε/2K. Now we must show that

for all n greater than or equal to N , we have
∫ b
a
fn ≤ ε. Fix n ≥ N . It suffices to show that

when s is a step function and 0 ≤ s ≤ fn we have
∫ b
a
s ≤ ε. Let s be such a step function,

let
F = {xε[a, b] | s(x) ≥ ε

2(b− a)
}, and G = [a, b]\F.

Then F and G are elementary sets, and since F ⊆ An we have | F |< ε/2K.
Then ∫ b

a
s =

∫
F
s+

∫
G
s ≤

∫
F
K +

∫
G

ε
2(b−a) ≤

∫
F
K +

∫ b
a

ε
2(b−a)

= K | F | + ε
2(b−a) (b− a) < ε.

Now this bounded convergence theorem does not quite generalize Theorem 3.11.1, since
it assumes that the limit function f is integrable. What happens if this assumption is not
made?

Corollary 4.7.9. Suppose fn is a sequence of Riemann integrable functions, suppose fn →
f point-wise, and, for some constant K > 0, we have | fn |≤ K for every n. Then

(a)
∫ b
a
fn is a sequence that satisfies the Cauchy criterion.

(b) If f is Riemann integrable, then
∫ b
a
fn →

∫ b
a
f .

Proof. In light of the theorem, only (a) requires proof.
Let hn,m =| fn − fm |. Then hn,m ≥ 0 for all n and m. We may suppose without loss of

generality that m ≥ n. Then limn→∞ hn,m = 0.
Now the proof of the theorem applies to hn,m, showing that limn→∞,m≥n

∫
hn,m(x)dx =

limn→∞,m≥n
∫
| fn − fm |= 0. Thus

∫
fn satisfies the Cauchy criterion.

To show what the issue is about whether f is integrable, consider the following example.
Example 1. (Dirichlet): In this example we consider rational numbers p/q, where

p and q are natural numbers having no common multiple except one. Thus 2/4 is to be
reduced to 1/2.

Let

fn(x) =

{
1 if x = p/q and n ≤ q, 0 < x < 1

0 otherwise, 0 < x < 1.
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So then f2(x) = 1 at x = 1/2 and is zero elsewhere on the unit interval. Similarly f3(x) = 1
at x = 1/3, 1/2, 2/3 and is zero elsewhere, etc. Each such fn(x) is continuous except at a
finite number of points, and hence is Riemann integrable. Indeed the integral of each fn is
zero.

Now let’s look at f(x) = limn→∞ fn(x). This function is 1 at each rational number, and
zero otherwise. The lim of each Riemann sum of f is 1, and the lim of each Riemann sum
is zero. Hence f is not Riemann integrable. 2

Finally, we wish to extend the result from bounded convergence to dominated conver-
gence. To this end, we wish to substitute for the assumption | fn |≤ K for all n, the weaker
assumption that | fn(x) |≤ k(x) where k(x) is integrable. To do this, we find, for every
ε > 0, a constant K big enough that

∫
g ≤

∫
min(g,K) + ε. In particular,

Lemma 4.7.10. Let k be a non-negative function with
∫
k < ∞ and let ε > 0 be given.

Then there exists a constant K so large that
∫
g ≤

∫
min(g,K) + ε for all non-negative

integrable functions g satisfying g(x) ≤ k(x).

Proof. Define a lower sum for g any number of the form
∑r
i=1 yi | Ii |, where Ii(i = 1, . . . , r)

are a partition of [a, b] and g(x) ≥ yi for all xεIi.
∫
g is the least upper bound of all lower

sums of g.
Let ε > 0 be given, and let π = (yi, Ii, i = 1, . . . , r) be a lower sum for k such that∑r
i=1 yi | Ii |>

∫
k − ε. Let K = max{y1, . . . , yr}. Let g satisfy the assumptions of the

lemma. Additionally, let η = (xj , Jj , j = 1, . . . , s) be a lower sum for g − min(g,K). Let
Hij = IiJj . I claim that

∑
i,j(xj + yi) | Hij | is a lower sum for k. Since the Hij ’s are a

partition of [a, b], what has to be shown is k(x) ≥ xj + yi for all xεHij .

(a) If g(x) ≤ K, then min(g(x),K) = g(x). Hence g(x)−min(g(x),K) = g(x)− g(x) = 0.
Then xj ≤ 0, and yi + xj ≤ yi ≤ g(x) ≤ k(x).

(b) If g(x) > K then min(g(x),K) = K. Therefore g(x)−min(g(x),K) = g(x)−K. Then
yi + xj ≤ K + g(x)−K = g(x) ≤ k(x).

Therefore
∫
k −

∑r
i=1 yi | Ii | is an upper bound for

∑
xjJj , which is a lower sum of∫

g−min(g,K). Since (xj , Jj , j = 1, . . . , s) is an arbitrary such lower sum,
∫
k−
∑r
i=1 yi | Ii |

is an upper bound for all such lower sums of
∫
g −min(g,K), so it is an upper bound for∫

g −min(g,K). Since
∫
k −

∑r
i=1 yi | Ii |< ε, this proves the lemma.

Now min{fn(x),K} ≤ K so the theorem applies to min{fn(x),K}, and the result is a
contribution of less than ε, for any ε > 0, to the resulting integrals. Hence we have∣∣ ∫ fn −

∫
min{fn,K}

∣∣ < ε, so

∫
fn ≤ 2ε

as a consequence of the proof of Theorem 4.7.8. Since this is true for all ε > 0, we have∫
fn → 0. This derives the final form of the result:

Theorem 4.7.11. Suppose fn(x) is a sequence of Riemann-integrable functions satisfying

(i) fn(x)→ f(x)

(ii) | fn(x) |≤ k(x) where k is Riemann integrable.

Then

(a)
∫
fn(x)dx is a sequence satisfying the Cauchy criterion.

(b) If f(x) is Riemann integrable, then
∫
fn(x)dx→

∫
f(x)dx.

Theorem 4.7.12. Suppose fn(x) and gn(x) are two sequences of Riemann-integrable func-
tions satisfying conditions (i) and (ii) of Theorem 4.7.11 with respect to the same limiting
function f(x). Then

lim
n→∞

∫
fn(x)dx = lim

n→∞

∫
gn(x)dx.
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Proof. Consider the sequence of functions f1, g1, f2, g2, . . .. Let the nth member of the se-
quence be denoted hn. I claim that the sequence of functions hn satisfies conditions (i) and
(ii) of Theorem 4.7.11, with respect to f .

(i) Let ε > 0 be given. Since fn(x) → f(x), there is some number Nf such that, for all
n ≥ Nf ,

| fn(x)− f(x) |< ε.

Similarly there is an Ng such that for all n ≥ Ng,

| gn(x)− f(x) |< ε.

Let N = 2Max{Nf ,Ng}+ 1. Then, for all n ≥ N ,

| hn(x)− f(x) |< ε.

(ii) Let kf (x) be Riemann integrable and such that | fn(x) |≤ kf (x) for all x. Similarly,
let kg(x) be Riemann integrable and such that | gf (x) |≤ kg(x). Then | hf (x) |≤
kf (x) + kg(x), and kf (x) + kg(x) is Riemann integrable.

Therefore, Theorem 4.7.11 applies to hn, so
∫
hn(x)dx is a Cauchy sequence, and therefore

has a limit. Since
∫
fn(x)dx and

∫
gn(x)dx are also Cauchy sequences, they have limits,

which we’ll call a and b, respectively. Then a and b are accumulation points of the set
{
∫
hn(x)dx}, so by Theorem 4.7.2, we must have a = b.

Theorem 4.7.12 suggests that when conclusion (a) of Theorem 4.7.11 applies, we know
what the value of

∫
f(x)dx “ought” to be, namely limn→∞

∫
fn(x)dx, (which limit exists

because it satisfies the Cauchy criterion). Theorem 4.7.12 shows that this extension of
Riemann integration is well-defined, by showing that if, instead of choosing the sequence
fn(x) of Riemann-integrable functions one chose any other sequence gn(x) also converging
to f , the limit of the sequence of integrals would be the same. Nonetheless, this would be a
messy theory, because each use would require distinguishing the two cases of Theorem 4.7.11.
Instead, I will soon introduce a generalized integral, the McShane integral, that satisfies a
strong dominated convergence theorem and does so in a unified way.

4.7.8 Summary

This section gives a sequence of increasingly more general results on bounded and dominated
convergence, culminating in Theorem 4.7.11.

4.7.9 Exercises

1. Vocabulary. Explain in your own words:

(a) Riemann integrability

(b) bounded convergence

(c) dominated convergence

2. In Example 1, what is
∫
fn(x)dx? Show that it is a Cauchy sequence. What is its limiting

value?

4.7.10 References

The first bounded convergence theorem (without uniform convergence) for Riemann in-
tegration is due to Arzela. A useful history is given by Luxemburg (1971). Lemma 4.7.7,
Theorem 4.7.8 and Corollary 4.7.9 are from Lewin (1986). Lemma 4.7.10 and Theorem 4.7.11
follow Cunningham (1967). Other useful material includes Kestelman (1970) and Bullen and
Vyborny (1996).
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4.7.11 A supplement on uniform convergence

The disappointment that Theorem 4.7.11 does not permit the conclusion that f(x) is Rie-
mann integrable leads to the thought that either the assumptions should be made stronger
or that the notion of integral should be strengthened. While most of the rest of this chapter
is devoted to the second possibility, this supplement explores a strengthening of the notion
of convergence.

The kind of convergence in assumption (i) of Theorem 4.7.11 is pointwise in xε[a, b]. It
says that for each x, fn(x) converges to f(x). Formally this is translated as follows: for every
xε[a, b] and for every ε > 0, there exists an N(x, ε) such that, for all n ≥ N(x1ε), | fn(x)−
f(x) |< ε. In this supplement, we consider a stronger sense of convergence, called uniform
convergence: for every ε > 0 there exists an N(ε) such that for all xε[a, b], | fn(x)−f(x) |< ε.
Thus every sequence of functions that converges uniformly also converges pointwise, by
taking N(x, ε) = N(ε). However, the converse is not the case, as the following example
shows: Consider the sequence of functions fn(x) = xn in the interval xε[0, 1]. This sequence
converges pointwise to the function f(x) = 0 for 0 ≤ x < 1, and f(1) = 1. Choose, however,
an ε > 0, and an N . Then for all n ≥ N , we have xn − 0 > ε if 1 > x > ε1/n. Hence the
convergence is not uniform.

The distinction between pointwise and uniform convergence is an example in which it
matters in what order the quantifiers come, as explained in section 4.7.1. (See also problem
3 in section 4.7.2.)

Now we explore what happens to Theorem 4.7.11 if instead of assuming (i) we assume
instead that fn(x)→ f(x) uniformly for xε[a, b]. First we have the following lemma:

Lemma 4.7.13. Let fn → f(x) uniformly for xε[a, b], and suppose fn(x) is Riemann
integrable. Then f is Riemann integrable.

Proof. Let j and J be respectively the supremum of the lower sums and the infimum of the
upper sums of the Riemann approximations to f . Let εn = supxε[a,b] | fn(x) − f(x) |. The
definition of uniform convergence is equivalent to the assertion that εn → 0. Then for all
xε[a, b] and n ≥ N, fn(x)− εn ≤ f(x) ≤ fn(x) + εn.

Integrating, this implies, for all n ≥ N∫
fn(x)dx− εn(b− a) ≤ j ≤ J ≤

∫
fn(x)dx+ εn(b− a).

Then 0 ≤ J − j ≤ 2εn(b− a).
As n→∞, the right-hand side goes to 0, so j = J and f is Riemann integrable.

Next, we see what happens to assumption (ii) of Theorem 4.7.11 when fn(x) → f(x)
uniformly:

Lemma 4.7.14. If fn(x) is a sequence of Riemann-integrable functions satisfying fn(x)→
f(x) uniformly in xε[a, b], then | fn(x) |≤ k(x) where k is Riemann integrable on [a, b].

Proof. Choose an ε > 0. Then by uniform convergence there exists an N(ε) such that, for
all n ≥ N | fn(x)− f(x) |< ε.

Let k(x) =
∑N
i=1 | fi(x) | + | f(x) | +ε. Then

| fi(x) |≤ k(x) for i = 1, . . . , N.

For n ≥ N, | fn(x) |≤| f(x) | +ε ≤ k(x). Therefore,

| fn(x) |≤ k(x) for all n.
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To show that k is integrable,∫ b

a

[
N∑
i=1

| f1(x) | + | f(x) | +ε

]
dx

=

N∑
i=1

∫ b

a

| fi(x) | dx+

∫
| f(x) | dx+ ε(b− a),

which displays the integral of k as the sum of N + 2 terms, each of which is finite (using
Lemma 4.7.13). Hence k is Riemann integrable.

Thus if fn(x) converges to fn(x) uniformly for xε[a, b], Theorem 4.7.11 part (b) applies,
and we can conclude that ∫

fn(x)dx→
∫
f(x)dx.

Hence, we have the following corollary to Theorem 4.7.11.

Corollary 4.7.15. Suppose fn(x) is a sequence of Riemann-integrable functions converging
uniformly to a function f . Then

(a) f is Riemann integrable

(b)
∫
fn(x)dx→

∫
f(x)dx.

It turns out that the assumption of uniform convergence is a serious restriction, which
is why the modern emphasis is on generalizing the idea of the integral. The development of
such an integral begins in section 4.8.

4.7.12 Bounded and dominated convergence for Riemann expectations

We now specialize our considerations to expectations of random variables, where the ex-
pectation is understood to be a Riemann integral. There are two ways in which these
expectations are special cases of the integrals considered in section 4.7.7:

(A) There is an underlying probability density h(x) satisfying

(i) h(x) ≥ 0 for all x

(ii)
∫
h(x)dx = 1

(B) A random variable y(X) is considered to have an expectation only when E | y(X) |=∫
| y(x) | h(x)dx <∞ for reasons discussed in Chapter 3.

Additionally, there is one respect in which these expectations are more general than the
integrals of section 4.7.7: we want the domain of integration to be the whole real line, and
not just a closed interval [a, b]. As it will turn out, the restrictions (A) and (B) permit this
extension without further assumptions. To be clear, we mean by an integral over the whole
real line, that ∫ ∞

−∞
f(x)dx = lim

a→−∞
lim
b→∞

∫ b

a

f(x)dx.

That all our integrands are absolutely integrable assures us that the order in which limits
are taken is irrelevant.

Theorem 4.7.16. Let T be the set of xεR such that h(x) > 0. Let Yn(X) be a sequence of
random variables converging to Y (x) in the sense that

Yn(x)→ Y (x) for all xεT.

Additionally, suppose there is a random variable g(x) such that

| Yn(x) |≤ g(x)
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and ∫
R
g(x)h(x)dx <∞.

Then

(a) the sequence E(Yn) satisfies the Cauchy criterion and

(b) if E(Y ) exists, then E(Y ) = limn→∞E(Yn).

Proof. The only aspect of this result not included in Theorem 4.7.11 is the extension of the
integrals to an infinite range. We address that issue as follows:

Let ε > 0 be given. Necessarily, g(x) ≥ 0 and h(x) ≥ 0. By assumption
∫∞
−∞ g(x)h(x) <

∞. Then there is an a such that ∫ a

−∞
g(x)h(x) < ε/6. (4.31)

Also there is a b such that ∫ ∞
b

g(x)h(x) < ε/6. (4.32)

On the interval [a, b], g(x)h(x) satisfies the conditions of Theorem 4.7.11, so there is an N
such that ∣∣ ∫ b

a

yn(x)h(x)dx−
∫ b

a

ym(x)h(x)dx
∣∣ < ε/3 (4.33)

for all n and m satisfying n,m ≥ N . Then

∣∣ ∫ ∞
−∞

yn(x)h(x)dx−
∫ ∞
−∞

ym(x)h(x)dx
∣∣

≤
∣∣ ∫ a

−∞
(yn(x)− ym(x))h(x)dx

∣∣+
∣∣ ∫ b

a

yn(x)h(x)dx−
∫ b

a

ym(x)h(x)dx
∣∣

+
∣∣ ∫ ∞
b

(yn(x)− ym(x)h(x)dx
∣∣

≤
∫ a

−∞
2g(x)h(x)dx+ ε/3 +

∫ ∞
b

2g(x)h(x)dx

≤ 2(ε/6) + ε/3 + 2(ε/6) = ε.

This proves part (a).
The proof of part (b) is the same, substituting y(x) for ym(x) throughout.

Example 1 of section 4.7 applies to expectations, where [a, b] = [0, 1] and h(x) = I[0,1](x).
The result of this analysis is that, under the assumptions made, we know, from part (a),

that the sequence E[Yn] has a limit. However, Example 1 shows that the limiting random
variable Y is not necessarily integrable in the Riemann sense. However, when it is Riemann
integrable, then part (b) shows that we have

lim
n→∞

E(Yn) = E( lim
n→∞

Yn),

which is our goal. Thus we may fairly conclude that the barrier to achieving our goal lies
in a weakness in the Riemann sense of integration. Hence in section 4.9 we seek a more
general integral, one that coincides with Riemann integration when it is defined, but that
allows other functions to be integrated.

We are now in a position to address the sense in which Riemann probabilities are count-
ably additive. I distinguish between two senses of countable additivity, as follows:
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Weak Countable Additivity:

If A1, . . . are disjoint events such that P{Ai} is defined, and if P{∪∞i=1Ai} is defined,
then

∞∑
i=1

P{Ai} = P{∪∞i=1Ai}.

Strong Countable Additivity:

If A1, . . . are disjoint events such that P{Ai} is defined, then P{∪∞i=1Ai} is defined and

∞∑
i=1

P{Ai} = P{∪∞i=1Ai}.

The distinction between weak and strong countable additivity lies in whether ∪∞i=1Ai
has a defined probability. Riemann probabilities are not strongly countably additive, as the
following example shows:

Example 2, a continuation of Example 1: We start with a special case, and then
show that the construction is general. Consider the uniform density on (0, 1), so f(x) = 1 if
0 < x < 1 and f(x) = 0 otherwise. Consider the (countable) set Q of rational numbers. Let
Ai be the set consisting of the ith rational number (in any order you like). Then

∫
IAif(x)dx

exists and equals 0. Now Q = ∪∞i=1Ai, but IQ(x)f(x) is a function that is 1 on each rational
number x, 0 < x < 1, and zero otherwise. It is not Riemann integrable. Hence strong
countable additivity fails.

Now suppose f(x) is an arbitrary density satisfying f(x) ≥ 0 and
∫∞
−∞ f(x) = 1. Let

F (x) =
∫ x
−∞ f(x)dx be the cumulative distribution function. Then F is differentiable with

derivative f(x), non-decreasing, and satisfies F (−∞) = 0 and F (∞) = 1.
Let Ai = {x | F (x) = qi}. Then P{Ai} = 0 (and exists). However, consider the set

A = ∪∞i=1Ai = {x | F (x)εQ}, so F−1(A) = Q. Suppose, contrary to the hypothesis, that A
is integrable, so that

∫∞
−∞ IA(x)f(x)dx exists. Consider the transformation y = F (x), whose

differential is dy = f(x)dx. Then
∫∞
−∞ IA(x)f(x)dx =

∫ 1

0
IF−1(y)(y)dy =

∫ 1

0
IQ(y)dy. Since

the latter integral does not exist in the Riemann sense, A is not integrable with respect
to the density f(x). Hence the Riemann probabilities defined by the density f(x) are not
strongly countably additive. 2

Thus the most that we can hope for Riemann probabilities is weak countable additivity.

Theorem 4.7.17. Let f(x) be a density function, and let A1, . . . , be a countable sequence
of disjoint sets whose Riemann probability is defined. If ∪∞i=1Ai has a Riemann probability,
then

P{∪∞i=1Ai} =

∞∑
i=1

P{Ai}.

Proof. Consider the random variables

Yn(x) =

n∑
i=1

IAi(x).

We know that Yn(x) converges point-wise to the random variable

Y (x) =

∞∑
i=1

IAi(x) = I∪∞i=1Ai
(x).
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Also | Y (x) |≤ 1, which satisfies ∫
R

1f(x)dx = 1 <∞.

Therefore Theorem 4.7.16 applies. Since we have assumed that ∪∞i=1Ai has a Riemann
probability, it satisfies

P{∪∞i=1Ai} = EY = lim
n→∞

E(Yn) = lim
n→∞

E

n∑
i=1

IAi(x) =

lim
n→∞

(

n∑
i=1

P{Ai}) =

∞∑
i=1

P{Ai}.

Theorem 4.7.17 shows that Riemann probabilities are weakly countably additive.

Finally, we postponed the proof of the following result; which is property 4 from sec-
tion 4.4.

Theorem 4.7.18. Let X be non-trivial and have expectation c. Then there is some positive
probability ε > 0 that X exceeds c by a fixed amount η > 0, and positive probability ε > 0
that c exceeds X by a fixed amount η > 0.

Proof. Let Ai = {x | 1
i > x− c ≥ 1

i+1}, i = 0, 1, . . . ,∞ where 1
0 is taken to be infinity. The

Ai’s are disjoint and ∪∞i=1Ai = {x − c > 0}. Similarly let Bj = { 1
j > c − x ≥ 1

j+1}, j =
0, . . . ,∞, so the Bj ’s are disjoint and

∪∞i=1Bj = {c− x > 0}.

Since X is non-trivial, P{X 6= c} > 0. All three sets, {x | x > c}, {x | x < c} and {x | x 6= c}
have Riemann probabilities. Hence by weak countable additivity their probabilities are
respectively the sum of the probabilities of countable disjoint sets {A1, . . .}, {B1, . . .} and
{A1, B1, . . .}. But

0 < P{X 6= c} = P{X > c}+ P{X < c}

=

∞∑
i=0

P{Ai}+

∞∑
j=0

P{Bj}.

By exactly the same argument as in section 3.4, there is both an i and a j such that
P{Ai} > 0 and P{Bj} > 0. Then taking

ε = min(P{Ai}, P{Bj}) > 0 and η = min{ 1

i+ 1
,

1

j + 1
} suffices.

4.7.13 Summary

Theorem 4.7.16 gives a dominated convergence theorem for Riemann probabilities. Theo-
rem 4.7.17 uses this result to show that Riemann probabilities are weakly countably additive,
while Example 2 shows that they are not strongly countably additive.
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4.7.14 Exercises

1. Vocabulary. Explain in your own words:

(a) Riemann probability

(b) Riemann expectation

(c) Weak countable additivity

(d) Strong countable additivity

2. In section 3.9 the following example is given:
Let Xn take the value n with probability 1/n, and otherwise take the value 0. Then
E(Xn) = 1 for all n. However limn→∞ P{Xn = 0} = 1, so the limiting distribution puts
all its mass at 0, and has mean 0.

(a) Does this example contradict the dominated convergence theorem? Explain your
reasoning.

(b) Let Yn take the value
√
n with probability 1/n, and otherwise take the value 0.

Answer the same question.

3. Example 1 after Corollary 4.7.9 displays a sequence of functions fn(x) that converge to
a limiting function f(x).

(a) Use the definition of uniform convergence to examine whether this convergence is
uniform.

(b) If this convergence were uniform, what consequence would it have for the integration
of the limiting function f? Why?

4.7.15 Discussion

Riemann probabilities are a convenient way to specify an uncountable number of probabil-
ities simultaneously, by specifying a density. The results of this chapter so far show that
the probabilities thus specified are coherent, weakly but not strongly countably additive,
and satisfy a dominated convergence theorem, but not the strongest version of a dominated
convergence theorem. There is nothing wrong with such a specification, because it is coher-
ent and therefore avoids sure loss. However, it suggests that you could say just a bit more
by accepting the same density with respect to a stronger sense of integral than Riemann’s.
This would mean that you are declaring bets on more sets, which you may or may not
be comfortable doing. But the reward for doing so is that stronger mathematical results
become available. Section 4.8 introduces the Riemann-Stieltjes integral, which unifies the
material on expectations found in Chapters 1, 3 and earlier in Chapter 4. In turn, the
Riemann-Stieltjes integral forms a basis for understanding the McShane-Stieltjes integral,
the subject of section 4.9.

4.8 A first generalization of the Riemann integral: The Riemann-Stieltjes
integral

When two mathematical systems have similar or identical properties, there is usually a
reason for it. Indeed, much of modern mathematics can be understood as finding gener-
alizations that explain such apparent coincidences. In our case, we have expectations in
Chapter 1 defined on finite discrete probabilities, extended in Chapter 3 to discrete prob-
abilities on countable sets and separately in this chapter to continuous probabilities. The
properties of these expectations found in sections 1.6, 3.4 and 4.4 are virtually identical.
Indeed the only notable distinction comes in the countable case discussed in Chapter 3,
where we find that we must have the condition that the sum of the absolute values must be
finite in order to avoid having the sum depend on the order of addition. There should be a
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reason, a generalization, that explains why the discrete and continuous cases are so similar.
Explaining that generalization is the purpose of this section.

4.8.1 Definition of the Riemann-Stieltjes integral

Recall from 4.7.1 that the Riemann integral is defined as follows: a number A is the Riemann
integral of g on [a, b] if for every ε > 0 there is a δ > 0 such that, for every δ-fine partition
π, ∣∣∑

π

g −A
∣∣ < ε (4.34)

where ∑
π

g =

n∑
i=1

g(ξi)(νi − ui), (4.35)

and where the partition π = (ξi, [ui, νi], i = 1, . . . , n) satisfies

ξi − δ < ui ≤ ξi ≤ νi < ξi + δ, (4.36)

the condition for π to be δ-fine.
Suppose α(x) is a non-decreasing function on [a, b]. Then the Riemann-Stieltjes integral

of g with respect to α satisfies (4.34), where (4.35) is modified to read∑
π,α

g =

n∑
i=1

g(ξi)(α(νi)− α(ui)). (4.37)

Thus the Riemann integral is the special case of the Riemann-Stieltjes integral, where
α(x) = x. Intuitively, the function α allows the integral to put extra emphasis on some
parts of the interval [a, b], and less on others.

The definition of the Riemann-Stieltjes integral can also apply to functions α that are
non-increasing, and to functions that are the difference of two functions, one non-increasing
and the other non-decreasing. Such functions are called functions of bounded variation (see
Jeffreys and Jeffreys (1950), pp. 24-25). This book will use Riemann-Stieltjes integration
with respect to cumulative distribution functions, which are non-decreasing.

The Riemann-Stieltjes integral of g with respect to α is written∫ b

a

g(x)dα(x). (4.38)

Conditions for the existence of the Riemann-Stieltjes integral are given by Dresher (1981)
and Jeffreys and Jeffreys (1950). The leading case when it does not exist is when g(x) and
α(x) have a common point of discontinuity. For example, let a = 0, b = 1 and suppose

g(x) = α(x) = 0 for 0 ≤ x < 1/2 (4.39)

g(x) = α(x) = 1 for 1/2 ≤ x ≤ 1.

In every partition π there will be one index i for which α(xi)− α(xi−1) = 1, while the rest
are zero. Then g(ξi) = 0 or 1 depending on whether ξi < 1/2 or ξi ≥ 1/2. Thus the value of
(4.35) depends on π, so the integral does not exist.

4.8.2 The Riemann-Stieltjes integral in the finite discrete case

We start with the integral with respect to an indicator function. Thus suppose

α(x) =

{
1 x ≥ c
0 x < c

= I{x≥c}(x) (4.40)
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and that g(x) is continuous at c. I now show that∫ b

a

g(x)dα(x) = g(c), (4.41)

where a ≤ c ≤ b.

Proof. Suppose that π = (ξi, [ui, νi], i = 1, . . . , n). There is one value of the index, say i = j,
where

α(νj)− α(uj) = 1,

while α(νi)− α(ui) = 0 for i 6= j.

Put another way, α(vi)− α(uj) =

{
1 if i = j

0 if i 6= j
.

Hence ∑
π

g =

n∑
i=1

g(ξi)[α(νi)− α(ui)] = g(ξj). (4.42)

Because of the continuity of g at c, it follows that

lim
n→∞
δ→0

g(ξj) = g(c).

Hence

lim
n→∞

n∑
i=1

g(ξi)[α(νi)− α(ui)] = g(c) (4.43)

for all δ-fine partitions π, so ∫ b

a

gdα = g(c).

The expression in (4.40) is the cumulative distribution function of a random variable
that puts probability 1 at x = c.

Now suppose that α1(·) and α2(·) are two non-decreasing functions. Then if g(·) has a
Riemann-Stieltjes integral with respect to each, with respective values A1 and A2, then it
has a Riemann-Stieltjes integral A with respect to α1(·) + α2(·), and A = A1 +A2.

The proof of this follows essentially from the fact that (4.37) can be written in this case
as

∑
π

g =

n∑
i=1

g(ξi)[α1(νi) + α2(νi)− α1(ui)− α2(ui)]

=

n∑
i=1

g(ξi)[α1(νi)− α1(ui)] +

n∑
i=1

g(ξi)[α2(νi)− α2(ui)]. (4.44)

By induction, if α1(·), . . . , αn(·) are non-decreasing functions, and g has a Riemann-
Stieltjes integral with respect to each, with respective values A1, . . . , An, then g has a
Riemann-Stieltjes integral A with respect to

∑n
i=1 αi, and its value is A =

∑n
i=1Ai.

Similarly, if k is a constant, and if g has Riemann-Stieltjes integral A with respect to
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α, then it has Riemann-Stieltjes integral kA with respect to kα. This follows again from
(4.37), because in this case

∑
π

g =

n∑
i=1

g(ξi)[kα(νi)− kα(ui)]

=k

n∑
i=1

g(ξi)[α(vi)− α(ui)]. (4.45)

Now consider a random variable X that takes a finite number of values x1, . . . , xn, where

P{X = xi} = pi

and
∑n
i=1 pi = 1. Let FX(x) be the cdf of X.

Then I claim

P{X ≤ x} = FX(x) =

n∑
i=1

piI{x≥xi}(x), (4.46)

since the summation is over all pi’s for which x ≥ xi.
Now using (4.44) (4.45) and (4.46), we have∫

xdFX(x) =

∫
xd

( n∑
i=1

piI{x≥xi}(x)

)

=

n∑
i=1

pi

∫
xdI{x≥xi}(x)

=

n∑
i=1

pixi = E(X). (4.47)

Hence the Riemann-Stieltjes integral with respect to the cdf is the expectation for discrete
random variables, such as those of Chapter 1.

4.8.3 The Riemann-Stieltjes integral in the countable discrete case

This subsection addresses the case in which X is a random variable with values x1, x2, . . .
such that

P{X = xi} = pi i = 1, . . . (4.48)

and
∞∑
i=1

pi = 1. (4.49)

Again, the first goal is to show ∫ b

a

xdF (x) =

∞∑
i=1

xipi (4.50)

when
a ≤ xi ≤ b for all i. (4.51)

Toward this end, the following simple fact is useful: if h(x) ≤ g(x) for all x, and both h
and g have Riemann-Stieltjes integrals with respect to α, then∫

h(x)dα(x) ≤
∫
g(x)dα(x). (4.52)
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The demonstration of this fact again relies on the same fact for the sums: for all partitions
π, ∑

π

h =

n∑
i=1

h(ξi)(α(νi)− α(ui)) ≤
n∑
i=1

g(ξi)(α(νi)− α(ui)) =
∑
π

g. (4.53)

Now we have the result.

Theorem 4.8.1. Assume (4.48) and (4.49), and (4.52). Then (4.50) holds.

Proof. Let ε > 0 be given. Then there exists an n such that
∑∞
i=n+1 pi < ε/2K where

K = max{
∣∣a |, ∣∣b |}. Then, letting Fn(x) =

∑n
i=1 piI{x≥xi}(x), we have

∣∣ ∫ b

a

xdF (x)−
∞∑
i=1

pixi
∣∣ ≤

∣∣ ∫ b

a

xdF (x)−
∫ b

a

xdFn(x)
∣∣+
∣∣ ∫ b

a

xdFn(x)−
n∑
i=1

pixi
∣∣

+
∣∣ n∑
i=1

pixi −
∞∑
i=1

pixi | . (4.54)

I now address each of these terms in turn. The first term admits the following approximation:

∣∣ ∫ b

a

xdF (x)−
∫ b

a

xdFn(x)
∣∣ =

∣∣ ∫ b

a

xd(F (x)− Fn(x))
∣∣

≤
∫ b

a

∣∣x∣∣d(F (x)− Fn(x)) ≤ Kε/2K = ε/2 (4.55)

since x ≤
∣∣x∣∣ ≤ K and F (x)− Fn(x) has rise

∑∞
i=n+1 pi < ε/2K.

The second term requires division because
∑n
i=1 pi < 1:

∣∣ ∫ b

a

xdFn(x)−
n∑
i=1

pixi
∣∣ ≤ ∣∣ ∫ b

a

xdFn(x)∑n
i=1 pi

−
∑n
i=1 pixi∑n
i=1 pi

∣∣ = 0 (4.56)

by (4.47) and the fact that Fn(x)∑n
i=1 pi

is a cumulative density function. Finally the third term,

∣∣∑ pixi −
∞∑
i=1

pixi
∣∣ =|

∞∑
i=n+1

pixi
∣∣ < Kε/2K = ε/2. (4.57)

Therefore, putting together (4.54), (4.55), (4.56) and (4.57),

∣∣ ∫ b

a

xdF (x)−
∞∑
i=1

pixi
∣∣ < ε/2 + 0 + ε/2 = ε. (4.58)

Since ε > 0 is arbitrary, we have ∫ b

a

xdF (x) =

∞∑
i=1

pixi (4.59)
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It is noteworthy that in the above discussion, the condition
∑∣∣xi∣∣pi <∞ did not occur.

Because of the condition a ≤ xi ≤ b, we have
∣∣xi∣∣ ≤ K, where K = max{

∣∣a∣∣, ∣∣b∣∣} <∞ and

therefore
∑∣∣xi∣∣pi ≤∑Kpi = K

∑
pi = K <∞. Thus we automatically have the condition

in question. That we cannot casually let K → ∞ is hinted at by the observation that in
the proof of Theorem 4.8.1, we choose n so that

∑∞
i=n+1 pi < ε/2K. This division by K is

only a hint, however, as there is no reason to deny that some other proof of Theorem 4.8.1
might be found that does not require division by K.

So now we wish to explore what happens if a → −∞ and b → ∞, to see under what
circumstances we can write ∫ ∞

−∞
xdF (x) =

∞∑
i=1

pixi. (4.60)

Since (4.60) does not involve a and b, it makes sense to write (4.60) only when the order in
which a→ −∞ and b→∞ doesn’t matter. To examine this, let

x∗i (a, b) = median {a, xi, b}. (4.61)

The median of three numbers is the middle number. Since b > a, x∗i (a, b) = xi if a ≤ xi ≤
b, x∗i (a, b) = a if xi < a, and x∗i (a, b) = b if xi > b. Thus x∗i (a, b) truncates xi to live in
the interval [a, b]. Also let F ∗(a, b) be the cdf of the numbers x∗i (a, b). Then we may use
Theorem 4.8.1 to write, for each finite a and b such that b > a.∫ b

a

xdF ∗(a,b)(x) =

∞∑
i=1

pix
∗
i (a, b). (4.62)

Now consider the consequence if we hold a fixed, say a = 0, and allow b to get arbitrarily
large. Then the right-hand side of (4.62) approaches s+, the sum of the positive terms in
the right-hand side of (4.62). Similarly if b = 0 and a→ −∞, the right-hand side of (4.62)
approaches s−, the sum of the negative terms in the right-hand side of (4.62). The limiting
value is finite and independent of the order of these two operations if and only if both s+

and s− are finite. But this is exactly the condition that

∞∑
i=1

pi
∣∣xi∣∣ <∞. (4.63)

Thus we write (4.60) only where (4.63) holds.
Consequently the Riemann-Stieltjes integral has as a special case, the material of Chap-

ter 3 concerning expectations of discrete random variables that take a countable number of
possible values.

4.8.4 The Riemann-Stieltjes integral when F has a derivative

This subsection considers the case introduced in section 4.1 in which the cdf F (x) has a
derivative f(x) (called the density function) so that

F (x) =

∫ x

−∞
f(y)dy (4.64)

and

F ′(x) = f(x), (4.65)

where the integral in (4.64) is understood in the Riemann sense.
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We wish to show first that in this case,∫ b

a

xdF (x) =

∫ b

a

xf(x)dx (4.66)

providing both integrals exist.
Let [ui, νi], i = 1, . . . , n be a set of closed intervals, not overlapping except at the end-

points, whose union is [a, b]. For each i, by the mean-value theorem there is a point ξiε[ui, νi]
such that

F (νi)− F (ui) = F ′(ξi)(νi − ui) = f(ξi)(νi − ui). (4.67)

We now consider the partition π = (ξi, [ui, νi]). Now

∑
π,F

x =

n∑
i=1

ξi(F (νi)− F (ui)) =

n∑
i=1

ξif(ξi)(νi − ui) =
∑
π

xf. (4.68)

Thus (4.66) holds in the Riemann sense for all δ-fine partitions π if and only if it holds in
the Riemann-Stieltjes sense on xf for all δ-fine partitions π.

We now consider the extension to the whole real line, letting a→ −∞ and b→∞. Once
again we seek a condition so that the result does not depend on the order in which these
limits are approached. Again, we consider the uncertain quantity (also known as a random
variable)

X∗(a, b) = median {a,X, b} (4.69)

and let F ∗a,b be the cdf of X∗. Then for each value of a and b, we have, applying (4.66),∫ b

a

xdF ∗a,b(x) =

∫ b

a

xf(x)dx+ aP{x < a}+ bP{x > b}. (4.70)

Again holding a = 0 and letting b→∞, the limit is

I+ =

∫ ∞
0

xdF ∗0,∞(x), (4.71)

while holding b = 0 and letting a→ −∞, the limit is

I− =

∫ 0

−∞
xdF ∗−∞,0(x). (4.72)

Then
∫∞
−∞ xdF (x) exists independent of the order in which a→ −∞ and b→∞ when and

only when both I+ and I− are finite, so when∫ ∣∣x∣∣f(x)dx <∞.

Hence the Riemann-Stieltjes theory finds the same condition for the existence of an expec-
tation as was found in section 4.4.

4.8.5 Other cases of the Riemann-Stieltjes integral

The Riemann-Stieltjes integral is not limited to the discrete and absolutely continuous cases.
To give one example, consider a person’s probability p of the outcome of the flip of a coin.
This person puts probability 1/2 on the coin being fair (i.e., p = 1/2) and probability 1/2
on a uniform distribution on [0, 1] for p. Thus this distribution is a 1/2− 1/2 mixture of a
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discrete distribution and a continuous one. The cdf of these two parts are respectively an
indicator function for p = 1/2, and the function F (p) = p (0 ≤ p ≤ 1). The cdf for the
mixture is the convex combination of these with weights 1/2 each, and therefore equals

1

2
I{p=1/2}(p) +

1

2
p. (4.73)

The Riemann-Stieltjes integral gracefully handles expectations, with respect to this cdf, of
functions not having a discontinuity at p = 1/2.

A second kind of example of Riemann-Stieltjes integrals that are neither discrete nor
continuous are expectations with respect to cdf’s that are continuous but not differentiable.
The most famous of these is an example due to Cantor. While it is good mathematical fun,
it is not essential to the story of this book, and therefore will not be further discussed here.

The next section introduces a generalization of the Riemann-Stieltjes integral and estab-
lishes the (now usual) properties of expectation for the generalization. Since each Riemann-
Stieltjes uncertain quantity (random variable) has a McShane-Stieltjes expectation, it is not
necessary to establish them for Riemann-Stieltjes expectations.

4.8.6 Summary

The Riemann-Stieltjes integral unites the discrete uncertain quantities (random variables)
of Chapters 1 and 3 with the Riemann continuous case discussed in the first part of this
chapter.

4.8.7 Exercises

1. (a) Vocabulary. Explain in your own words what the Riemann-Stieltjes integral is.

(b) Why is it useful to think about?

2. Consider the following distribution for the uncertain quantity P , that indicates my
probability that a flipped coin will come up heads. With probability 2/3, I believe that
the coin is fair, (P = 1/2). With probability 1/3, I believe that P is drawn from the
density 3p2, 0 < p < 1.

(a) Find the cdf F of P . Is F non-decreasing?

(b) Use the Riemann-Stieltjes integral to find∫ 1

0

pdF (p) and

∫ 1

0

p2dF (p).

(c) Use the results of (b) to find Var (P ).

4.9 A second generalization: The McShane-Stieltjes integral

The material presented in section 4.7 makes it clear that to have a strong dominated con-
vergence theorem and probabilities that are strongly countably additive a stronger integral
than Riemann’s might be convenient. This section introduces such an integral, the McShane-
Stieltjes Integral. It is a mild generalization, having the following properties:

(i) A Riemann-Stieltjes integrable function is McShane-Stieltjes integrable, and the inte-
grals are equal.

(ii) McShane-Stieltjes probabilities are strongly countably additive.

(iii) McShane-Stieltjes expectations satisfy a strong dominated (and bounded) convergence
theorem: the limiting function is always McShane-Stieltjes-integrable. (For those readers
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familiar with abstract integration theory, it turns out that the McShane-Stieltjes integral
is the Lebesgue integral on the real line. For those readers to whom the last sentence is
meaningless or frightening, don’t let it bother you).

For short, we’ll call the McShane-Stieltjes integral the McShane integral, as does most of
the literature. The basic idea of the McShane integral is surprisingly similar to that of
the Riemann integral. The only change is to replace the positive number δ with a positive
function δ(x), or, to put it a different way, to replace Riemann’s uniformly-fine δ with
McShane’s locally-fine δ(x). To see why this might be a good idea, consider the following
integral: ∫ 0.2

0.002

(
1

x

)
sin

(
1

x

)
dx. (4.74)

As illustrated in Figure 4.2, the integrand swings more and more widely as x → 0.002.
Indeed Figure 4.2 is a ragged mess close to the origin. This happens because the 100 equally
spaced points used to make Figure 4.2 are sparse (relative to the amount of fluctuation in
(1/x)sin(1/x)) for small x, and thick (relative to the amount of fluctuation) for large x.
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Figure 4.2: Plot of y = (1/x)sin(1/x) with uniform spacing.

Commands:

x=(1:100)/500

y=(1/x) * sin (1/x)

plot(x,y,type="l")

To remedy this, it makes sense to evaluate the function at points that are bunched closer
to the origin, which is to the left in Figure 4.2. For comparison, suppose I replot the function
with points proportional to 1/x, in Figure 4.3. This figure is plotted with the same number
of points over the same domain, ([0.002, 0.2]), as Figure 4.2, but reveals much more of the
structure of the function. To appreciate how different Figures 4.2 and 4.3 are, compare their
vertical axes.

Finding an integral of a function is much like plotting the function. In both cases,
the function is evaluated at a set of points. When the function is plotted, those points



156 CONTINUOUS RANDOM VARIABLES

are connected (by straight lines). When the integral is evaluated, a point in the interval
between points is taken as representative, and the integral is approximated by the area (in
the one-dimensional case) found by multiplying the value of the function at the point by
the length of the interval. Both methods rely for accuracy on the relative constancy of the
function over the interval.
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Figure 4.3: Plot of y = (1/x)sin(1/x) with non-uniform spacing.

Commands:

x=(0.2)/(1:100)

y=(1/x) * sin (1/x)

plot(x,y,type="l")

This is a heuristic argument intended to suggest that allowing locally-fine δ(x) may be
a good idea. Because the function y = (1/x)sin(1/x) is continuous on the bounded interval
[0.002, 0.2] it is Riemann integrable, and therefore this example does not settle the question
of whether using the McShane locally-fine δ(x) allows one to integrate functions that are
not Riemann integrable. Such an example is coming, just after the formal introduction of
the McShane integral. Since the approach here is rigorous, I will define several terms before
defining the McShane integral itself.

Recall from section 4.7.1 that a cell is a closed interval [a, b] such that a < b, so the
interior (a, b) is not empty. A collection of cells is non-overlapping if their interiors are
disjoint. If [a, b] is a cell, λ([a, b]) = b− a > 0 is the length of the cell [a, b]. More generally,
if α is a non-decreasing function on the cell A = [a, b], then α(A) = α(b)− α(a) ≥ 0.

A partition of a cell A is a collection π = {(A1, x1), . . . , (Ap, xp)} where A1, . . . , Ap are
non-overlapping cells whose union is A, and x1, . . . , xp are points in R (the real numbers).
The point xi is called the evaluation point of cell Ai. Let δ be a positive function defined
on a set E ⊂ R. A partition {(A1, x1), . . . , (Ap, xp)}, with xiεE for all i = 1, . . . , p, is called
δδδ-fine if

Ai ⊂ (xi − δ(xi), xi + δ(xi)) for all i = 1, . . . , p. (4.75)

When (4.75) holds for some i, Ai is said to be within a δ(xi)-neighborhood of xi.
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This is where the distinction between a Riemann and a McShane integral comes in.
In the Riemann case, a δ-fine partition is defined for a real number δ > 0, while in the
McShane case, a δ-partition is defined for a positive function δ(x) > 0. While seemingly a
trivial distinction, this difference has important implications, as will now be explained.

First, the following lemma will be useful later:

Lemma 4.9.1. Suppose δ(x) and δ′(x) are positive functions on R satisfying δ(x) ≤ δ′(x).
Then every δ-fine partition is δ′-fine.

Proof. Suppose a partition {(A1, x1), . . . , (Ap, xp)} is a δ-fine partition of A. Then, for all
i = 1, . . . , p

Ai ⊂ (xi − δ(xi), xi + δ(xi)) ⊆ (xi − δ′(xi), xi + δ′(xi)),

so {(A1, x1), . . . , (Ap, xp)} is δ′-fine.

Let π = {(A1, x1), . . . , (Ap, xp)} be a partition and let A be a cell. If {x1, . . . , xp} and
∪pi=1Ai are subsets of A, then π is a partition in AAA. If in addition, ∪pi=1Ai = A, then π is
a partition of A.

It is not obvious whether there always is a δ-fine partition of a cell. That there is,
constitutes the following lemma:

Lemma 4.9.2. (Cousin) For each positive function δ on a cell A, there is a δ-fine partition
π of A.

Proof. Let A = [a, b] with a < b, and let c ε (a, b). If πa and πb are δ-fine partitions of the
cells [a, c] and [c, b], respectively, then π = πa ∪ πb is a δ-fine partition of A.

Now assume the lemma is false. Then we can construct cells A = A0 ⊃ A1 ⊃ . . .
such that for n = 0, 1, . . . , no δ-fine partition of An exists and λ(An) = (b − a)/2n. Since
the sequence A0, A1, A2 . . . is a non-increasing sequence of non-empty closed intervals, the
intersection of them is non-empty, using Lemma 4.7.6. Thus there is some number z such
that

z ∈ ∩∞n=0An, where zεA.

Since δ(z) > 0, there is an integer k ≥ 0 such that λ(Ak) < δ(z). Then {(Ak, z)} is a δ-fine
partition of Ak, which is a contradiction.

A partition {(A1, x1), . . . , (Ap, xp)} is said to be anchored in a set B ⊂ A if xiεB, i =
1, . . . , p.

Corollary 4.9.3. For each positive function δ on a cell A, there is a δ-fine partition of π
of A anchored in A.

Proof. The proof is the same as that of Cousin’s Lemma, with the additional observation
that {(Ak, z)} is anchored in A, because zεA.

Corollary 4.9.4. Let δ be a positive function on a cell A. Each δ-fine partition π in A is
a subset of a δ-fine partition η of A.

Proof. Let π = {(A1, x1), . . . , (Ap, xp)} and let B1, . . . , Bk be cells such that
{A1, . . . , Ap, B1, . . . , Bk} is a non-overlapping family whose union is A. By Cousin’s Lemma,
there are δ-fine partitions πj of Bj , for j = 1, . . . , k. Then η = π∪(∪kj=1πj) is the desired
δ-fine partition of A.
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I now define a Stieltjes sum, which is the fundamental quantity in the definition of
the McShane integral. Let α be a non-decreasing function on a cell A, and let π =
{(A1, x1), . . . , (Ap, xp)} be a partition in A. For any function f on {x1, . . . , xp}, the ααα-
Stieltjes sum of A associated with f is

σ(f, π;α) =

p∑
i=1

f(xi)α(Ai). (4.76)

Finally, I am in a position to give the definition of the McShane integral.
Let α be a non-decreasing function on a cell A. A function f on A is said to be McShane

integrable over A with respect to ααα if there is a real number I such that: given ε > 0,
there is a positive function δ on A such that∣∣σ(f, π;α)− I

∣∣ < ε (4.77)

for each δ-fine partition π of A.
Before discussing the properties of this integral, we must assure ourselves that it is well

defined, which means that the number I is uniquely defined in this way. Suppose that the
number J 6= I also satisfies the definition. Let ε =

∣∣I−J | /2 > 0. From the definition of the

McShane integral, there are positive functions δI and δJ on A so that
∣∣σ(f, π;α) − I

∣∣ < ε

for each δI -fine partition of A, and | σ(f, π;α) − J
∣∣ < ε for each δJ -fine partition P of A.

Let δ = min{δI , δJ}, and apply Cousin’s Lemma to find a δ-fine partition π of A. Then this
partition π is both δI -fine and δJ -fine using Lemma 4.9.1. Thus I may write∣∣I − J∣∣ ≤ ∣∣I − σ(f, π;α)

∣∣+ | σ(f, π;α)− J
∣∣ < 2ε =

∣∣I − J |,
contradiction. 2

Having assured ourselves that the McShane integral is well defined, we may now observe
that it is a generalization of the Riemann integral because of the simple fact that a special
case of a positive function δ(x) is the constant function δ. Therefore when a Riemann integral
exists, the McShane integral exists and gives the same value, which is the first property of
McShane integrals stated in the introduction to this section.

A bit of extra notation will be useful in what follows. Let M(A,α) be the family of all
McShane-integrable functions over A with respect to α.

We now need to reassure ourselves that the McShane integral is in fact more general
than the Riemann integral, as otherwise this whole development would lose its point. We
already know about a function that is not Riemann integrable (and that kept coming up as
the canonical counterexample in section 4.7), namely the Dirichlet function

f(x) =

{
1 if x is rational

0 if x is irrational.
(4.78)

I will now show that fεM([0, 1], λ) and
∫
fdλ = 0.

Choose ε > 0 and let {r1, r2, . . .} be an enumeration of the rational numbers in [0, 1].
Define the positive function δ on [0, 1] as follows:

δ(x) =

{
ε2−n−1 if x = rn and n = 1, 2, . . .

1 if x is irrational.
(4.79)

Let π = {(A1, x1), . . . , (Ap, xp)} be a δ-fine partition of [0, 1], which we know exists by
Cousin’s Lemma. Suppose the points xi1 , xi2 , . . . , xik are equal to rn. Then

∪kj=1Aij ⊂ (rn − δ(rn), rn + δ(rn)), so (4.80)

k∑
j=1

f(xij )λ(Aij ) ≤
k∑
j=1

λ(Aij ) < ε2−n. (4.81)
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Since f(x) = 0 when x is irrational, irrational evaluation points do not contribute to the
Stieltjes sum. Therefore we have

0 ≤ σ(f, π;λ) <

∞∑
n=1

ε2−n = ε. (4.82)

Therefore
∫ 1

0
fdλ exists and equals 0. 2

This example has two important implications. The first, already mentioned, is that
it shows that the McShane integral is strictly more powerful than the Riemann integral.
The second implication is that it opens the possibility that the McShane integral supports a
strong dominated convergence theorem and strong countable additivity. It does, as is shown
below, but it requires some effort to prove.

4.9.1 Extension of the McShane integral to unbounded sets

So far, the theory of the McShane integral as presented has been limited to cells [a, b],
where a < b and both a and b are real numbers. However, for our purposes we need to
define integrals over (−∞,∞). One way to do this is to mimic what is done for Riemann
integrals, namely to let ∫ ∞

−∞
f(x)dx = lim

a→−∞
lim
b→∞

∫ b

a

f(x)dx,

provided that the limiting value does not depend on the order in which the integrals are
taken. In principle, however, this extended Riemann integral is a new object, for which
the properties of the Riemann integral on a bounded set would have to be reexamined.
Perhaps some of its properties would hold and others not. In the case of the McShane
integral, however, a second more elegant strategy is available. By extending the definitions
to include −∞ and ∞, the McShane integral can be defined so that it applies directly to
unbounded sets such as (−∞,∞), (−∞, b], (−∞, b), (a,∞) and [a,∞). The purpose of this
subsection is to show the steps in this extension.

To do this, we need to establish notation and conventions for handling ∞ and ∞. First,
let R = R ∪ {∞} ∪ {−∞}. We have the ordering −∞ < x < ∞ for all xεR. We also have
some rules for extending arithmetic to R:

∞+ x = x+∞ =∞ unless x = −∞
−∞+ x = x+−∞ = −∞ unless x =∞
If c > 0, then c∞ =∞c =∞ and c(−∞) = (−∞)c = −∞
If c < 0, then c∞ =∞c = −∞ and c(−∞) = (−∞)c =∞
0 · ∞ =∞ · 0 = 0

It is also useful to write [(a, b)] to indicate the four sets (a, b), [a, b], (a, b] and [a, b).
We also need to establish the topology on R, which means a specification of which sets are

open. All sets of the form (a, b) = {x | a < x < b} are open, where a, bεR. Additionally, sets
of the form [−∞, a), (a,∞] and [−∞,∞] are open, as is ∅. A closed set is the complement
of an open set.

If A is a non-empty set in R, the interior of A, denoted Ao, is the largest open interval
of R that is contained in A. The closure of A, denoted Ac, is the smallest closed interval
that contains A. Thus if −∞ < a < b < ∞, the closure of the sets [(a, b)] is [a, b], and the
interior of these sets is (a, b). The sets [a,∞], [−∞, b],∅ and [−∞,∞] are their own interiors
and closures.

Finally, we clarify distances from ∞ and −∞ as follows: for x positive, the
x−neighborhood of −∞ is (−∞,−1/x) and that of ∞ is (1/x,∞).
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With these definitions and conventions, we now review the results leading to the def-
inition of the McShane integral. The purpose is to show which definitions results require
change and which do not in the shift from an integral defined on a bounded cell [a, b],
−∞ < a < b <∞ to one defined on a possibly unbounded cell −∞ ≤ a < b ≤ ∞.

Redefine a partition of A = [a, b] to be a collection π = {(A1, x1), . . . , (Ap, xp)} where
A1, . . . , Ap are non-overlapping cells whose union is A, and x1, . . . , xp are points in R. Let
δ be a positive function defined on a set E ⊂ R. A partition {(A1, x1), . . . , (Ap, xp)} with
xiεE for all i = 1, . . . , p is called δ-fine if Ai is contained in a δ(xi) neighborhood of xi.

The evaluation point for a cell [(−∞, a)] must be −∞, since if x is any other possible
evaluation point, −∞ < x, the neighborhood (x − δ(x), x + δ(x)) is bounded, and hence
cannot contain the cell. Similarly the evaluation point for the cells [(b,∞)] must be ∞.

Next, I must show that Lemmas 4.9.1 and 4.9.2 and Corollary 4.9.4 extend to cells in
R.
Lemma 4.9.1*. Suppose δ(x) and δ′(x) are positive functions on R satisfying δ(x) ≤ δ′(x).
Then every δ-fine partition is δ′-fine.

Proof. Suppose a partition {(A1, x1), . . . , (Ap, xp)} is δ-fine. There can be at most one set
Ai of the form [(−∞, x)] because the A’s have disjoint interiors. For that set,

Ai = [(−∞, x)] ⊂ [(−∞,−1/δ(∞))] ⊆ [(−∞,−1/δ′(∞))]

because −1/δ(∞) ≤ −1/δ′(∞).
Similarly there can be at most one set Aj of the form [(x,∞)]. For that set

Aj = [(x,∞)] ⊂ [(1/δ(x),∞)] ⊆ [(1/δ′(x),∞)]

because 1/δ(x) ≥ 1/δ′(x).
The space [−1/δ(−∞), 1/δ(∞)] is bounded, and hence Lemma 4.9.1 applies to it.

Lemma 4.9.2*. (Cousin) For each positive function δ on a cell A, there is a δ-fine partition
π of A.

Proof. In addition to the δ-fine partition π of [−1/δ(−∞), 1/δ(∞)] ∩ A assured by
Lemma 4.9.2, the partition

π∗ = π ∪ {[−∞,−1/δ(−∞)] ∩A} ∪ {[1/δ(∞),∞)] ∩A}

suffices.

Corollaries 4.9.3* and 4.9.4* have the same statement and proof as Corollaries 4.9.3
and 4.9.4, so need not be repeated.

The functions f to be integrated have to be defined on all of R, and in particular for
−∞ and ∞. It is important to choose f(−∞) = f(∞) = 0 for this purpose. Having done
so, we now consider the contribution of the cells Ai = [(−∞, xi) and Aj = [(xj ,∞)] to the
Stieltjes sum (4.76) is f(−∞)α(Ai) + f(∞)α(Aj). Because f(−∞) = f(∞) = 0, for every
value of α(Ai) and α(Aj) (including ∞), we have

f(−∞)α(Ai) + f(∞)α(Aj) = 0 + 0 = 0.

(This is the reason for the otherwise possibily mysterious convention that ∞ · 0 = 0.)
Hence the Stieltjes sum (4.76) is unchanged by consideration of cells in R.
With these conventions, then, the definition of the McShane integral, and the proof that

it is well defined, extend word-for-word.
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4.9.2 Properties of the McShane integral

Our first task is to show some simple properties of M , namely the sense in which it is
additive with respect to each of its inputs.

Lemma 4.9.5. Let A be a cell, let f and g be elements of M(A,α) and let c be a real
number. Then f + g and cf belong to M(A,α) and∫

A

(f + g)dα =

∫
A

fdα+

∫
A

gdα; (4.83)

and ∫
A

cf dα = c

∫
A

fdα. (4.84)

If, in addition, f ≤ g, the ∫
A

fdα ≤
∫
A

gdα. (4.85)

Proof. For each partition π of A, we have

σ(f + g, π, α) = σ(f, π, α) + σ(g, π, α). (4.86)

Let ε > 0 be given. Since f is McShane integrable over A with respect to α, there is a
positive function δf and a number If such that

| σ(f, π, α)− If |< ε/2 (4.87)

for all δf -fine partitions π of A. Similarly there is a positive function δg and a number Ig
such that

| σ(g, π, α)− Ig |< ε/2 (4.88)

for all δg-fine partitions π of A. Let δ = min(δf , δg), a positive function on A. Using
Lemma 4.9.1*, a partition π that is δ-fine is both δf -fine and δg-fine. Let π be a δ-fine
partition. Then

| σ(f + g, π, α)− (If + Ig) |
=| σ(f, π, α)− If + σ(g, π, α)− Ig | (using (4.86))

≤| σ(f, π, α)− If | + | σ(g, π, α)− Ig |
< ε/2 + ε/2 = ε. (uses (4.87) and (4.88))

Therefore f+g is McShane integrable over A with respect to α, and its integral is If+Ig.
This proves (4.83).

The proofs for cf , and for f ≤ g are similar, using

σ(cf, π, α) = cσ(f, π, α) (4.89)

and, if f ≤ g,
σ(f, π, α) ≤ σ(g, π, α), (4.90)

respectively.

Lemma 4.9.6. The following both hold:

a) Let α and β be non-decreasing functions on a cell A, and suppose f is McShane integrable
with respect to both α and β on A. Then f is McShane integrable with respect to α+ β
and ∫

A

fd(α+ β) =

∫
A

fdα+

∫
A

fdβ. (4.91)
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b) Let c ≥ 0 be a non-negative constant. If f is McShane integrable with respect to α, a
non-decreasing function on a cell A, it is also McShane integrable with respect to cα on
A, and ∫

A

fd(cα) = c

∫
A

fdα. (4.92)

Proof. a) For each partition π of A, we have

σ(f, π, α+ β) = σ(f, π, α) + σ(f, π, β). (4.93)

Let ε > 0 be given. Since f is McShane integrable with respect to α on A, there is a
positive function δα and a number Iα such that

| σ(f, π, α)− Iα |< ε/2, (4.94)

for all δα-fine partitions π of A. Similarly, there is a positive function δβ and a number Iβ
such that

| σ(f, π, β)− Iβ |< ε/2, (4.95)

for all δβ-fine partitions π of A. Let δ = min(δα, δβ), a positive function on A. Let π be a
δ-fine partition of A. Again using Lemma 4.9.1*, a partition that is δ-fine is both δα-fine
and δβ-fine. Hence in particular, π is both δα-fine and δβ-fine. Then

| σ(f, π, α+ β)− (Iα + Iβ) |=
| σ(f, π, α)− Iα + σ(f, π, β)− Iβ | (using (4.93))
≤| σ(f, π, σ − Iα) | + | σ(f, π, β − Iβ) | (using (4.94) and (4.95))
< ε/2 + ε/2 = ε.

Therefore f is McShane integrable over A with respect to α+ β, and its integral is Iα + Iβ .
This proves a).

The proof for b) similarly relies on the equality

σ(f, π, cα) = cσ(f, π, α) (4.96)

for all partitions π of A.

The proofs of Lemma 4.9.5 and 4.9.6 are similar. Both rely fundamentally on
Lemma 4.9.1*, a principle used repeatedly in the proofs to follow.

The Cauchy criterion for sequences, introduced in section 4.7.1, has a useful analog for
McShane integrals. Like the result for sequences, it can be applied without knowing the
value of the limit.

Theorem 4.9.7. (Cauchy’s Test) A function f on a cell A is McShane integrable with
respect to α on A if and only if for each ε > 0, there is a positive function δ on A such that

| σ(f, π, α)− σ(f, ξ, α) |< ε (4.97)

for all δ-fine partitions π and ξ of A.

Proof. Suppose first that for each ε > 0, there is such a positive function δ on A. For
n = 1, 2, . . . choose εn = 1/n. Then by assumption there is a positive function δn satisfying
(4.97). Let δ∗n = min{δ1, δ2, . . . , δn}. Then every δ∗n-fine partition is δi-fine, for i = 1, . . . , n,
(using Lemma 4.9.1*) and δ∗1 ≥ δ∗2 . . .. Let πn be a δ∗n-fine partition for each n. I claim
that σ(f, πn;α) is a sequence satisfying the Cauchy criterion. To see this, choose ε > 0, and
let N > 1/ε. Let n and m be chosen so that n ≥ m ≥ N . Then πn and πm are δ∗N -fine.
By (4.97),

| σ(f, πn;α)− σ(f, πm;α) |< 1/N < ε. (4.98)
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Hence σ(f, πn;α) satisfies the Cauchy criterion as a sequence of real numbers. Using Theo-
rem 4.7.3, it then follows that this sequence has a limit I.

Now choose a (possibly different) number ε > 0. There is an integer k > 2/ε such that
| σ(f, πk;α)− I |< ε/2. Let δ = δ∗k. If π is a δ-fine partition of A, then

| σ(f, π;α)− I |≤| σ(f, π;α)− σ(f, πk;α) | + | σ(f, πk;α)− I |< 1

k
+
ε

2
< ε. (4.99)

This proves that f is McShane integrable on A with respect to α.
In the second part of the proof, I suppose that f is McShane integrable on A with

respect to α, and prove that it satisfies (4.97). To show this, choose ε > 0. By definition of
the McShane integral, there is a positive function δ and a number I such that

| σ(f, π;α)− I |< ε/2 (4.100)

for all δ-fine partitions π.
Let π and ξ be δ-fine partitions. Then

| σ(f, π;α)− σ(f, ξ;α) |=| σ(f, π;α)− I − (σ(f, ξ;α)− I) |
≤| σ(f, π;α)− I | + | σ(f, ξ;α)− I | (4.101)

< ε/2 + ε/2 = ε.

This proves (4.97) and hence the theorem.

The proof of the next lemma uses Cauchy’s test twice.

Lemma 4.9.8. If A is a cell, and f is McShane integrable on A with respect to α then f
is McShane integrable on B with respect to α for every cell B ⊆ A.

Proof. Let ε > 0 be given. Because f is McShane integrable on A with respect to α, there
is a positive function δ on A and a number I such that

| σ(f, π;α)− I |< ε (4.102)

for every δ-fine partition π on A. By Cauchy’s test, we have

| σ(f, π;α)− σ(f, ξ;α) |< ε (4.103)

for every δ-fine partitions π and ξ on A. If B = A, there is nothing to prove. If B ⊂ A, then
A can be represented as

A = B ∪ C ∪D
where C is a cell, and D is either a cell or is the null set. By Cousin’s Lemma 4.9.2* there
is a δ-fine partition πc of C, and, if D is a cell, a δ-fine partition πD of D as well. Let πB
and ξB be δ-fine partitions of B. Then π = πB ∪ πC ∪ πD and ξ = ξB ∪ πc ∪ πD are δ-fine
partitions of A. (Of course, take πD = ∅ if D = ∅.) Now

σ(f, π;α) = σ(f, πB ;α) + σ(f, πC ;α) + σ(f, πD;α) (4.104)

and
σ(f, ξ;α) = σ(f, ξB ;α) + σ(f, πC ;α) + σ(f, πD;α) (4.105)

where again σ(f, πD;α) = 0 if D = ∅.
Therefore

ε >| σ(f, π;α)− σ(f, ξ;α) |=| σ(f, πB ;α)− σ(f, ξB ;α) | . (4.106)

Applying Cauchy’s test, we conclude that f is McShane integrable on B with respect to α,
which completes the proof.
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Lemma 4.9.8 shows that if f is McShane integrable on a cell [a, b], then it is integrable
on a smaller cell contained in [a, b]. The next lemma shows the reverse, that if f is McShane
integrable on [a, c] and on [c, b], then it is McShane integrable on [a, b] and the integrals
add. More formally,

Lemma 4.9.9. Let f be a function on a cell [a, b] and let cε(a, b). If f is McShane integrable
with respect to α on both [a, c] and [c, b], then it is McShane integrable with respect to α on
[a, b] and ∫ b

a

fdα =

∫ c

a

fdα+

∫ b

c

fdα. (4.107)

Proof. Let I =
∫ c
a
fdα+

∫ b
c
fdα, and let ε > 0 be given.

Then by definition of the McShane integral, there are positive functions δa and δb on
the cells [a, c] and [c, b], respectively, such that

| σ(f, πa;α)−
∫ c

a

fdα |< ε/2 (4.108)

and

| σ(f, πb;α)−
∫ b

c

fdα |< ε/2 (4.109)

for every δa-fine partition πa of [a, c] and for every δb-fine partition πb of [c, b]. The key to
the proof is the following definition of the positive function δ. Let δ(x) be defined as follows:

δ(x) =


min{δa(x), c− x} if x < c

min{δb(x), x− c} if x > c

min{δa(x), δb(x)} if x = c

. (4.110)

Crucially, δ(x) > 0 for all xε[a, b].

Now choose a δ-fine partition π = {(A1, x1), . . . , (Ap, xp)} of [a, b]. Because of the choice
of the function δ, we have:

(i) if Ai ⊂ [a, c], then xiε[a, c]
(ii) if Ai ⊂ [c, b], then xiε[c, b]
(iii) if cεAi, then xi = c.

(4.111)

There are now two cases to consider:

(a) Each Ai is contained in either [a, c] or [c, b]. In this case π = πa ∪ πb, where πa is a
δa-fine partition of [a, c] and πb is a δb-fine partition of [c, b]. Since

σ(f, π;α) = σ(f, πa;α) + σ(f, πb;α), (4.112)

we can conclude that

|σ(f, π;α)− I|

=| σ(f, πa;α)−
∫ c

a

fdα+ σ(f, πb;α)−
∫ b

c

fdα |

≤| σ(f, πa;α)−
∫ c

a

fdα|+ |σ(f, πb;α)−
∫ b

c

fdα|

< ε/2 + ε/2 = ε.

(4.113)
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(b) There is an Ai contained in neither [a, c] nor [c, b]. In this case cεAi. Then the partition

ξ = {(A1, x1), . . . , (Ai ∩ [a, c], xi), (Ai ∩ [c, b], xi), . . . , (Ap, xp)} (4.114)

satisfies the condition of case (a), so, using (4.113),

|σ(f, ξ;α)− I| < ε. (4.115)

But

σ(f, ξ;α) = σ(f, π;α), so (4.116)

|σ(f, π;α)− I| < ε. (4.117)

This establishes the lemma.

The next series of results are aimed at showing that the McShane integral is “absolute,”
which means that if fεM(A,α), then |f |εM(A,α). A few lemmas are necessary to get there.

The first lemma looks a lot like Cauchy’s test, but shows that the partitions involved
can be limited to those that have common cells:

Lemma 4.9.10. A function f on a cell A belongs to M(A,α) if and only if for each ε > 0,
there is a positive function δ such that

|σ(f, π;α)− σ(f, ξ;α)| < ε (4.118)

for all partitions π = {(A1, x1), (A2, x2), . . . , (Ap, xp)} and ξ = {(A1, y1), (A2, y2), . . . , (Ap, yp)}
of A that are δ-fine.

Proof. If fεM(A,α), then Cauchy’s test applies to π and ξ to yield the result. The work in
the proof then, is proving the converse, namely that restricting π and ξ to have the same
cells still allows one to prove that f is McShane integrable.

Choose an ε > 0, and let δ be a positive function such that (4.118) holds for
all partitions π and ξ as stated in the Lemma. Let γ = {(B1, u1), . . . , (Bp, up)} and
η = {(C1, v1), . . . , (Cq, vq)} be δ-fine partitions of A. (We know that Cauchy’s criterion
applies to γ and η.)

For i = 1, . . . , p and j = 1, . . . , q, let

Ai,j = Bi ∩ Cj , xi,j = ui and yi,j = vj ,

and let N = {(i, j) such that Ai,j is a cell}.
Now let

π = {(Ai,j , xi,j) : (i, j)εN} and

ξ = {(Ai,j , yi,j) : (i, j)εN}.



166 CONTINUOUS RANDOM VARIABLES

Both π and ξ are δ-fine partitions of A, because γ and η, respectively, are. Now we have

σ(f, π;α) =
∑

(i,j)εN

f(xi,j)α(Ai,j)

=

p∑
i=1

q∑
j=1

f(xi,j)α(Ai,j)

(uses the convention that α(D) = 0 if D is not a cell)

=

p∑
i=1

f(ui)

q∑
j=1

α(Bi ∩ Cj)

=

p∑
i=1

f(ui)α(Bi)

= σ(f, γ, α).

(4.119)

In the same way,
σ(f, ξ;α) = σ(f, η;α). (4.120)

Therefore
|σ(f, π;α)− σ(f, ξ;α)| = |σ(f, γ;α)− σ(f, η;α)| < ε,

so fεM(A,α) by Cauchy’s test.

The next lemma allows even greater control over the partitions and over the sums:

Lemma 4.9.11. A function f on a cell A belongs to M(A,α) if and only if for each ε > 0
there is a positive function δ in A such that

n∑
i=1

|f(xi)− f(yi)|α(Ai) < ε (4.121)

for all partitions π = {(A1, x1), . . . , (An, xn)} and

ξ = {(A1, y1), . . . , An, yn)}

in A that are δ-fine.

Remark: Lemma 4.9.11 differs from Lemma 4.9.10 in two ways. Obviously (4.121) is not
the same as (4.118), but in addition the partitions in 4.9.11 are in A, where those in 4.9.10
are of A.

Proof. First suppose that for each ε > 0 there is a positive function δ in A such that
(4.121) holds. Because each partition in A is a subset of a partition of A, the condition of
Lemma 4.9.10 holds. Then

|σ(f, π;A)− σ(f, ξ;A)| = |
n∑
i=1

f(xi)α(Ai)−
n∑
i=1

f(yi)α(Ai)|

= |
n∑
i=1

[f(xi)− f(yi)]α(Ai)| ≤
n∑
i=1

|f(xi)− f(yi)|α(Ai) < ε (4.122)

so Lemma 4.9.10 applies and shows that fεM(A,α).
So now suppose that fεM(A,α), and we seek to prove (4.121). Using the construc-

tion of Lemma 4.9.10, we may consider δ-fine partitions π and ξ of A, having the same
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sets A1, . . . , An. Reordering the index as needed, there is an integer k, 0 ≤ k ≤ n
such that f(xi) ≥ f(yi) for i = 1, 2, . . . , k and f(xi) < f(yi) for i = k + 1, . . . , n. Then
the partitions

γ = {(A1, x1), . . . , (Ak, xk), (Ak+1, yk+1), . . . , (An, yn)}

and

η = {(A1, y1), . . . , (Ak, yk), (Ak+1, xk+1), . . . , (An, xn)}

are δ-fine partitions. Hence, by Lemma 4.9.10,

ε > |σ(f, γ;α)− σ(f, η;α)|

= |
k∑
i=1

f(xi)α(Ai) +

n∑
i=k+1

f(yi)α(Ai)

−
k∑
i=1

f(yi)α(Ai)−
n∑

i=k+1

f(xi)α(Ai)|

= |
k∑
i=1

(f(xi)− f(yi))α(Ai) +

n∑
i=k+1

(f(yi)− f(xi))α(Ai)|.

(4.123)

Now each of these terms is non-negative, so the absolute value of the sum is the sum of the
absolute values.

Hence

ε >

k∑
i=1

|f(xi)− f(yi)|α(Ai) +

n∑
i=k+1

|f(yi)− f(xi)|α(Ai)

=

n∑
i=1

|f(xi)− f(yi)|α(Ai),

(4.124)

which is (4.121).

Corollary 4.9.12. Let A be a cell. If fεM(A,α) then |f |εM(A,α) and

|
∫
A

fdα| ≤
∫
A

|f |dα. (4.125)

Proof. Using Lemma 4.9.11, let ε > 0 be given. Then there is a positive function δ on A
such that (4.121) holds. Then

ε >

n∑
i=1

|f(xi)− f(yi)|α(Ai)

≥
n∑
i=1

||f(xi)| − |f(yi)||α(Ai).

(4.126)

Applying Lemma 4.9.11, this implies that |f |εM(A,α). (4.125) then follows from (4.85).

Corollary 4.9.12 establishes that the McShane integral is absolute, which, as we saw in
Chapter 3, is vital for our purposes.
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Corollary 4.9.13. Let A be a cell. If f and g are in M(A,α), then so are max{f, g} and
min{f, g}.

Proof.

max{f, g} =
1

2
(f + g + |f − g|)

min{f, g} =
1

2
(f + g − |f − g|)

hold pointwise. Then the result follows from Corollary 4.9.12 and Lemma 4.9.5.

Now we are ready to consider a sequence of results culminating in a dominated conver-
gence theorem.

Lemma 4.9.14. (Henstock) Let A be a cell and let fεM(A,α). For every ε > 0, there is a
positive function δ on A such that

p∑
i=1

|f(xi)α(Ai)−
∫
Ai

fdα| < ε (4.127)

for every δ-fine partition {(A1, x1), . . . , (Ap, xp)} in A.

Proof. Let ε > 0 be given. Since fεM(A,α), there is a positive function δ on A such that
|σ(f, π;α)−

∫
A
fdα| < ε/3 for all δ-fine partitions π of A. Because of Corollary 4.9.4, we may

consider a δ-fine partition {(A1, x1), . . . , (Ap, xp)} of A. After reordering if necessary, there
is an integer k, 0 ≤ k ≤ p such that f(xi)α(Ai) −

∫
Ai
fdα is non-negative for i = 1, . . . , k

and negative for i = k + 1, . . . , p. Using Cousin’s Lemma 4.9.2* and Lemma 4.9.8, there is
a δ-fine partition πi of Ai such that

|σ(f, πi;α)−
∫
Ai

fdα| < ε/3p for i = 1, . . . , p.

Define two new partitions as follows:

ξ = {(A1, x1), . . . , (Ak, xk)} ∪pi=k+1 πi (4.128)

η = {(Ak+1, xk+1), . . . , (Ap, xp)} ∪ki=1 πi. (4.129)

Both of these are δ-fine partitions of A. Then

ε/3 > |σ(f, ξ;α)−
∫
A

fdα|

≥
k∑
i=1

[f(xi)α(Ai)−
∫
Ai

fdα]− |
p∑

i=k+1

[σ(f, πi;α)−
∫
Ai

fdα]|

≥
k∑
i=1

|f(xi)α(Ai)−
∫
Ai

fdα| − (p− k)ε/3p.

(4.130)

Also

ε/3 > |σ(f, η;α)−
∫
A

fdα|

≥
p∑

i=k+1

[

∫
Ai

fdα− f(xi)α(Ai)]− |
k∑
i=1

σ(f, πi;α)−
∫
Ai

fdα|

≥
p∑

i=k+1

|f(xi)α(Ai)−
∫
Ai

fdα| − kε/3p.

(4.131)
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Adding (4.130) and (4.131) yields

2ε/3 ≥
p∑
i=1

|f(xi)α(Ai)−
∫
Ai

fdα| − p(ε/3p), (4.132)

so ε >
∑p
i=1 |f(xi)α(Ai)−

∫
Ai
fdα|.

The heart of the issue of dominated convergence is found in monotone convergence. A
sequence of functions fn is non-decreasing (or non-increasing) if fn ≤ fn+1( or fn ≥ fn+1)
for n = 1, 2, . . .. If a non-decreasing (non-increasing) sequence converges to a function f , we
write fn ↗ f(fn ↘ f).

Theorem 4.9.15. (Monotone Convergence) Let f be a function on a cell A, and let fn
be a sequence of functions in M(A,α) such that fn ↗ f . If limn→∞

∫
A
fndα is finite, then

fεM(A,α) and ∫
A

fdα = lim

∫
A

fndα. (4.133)

Proof. Let ε > 0 be given. For each n, n = 1, 2, . . . , by Henstock’s Lemma (4.9.14), there is
a positive function δn on A such that

q∑
i=1

|fn(yi)α(Bi)−
∫
Bi

fndα| < ε2−n (4.134)

for each δn-fine partition {(B1, y1), . . . , (Bq, yq)} in A.
Let I = lim

∫
A
fndα. By assumption I <∞. Therefore there is a positive integer r with∫

A

frdα > I − ε. (4.135)

Because fn(x)→ f(x) for each xεA, there is an integer n(x) ≥ r such that

|fn(x)(x)− f(x)| < ε. (4.136)

Now the function δ on A is defined as follows:

δ(x) = δn(x)(x) (4.137)

for each x. That δ(x) > 0 for all x follows from the fact that δn(x) > 0 for all n and x.
The theorem is now proved by showing that

|σ(f, π;α)− I| < ε[2 + α(A)] (4.138)

for any δ-fine partition π = {(A1, x1), . . . , (Ap, xp)} of A.
We do this in three steps. To begin, we have

|σ(f, π;α)−
p∑
i=1

fn(xi)(xi)α(Ai)| = |
p∑
i=1

f(xi)α(Ai)−
p∑
i=1

fn(xi)(xi)α(Ai)|

≤
p∑
i=1

|f(xi)− fn(xi)(xi)|α(Ai)

≤ ε
p∑
i=1

α(Ai) (uses (4.136))

= εα(A)

(4.139)
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which is the first step.
To establish the second step we may eliminate all Ai that are of the form [(−∞, a)] or

[(b,∞)], as they do not contribute to the Stieltjes sum. The integers n(x1), . . . , n(xp) need
not be distinct. However, there is a (possibly less numerous) set that includes each of them.
Let k1 < . . . < ks be k distinct integers such that

{n(x1), . . . , n(xp)} = {k1, . . . , ks}, (4.140)

where s ≤ p. Then {1, . . . , p} is the disjoint union of the sets Tj = {i|n(xi) = kj} for
j = 1, . . . , s. For each iεTj ,

Ai ⊂{x|xi − δ(xi) < x < xi + δ(xi)}
={x|xi − δn(xi)(xi) < x < xi + δn(xi)(xi)} (4.141)

={x|xi − δkj (xi) < x < xi + δkj (xi)}.

It follows that {(Ai, xi) : iεTj} is a δkj -fine partition in A. Hence

|
p∑
i=1

fn(xi)(xi)α(Ai)−
p∑
i=1

∫
Ai

fn(xi)dα|

=|
s∑
j=1

∑
iεTj

(fn(xi)(xi)α(Ai)−
∫
Ai

fn(xi)dα)|

≤
s∑
j=1

∑
iεTj

|fn(xi)(xi)α(Ai)−
∫
Ai

fn(xi)dα|

≤
s∑
j=1

ε2−kj < ε

∞∑
k=1

2−k = ε,

(4.142)

using (4.134). This completes the second step.
To establish the third step, we show that I is within ε of

∑p
i=1

∫
Ai
fn(x)dα as follows:

I − ε <
∫
A

frdα (uses (4.135))

=

p∑
i=1

∫
Ai

frdα (uses 4.9.9)

≤
p∑
i=1

∫
Ai

fn(xi)dα (since r ≤ n(xi), fr ≤ fn(xi) and (4.84) applies)

≤
p∑
i=1

∫
Ai

fksdα (since n(xi) ≤ ks, the same reasoning applies)

=

∫
A

fksdα (from (4.107))

≤ I (because fks ≤ f , and apply (4.85))

< I + ε.

Then

|I −
p∑
i=1

∫
Ai

fn(xi)dα| < ε, (4.143)
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completing the third step.

Summarizing, we have

|σ(f, π;α)− I)| ≤ |σ(f, π;α)−
p∑
i=1

fn(xi)(xi)α(Ai)|

+ |
p∑
i=1

fni(xi)α(Ai)−
p∑
i=1

∫
Ai

fni(xi)dα|

+ |
p∑
i=1

∫
Ai

fni(xi)dα− I|

< εα(A) + ε+ ε = ε(α(A) + 2)

using (4.139), (4.142) and (4.143). This establishes (4.138), and hence the theorem.

Next, I give two lemmas that extend the result from monotone functions.

Lemma 4.9.16. Let A be a cell, and let fn and g be McShane integrable on A with respect
to α, and satisfy fn ≥ g for n = 1, . . . ,. Then inf fn is McShane integrable on A with respect
to α.

Proof. Let gn = min{f1, . . . , fn} for n = 1, 2, . . .. Then gn is McShane integrable by 4.9.13.
Also gn is monotone decreasing, and approaches inf fn. Also g ≤ gn for all n. Then∫

A

gdα ≤ lim

∫
A

gndα ≤
∫
A

g1dα, (4.144)

using (4.85) once again.

Therefore the functions −gn are McShane integrable on A with respect to α. The se-
quence {−gn} is monotone increasing, and approaches sup−fn. By (4.144), lim

∫
A

(−gn)dα
is finite. Therefore {−gn} satisfies the conditions of the Monotone Convergence Theorem
4.9.15, so sup{−fn} is McShane integrable. But sup{−fn} = − inf{fn}, so inf fn is McShane
integrable.

Lemma 4.9.17. (Fatou) Suppose f , g, and fn(n = 1, 2, . . .) are functions on a cell A such
that fn ≥ g for n = 1, 2, . . . and f = lim inf fn. Also suppose that fn and g are McShane
integrable on A with respect to α. If lim inf

∫
A
fndα is finite, then f is McShane integrable

on A with respect to α and ∫
A

fdα ≤ lim inf

∫
A

fndα. (4.145)

Proof. Let gn = infk≥n fk for n = 1, 2, . . .. Then by Lemma 4.9.16, gn is McShane integrable,
and gn ↗ f . Since gn ≤ fn for all n,∫

A

g1dα ≤ lim

∫
A

gndα ≤ lim inf

∫
A

fndα. (4.146)

Now apply the monotone convergence theorem, and conclude that f is McShane integrable
and ∫

A

fdα = lim

∫
A

gndα. (4.147)

But (4.147) and (4.146) imply (4.145).



172 CONTINUOUS RANDOM VARIABLES

Corollary 4.9.18. (Lebesgue Dominated Convergence Theorem) Let A be a cell and suppose
that fn and g are McShane integrable on A with respect to α. If |fn| ≤ g for n = 1, 2, . . .
and if f = lim fn, then (i) f is McShane integrable on A with respect to α and (ii)∫

A

fdα = lim

∫
A

fndα. (4.148)

Proof. Fatou’s Lemma implies (i). To obtain (ii), we have∫
A

fdα

=

∫
A

lim inf fndα (because f = lim fn)

≤ lim inf

∫
A

fndα (Fatou’s Lemma applied to {fn}).

≤ lim sup

∫
A

fndα (property of lim sup and lim inf)

≤
∫
A

lim sup fn (Fatou’s Lemma applied to {−fn}).

=

∫
A

fdα (because f = lim fn).

Now (4.148) follows immediately.

Example 2: Let
f(x) = (−1)i+1/i+ 1 i− 1 < x < i

defined for xε(0,∞). Thus f(x) is a step function, constant on intervals of unit length. It is
an open question whether to consider that this function has a Riemann integral. Courant
(1937, p. 249) would say that it does, because

lim
A→∞

∫ A

0

f(x)dx

exists (and was shown in equation (3.10) to have the value log 2). However, Taylor (1955, p.
652) would insist that f(x) be absolutely integrable, which is not the case for this example,
since

∑∞
i=1 1/(i + 1) = ∞. From the McShane viewpoint, according to Corollary 4.9.12, if

fεM(A,α) then |f |εM(A,α). Hence, f is not McShane integrable. Thus the statement that
all functions that are Riemann integrable are McShane integrable holds only if one takes
the Taylor, and not the Courant view. The extension of Riemann integrals to the whole
real line introduced just before section 4.7 is restricted to the expectations of functions such
that E|X| <∞, thus excluding functions like f above.

4.9.3 McShane probabilities

Suppose X is an uncertain quantity with F as cdf. Then F is non-decreasing, and satisfies

P{A} = F (x) =

∫
IA(x)dF (x) (4.149)

where A = (−∞, x]. In greater generality, let A be any set for which the McShane integral∫
IA(x)dF (x) (4.150)
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exists, and define P{A} to be equal to that integral. Then P{A} are McShane probabilities.
If P{A} is what you would pay for a ticket that pays $1 if A occurs and nothing otherwise,
then these McShane probabilities are your probabilities.

Theorem 4.9.19. (Strong Countable Additivity) Let A1, . . . be a countable sequence of
disjoint events having McShane probabilities with respect to a cdf F . Then A = ∪∞i=1Ai has
a McShane probability with respect to F and

P{A} =

∞∑
i=1

P{Ai}. (4.151)

Proof. Let fn(x) =
∑n
i=1 IAi(x). Then fn(x)↗ f =

∑∞
i=1 IAi(x) = IA(x) and |f | ≤ 1. Now

the constant function 1 has McShane integral 1. Then the dominated convergence theorem
applies, so A has a McShane probability with respect to F , and

P{A} =

∫
IA(x)dF (x) = lim

n→∞

∫
fn(x)dα

= lim
n→∞

∫ n∑
i=1

IAi(x)dF =

∞∑
i=1

∫
IAi(x)dF

=

∞∑
i=1

P{Ai}.

(4.152)

4.9.4 Comments and relationship to other literature

The material in this section on McShane integrals relies heavily on Pfeffer (1993, Chapters
1 and 2). Indeed my 4.9.2 to 4.9.18 are respectively his 1.2.4, 1.2.5, 2.1.3, 2.1.5, 2.1.8-2.1.10,
2.2.1-2.2.4, 2.3.1 and 2.3.4-2.3.7.

There is an elegant abstract theory of integration, using measure theory and the
Lebesgue integral, that applies to integration on general spaces (see Billingsley (1995),
for example). It turns out that the McShane integral is the Lebesgue integral (Pfeffer (1993,
Chapter 4) and McShane (1983)). Because the McShane integral is only slightly more com-
plicated than the Riemann integral, a number of senior mathematicians have suggested that
it be used instead of the Riemann integral in elementary courses (see Bartle et al. (1997)).

A further generalization of the Riemann integral is found by restricting partitions to
those satisfying xiεAi for i = 1, . . . , p. This leads to the Henstock-Kurzweil approach to
the Denjoy-Perron integral. Because this integral is not absolute, it is not suitable for our
purposes. For more about this integral, see Henstock (1963), Pfeffer (1993) and Yee and
Vyborny (2000).

From the perspective of this book, it is coherent for a person to specify a density and
only Riemann probabilities. Indeed a person could specify any number in the interval [0, 1]
for the Dirichlet example. Advanced methods (fundamentally the Hahn-Banach theorem)
show that each such choice is coherent, see Bhaskara Rao and Bhaskara Rao (1983). Only
the choice of 0 is countably additive. Thus whether to specify a density and Riemann
probabilities, or to specify a density and McShane probabilities, or to make some other
choice, is a personal matter that is not to be coerced. Each choice has certain mathematical
consequences, but other than lack of coherence, none of them is “wrong”.

4.9.5 Summary

This section introduces the McShane integral. Three promises were made at the beginning
of this section, namely
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(i) The McShane integral is a generalization of the Riemann integral (see the discussion
after Corollary 4.9.4).

(ii) The McShane integral has a strong dominated convergence theorem (see Corol-
lary 4.9.18).

(iii) McShane probabilities are strongly countably additive (see Theorem 4.9.19).

Thus all three promises have been fulfilled.

4.9.6 Exercises

1. Vocabulary. Explain in your own words:

(a) partition

(b) δ-fine partition

(c) cell

(d) McShane-Stieltjes (or McShane) integral

(e) Cousin’s Lemma

2. Why is Cousin’s Lemma important? If it were not true, what consequences would that
have?

3. (a) Prove (4.89).

(b) Use (4.89) to show that cfεM(A,α) and that (4.84) holds.

4. (a) Prove (4.90).

(b) Use (4.90) to show that, if f ≤ g, (4.85) holds.

5. (a) Prove (4.96).

(b) Use (4.96) to prove part b) of Lemma 4.9.6.

6. Prove (4.111).

4.10 The road from here

The McShane integral (equivalently, the Lebesgue integral) can be extended to vectors of
length k, and indeed to infinite dimensional spaces. There’s lots of excellent probability that
lies this way. To explore it further, however, would take this book too far from its main goal,
which is to understand uncertainty. Hence I leave advanced probability to other books.

There is one matter, however, that does come up later, namely the strong law of large
numbers. Consequently the next section is devoted to that subject.

4.11 The strong law of large numbers

Where there is a weak law of large numbers (see section 2.13), there must be a strong law.
This section proves the strong law and also shows the sense in which the strong law is
stronger than the weak law. To do so requires some more precision in notation, to which I
now turn.

4.11.1 Random variables (otherwise known as uncertain quantities) more precisely

Up to now, it has not been necessary to have notation for the sample space, the space of
uncertain outcomes. For example, in a single flip of a coin, this space can be thought of as
S = {H,T}, because the coin will show either a head or a tail.

For a countably additive probability, the set of subsets of S over which the probability
is defined is a σ-field, F , satisfying the following conditions:
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1. ∅εF
2. if A1, A2, . . . , εF then ∪∞i=1AiεF
3. if AεF then AεF .

The countably additive probability P is then defined as a function from F toR satisfying
assumptions (1.1) (1.2) and (3.2). A probability space is then defined as the triple (S,F , P ).

Let A1, A2 . . . , be a sequence of events, so AiεF for all i. Define

Bn = ∪∞m=nAm and Cn = ∩∞m=nAm. (4.153)

Obviously
Cn ≤ An ≤ Bn,

and the sequence Cn increases in n, while the sequence Bn decreases in n.
Let

B = lim
n→∞

Bn = ∩nBn = ∩n ∪m≥n Am. (4.154)

Similarly, let
C = lim

n→∞
Cn = ∪nCn = ∪n ∩m≥n Am. (4.155)

Lemma 4.11.1.

(a) B = {wεS : wεAn for infinitely many values of n}.
(b) C = {wεS : wεAn for all but a finite number of n′s}.

Proof. (a) wεB ⇐⇒ wε ∩n ∪m≥nAm ⇐⇒ for all n,wε ∪m≥n Am. Hence no matter how
large n is, there is an m ≥ n such that wεAm. Hence wεAn for infinitely many values of
n.
Conversely, if wεAn for infinitely many values of n, then for all n,wε∪m≥nAm, so wεB.

(b) wεC ⇐⇒ wε ∪n ∩m≥nAm. Then there is some n such that wε ∩m≥n Am. Therefore
wεAm for all m ≥ n, so wεAm for all but a finite number of values of n.
Conversely, if wεAm for all but a finite number of values of n, then there is some n such
that wεAm for all m ≥ n, so wε ∪m≥n Am, so wε ∪n ∩m≥nAm = C.

The sets B and C are respectively called the limit superior and limit inferior for the
sequence of sets A1, A2, . . .

Lemma 4.11.2. (Borel-Cantelli)

P{B} = 0 if

∞∑
i=1

P{An} <∞

Proof.
B = ∩n ∪∞m=n An ⊆ ∪∞m=nAm for all n.

Therefore

P{B} ≤
∞∑
m=n

P{Am} → 0 as n→∞.
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Lemma 4.11.3.

(a) Let A1, A2, . . . be a non-decreasing sequence of events, so A1 ⊆ A2 ⊆ . . . and let

A = ∪∞i=1Ai = lim
i→∞

Ai.

Then P{A} = limi→∞ P{Ai}.
(b) Let B1, B2, . . . be a non-increasing sequence of events, so B1 ⊇ B2 ⊇ . . . and let

B = ∩∞i=1Bi = lim
i→∞

Bi.

Then
P{B} = lim

i→∞
P{Bi}.

Proof. (a) A = A1 ∪A2A1 ∪A3A2 ∪ . . . is the union of a disjoint family of events. Then

P{A} = P{A1}+

∞∑
i=1

P{Ai+1A
c
i}

= P{A1}+ lim
n→∞

n−1∑
i=1

[P{Ai+1} − P{Ai}]

= lim
n→∞

P{An}. (4.156)

(b) Let Ai = Bi. Then the Ai’s are non-decreasing, so a) applies.

A = ∪∞i=1Ai = ∪∞i=1Bi =
(
∩∞i=1Bi

)
= B. (4.157)

1− P{B} = P{B} = P{A} = lim
i→∞

P{Ai} = lim
i→∞

[1− P{Bi}]

= 1− lim
i→∞

P{Bi}.
(4.158)

Hence
P{B} = lim

i→∞
P{Bi}.

4.11.2 Modes of convergence of random variables

There are several different senses in which a sequence of random variables might be said to
approach a limiting random variable. This section deals with only two:

(a) Convergence in probability:
Xn converges in probability to X ⇐⇒

P{| Xn −X |> ε} → 0 for all ε > 0.

This case is denoted Xn
p→ X.

(b) Convergence almost surely:

Xn converges to X almost surely (written Xn
a.s.→ X) ⇐⇒

P{wεS : Xn(w)→ X(w)} = 1.
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The weak law of large numbers (section 2.13) can be rephrased to say that if X1, . . . are
independent and identically distributed with mean µ, then

Xn =

n∑
i=1

Xi/n
p→ µ,

or, more properly Xn converges in probability to the random variable that takes the
value µ with probability 1.
Let An(ε) = {w :| Xn(w)−X(w) |> ε}, and let

Bm(ε) = ∪n≥mAn(ε). (4.159)

Lemma 4.11.4.

P{Bm(ε)} → 0 as m→∞ if and only if Xn
a.s.→ X.

Proof. Fix ε > 0.
(Bm(ε),m ≥ 1) is a non-increasing sequence of sets whose limit is

A(ε) = ∩mBm(ε) = {wεS : wεAn(ε) for infinitely many values of n}. (4.160)

Therefore P{Bm(ε)} → 0 as m→∞ if and only if P{A(ε)} = 0.
Let

C ={wεS : Xn(w)→ X(w) as n→∞}
P{C} =P{∪ε>0A(ε)} = P{∪∞m=1A(m−1)}

≤
∞∑
m=1

P{A(m−1)} = 0 if P{A(ε)} = 0 for all ε > 0. (4.161)

So P{C} = 1 in this case, and hence Xn(w)
a.s.→ X(w).

Now suppose P{A(ε)} 6= 0 for some ε > 0. Then P{C} > 0, so Xn does not almost
surely approach X, and P{Bm(ε)} does not approach 0 as m→∞.

Lemma 4.11.5. If
∑
n P{An(ε)} <∞ for all ε > 0, then Xn

a.s.→ X.

Proof. Fix ε > 0.

P{Bm(ε)} = P{∪n≥mAn(ε)} ≤
∞∑
n=m

P{An(ε)} → 0. (4.162)

Application of Lemma 4.11.4 now completes the result.

Lemma 4.11.6. If Xn
a.s.→ X then Xn

p→ X.

Proof. If Xn
a.s.→ X then by Lemma 4.11.4, Bm(ε)→ 0. But An(ε) ≤ Bn(ε), so An(ε)→ 0.

Hence P{| Xn −X |> ε} → 0, so Xn
p→ X.

The following example shows that almost sure convergence is stronger than convergence
in probability, by displaying a sequence of random variables that converge in probability,
but not almost surely.

Example:
Let Xn be a sequence of independent random variables such that

Xn =

{
1 with probability 1/n

0 otherwise.



178 CONTINUOUS RANDOM VARIABLES

Obviously Xn
p→ 0, the random variable taking the value of 0 with probability 1.

Let 0 < ε < 1. Then

An(ε) = {w | Xn(w)− 0 |> ε} = {w | Xn(w) = 1}.

Hence Bm(ε) = ∪n≥mAn(ε) is the event that at least one

Xn(w) = 1,where n ≥ m.

Hence

P{Bm(ε)} = 1− lim
r→∞

P{Xn = 0 for all m ≤ n ≤ r}

= 1− lim
M→∞

(
1− 1

m

)(
1− 1

m+ 1

)
. . .

(
M

M + 1

)
(uses independence)

= 1− lim
M→∞

{
m− 1

m
· m

m+ 1
. . .

M

M + 1

}
= 1− lim

M→∞

m− 1

M + 1
= 1. (4.163)

Therefore Xn does not converge almost surely to 0. 2

Having shown that almost sure convergence is stronger than convergence in probability,
and having been reminded that the weak law of large numbers shows that Xn converges in
probability to µ provided the Xi’s are independent, identically distributed and have mean
µ, the reader may not be astonished to learn that the strong law of large numbers is the
same result, under the same conditions, with respect to almost sure convergence.

4.11.3 Four algebraic lemmas

It will not be obvious why the four lemmas in this subsection are interesting or important.
However, they are each used in the proof of the strong law in the next section.

For the purposes of this section and much of the rest, α > 1 is a constant.

Lemma 4.11.7. Let α > 1. There exists a K > 0 such that, for all k ≥ K,αk−1 ≤ αk − 1.

Proof. The inequality is equivalent to

1 ≤ αk − αk−1 = αk−1(α− 1).

Since α > 1, (α − 1) > 0, and αk−1 → ∞. Hence there is some K such that for all k ≥
K,αk−1(α− 1) > 1.

It is now necessary to introduce the floor function, bxc, which is the largest integer no
larger than x.

Lemma 4.11.8. Let βk = bαkc. Then there is a finite constant A such that

∞∑
k=m

1

β2
k

≤ A

β2
m

for all m ≥ 1.

Remark: What makes the lemma a bit tricky to prove is the operation of the floor function.
So for practice and to make this lemma plausible, I prove it first without the floor function.
Thus (within this remark only) I redefine βk = αk. Then

∞∑
k=m

1

β2
k

=

∞∑
k=m

1

α2k
=

1

α2m

∞∑
k=0

1

α2k

=
1

β2
m

1

1− 1/α2
=

1

β2
m

(
α2

α2 − 1

)
(4.164)
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so A = α2/(α2 − 1) suffices. The intuition of the lemma is that bαkc is “almost” like αk, so
something like this proof should work, at least for large m.

Proof. I first prove the result for all large m, specifically for all m ≥ K, where K is the
number found in Lemma 4.11.7, as follows:

Let m ≥ K. Then

β2
m

∞∑
k=m

1

β2
k

≤ α2m
∞∑
k=m

1

α2(k−1)
(uses Lemma 4.11.7)

= α2m+2
∞∑
k=m

(
1

α2

)k
=
α2m+2

α2m

∞∑
k=0

(
1

α2

)k
= α2 1

1− 1/α2

= α4/(α2 − 1). (4.165)

Hence A1 = α4/(α2 − 1) is sufficient for all m ≥ K.

Now let β∗m =

{
βm m ≥ K
βK m ≤ K

.

Then β∗m ≥ βm for all m.
Using this, for m ≤ K

β2
m

∞∑
k=m

1

β2
k

≤ β∗2m
∞∑
k=m

1

β2
k

= β∗2K

K∑
k=m

1

β2
k

+

∞∑
k=K+1

β2
m

β2
k

≤ A1 + β2
K

K∑
k=m

1

β2
k

≤ A1 + β2
K

K∑
k=1

1

β2
k

. (4.166)

Hence A = A1 + β2
K

∑K
k=1

1
β2
K

suffices for all m.

(The key point in the above proof is that once it is proved for all large m ≥ K, the finite
initial part is easily bounded.)

Lemma 4.11.9. limk→∞

(
βK+1

βK

)
= α.

βk+1

βk
=
bαk+1c
bαkc

≤ αk+1

αk−1
=

α

1− 1/αk
. (4.167)

Hence

lim
k→∞

sup

(
βk+1

βk

)
= α. (4.168)

Similarly
βk+1

βK
≥ αk+1 − 1

αK
= α− 1/αk, (4.169)
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so

lim
k→∞

inf

(
βk+1

βk

)
= α. (4.170)

Hence limk→∞
βK+1

βK
= α. 2

There’s one additional lemma that comes up in the proof of the strong law.

Lemma 4.11.10. If limn→∞ xn = c then lim
∑n
i=1 xi
n = c.

Proof. Choose ε > 0.

There is an N1 such that for all n ≥ N1, | xn − c |< ε/2. Now
∑N1

i=1 | xi − c | is a fixed

number, so there is some N2 such that, for all n ≥ N2,
∑N1
i=1|xi−c|
n < ε/2.

Let N = max{N1, N2, 2}. Then for all n ≥ N ,

∣∣∣∣∑n
i=1 xi
n

− c
∣∣∣∣ =

∣∣∣∣∑n
i=1(xi − c)

n

∣∣∣∣ ≤ ∑n
i=1 |xi − c|

n

≤
N1∑
i=1

|xi − c|
n

+

n∑
i=N1+1

|xi − c|
n

< ε/2 + ε/2n < ε. (4.171)

Hence lim
∑n
i=1 xi/n = c.

4.11.4 The strong law of large numbers

Finally, the stage is now set for a proof of the strong law:

Theorem 4.11.11. Let X1, X2, . . . , be a sequence of independent and identically distributed
random variables such that E | X1 |<∞, and let E(X1) = µ. Then

Xn =

n∑
i=1

Xi/n
a.s.→ µ.

Proof. First suppose that X1 (and hence all the other X’s) are non-negative. (This restric-
tion is removed at the end of the proof).

Let

Yn =

{
Xn if Xn < n

0 otherwise
.

(The Yn’s are still independent, but no longer identically distributed.)

Now
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∞∑
n=1

P{Xn 6= Yn}

=

∞∑
n=1

P{Xn ≥ n} (definition of Yn)

=

∞∑
n=1

P{X1 ≥ n} (X’s identically distributed)

≤
∞∑
n=1

P{bX1c ≥ n} bX1c ≤ X1

≤E(bX1c) by 3.10.2

≤E(X1) bX1c ≤ X1

<∞. by assumption (4.172)

Applying the Borel-Cantelli Lemma 4.11.2

P{Xn 6= Yn for infinitely many values of n} = 0. (4.173)

Therefore
1

n

n∑
i=1

(Xi − Yi)
a.s.→ 0 as n→∞. (4.174)

Hence it suffices to show
∑n
i=1 Yi/n

a.s.→ µ as n→∞.
The substitution of the Y ’s for the X’s is called truncation, and is widely used in

probability theory.
Let S′n =

∑n
i=1 Yi, let α > 1 and ε > 0 be given.

Then

P

{
1

βn

∣∣S′βn − E(S′βn)
∣∣ > ε

}
≤ 1

ε2
· 1

β2
n

V ar(S′βn) (4.175)

by Tchebychev’s Inequality (see section 2.13).
Consequently

∞∑
n=1

P{ 1

βn
| S′βn − E(S′βn) |> ε}

≤ 1

ε2

∞∑
n=1

1

β2
n

V ar(S′βn)

=
1

ε2

∞∑
n=1

1

β2
n

βn∑
i=1

V ar(Yi)

=
1

ε2

∞∑
n=1

∞∑
i=1

1

β2
n

V ar(Yi)I{i≤βn}

=
1

ε2

∞∑
i=1

V ar(Yi)

∞∑
n=1

1

β2
n

I{i ≤ βn}

≤ 1

ε2

∞∑
i=1

E(Y 2
i )

∞∑
n:βn≥i

1

β2
n

. (4.176)
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Let m = min{n | βn ≥ i}.
Then

∞∑
n=1

P

{
1

βn
| S′βn − E(S′βn) |> ε

}

≤ 1

ε2

∞∑
i=1

E(Y 2
i )

∞∑
n=m

1

β2
n

≤ 1

ε2

∞∑
i=1

E(Y 2
i ) · A

β2
m

(uses Lemma 4.11.8)

≤A
ε2

∞∑
i=1

1

i2
E(Y 2

i ). (definition of m) (4.177)

Next, we bound
∑∞
i=1

1
i2E(Y 2

i ) as follows:

Let Bij = {j − 1 ≤ Xi < j} and note P{Bij} = P{B1j} for all i and j.

Then

∞∑
i=1

1

i2
E(Y 2

i ) =

∞∑
i=1

1

i2

i∑
j=1

E(Y 2
i IBij )

≤
∞∑
i=1

1

i2

i∑
j=1

j2P{Bij} (on Bij , Xi is no larger than j)

=

∞∑
i=1

∞∑
j=1

j2

i2
P{Bij}Ij≤i

=

∞∑
j=1

j2
∞∑
i=j

1

i2
P{Bij}

=

∞∑
j=1

j2P{B1j}
∞∑
i=j

1

i2
. (4.178)

Now to bound
∑∞
i=j

1
i2 , think of this as a step function, less than 1/x2 if x < i. It is

necessary to separate out the case of j = 1, as follows:

∞∑
i=1

1

i2
= 1 +

∞∑
i=2

1

i2
≤ 1 +

∫ ∞
1

1

x2
dx = 1− 1/x |∞1 = 2 = 2/j.

If j ≥ 2,

∞∑
i=j

1

i2
≤
∫ ∞
j−1

1

x2
dx = 1/(j − 1) ≤ 2/j.

Hence for all j ≥ 1,
∑∞
i=j

1
i2 ≤ 2/j.
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Therefore

∞∑
j=1

j2P{B1j}
∞∑
i=j

1

i2

≤
∞∑
j=1

j2P{B1j} · 2/j

=2

∞∑
j=1

jP{B1j}

=2

∞∑
j=1

[(j − 1) + 1]P{B1j}

≤2(E(X) + 1) <∞. (4.179)

Hence
∞∑
n=1

P

{
1

βn
| S′βn − E(S′βn) |> ε

}
<∞, (4.180)

using (4.177), (4.178) and (4.179).
Therefore, by Lemma 4.11.5,

1

βn
[S′βn − E(S′βn)]

a.s.→ 0 as n→∞. (4.181)

We now turn to evaluating the expectation:

E(Yn) = E(XnI{Xn<n}) = E(X1I{Xi<n})→ E(X1) = µ (4.182)

as n→∞ by monotone convergence. Hence, applying Lemma 4.11.10,

1

βn
E(S′Bn =

1

βn

βn∑
i=1

E(Yi)→ µ as n→∞. (4.183)

Therefore we may conclude
1

βn
S′n

a.s.→ µ as n→∞. (4.184)

This proves the result, but only for particular βn’s, not for all n. Now, because the Yi’s are
non-negative, the sequence S′n is non-decreasing. Therefore, if βn ≤ m ≤ βn+1,

1

βn+1
S′βn ≤

S′m
m
≤ 1

βn
S′βn+1

. (4.185)

Now
βn
βn+1

S′βn
βn
≤ S′m

m
≤ βn+1

βn

S′βn+1

βn+1
. (4.186)

Let m→∞ and apply Lemma 4.11.9 to obtain

α−1µ ≤ lim inf
S′m
m
≤ lim sup

S′m
m
≤ αµ almost surely. (4.187)

Since this holds for all α > 1, we may now let α→ 1, and find

lim
S′m
m

= µ almost surely as m→∞ (4.188)
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when the Xis are non-negative. The last step is to remove this constraint.
For general Xi’s, define

X+
n (w) = max{Xn(w), 0} and X−n (w) = −min{Xn(w), 0}.

Then X+
n and X−n are non-negative, and Xn = X+

n −X−n .
Since X+

n ≤| Xn | and X−n ≤| Xn |, both E(X+
n ) and E(X−n ) exists, and E(Xn) =

E(X+
n )− E(X−n ).

Therefore

1

n
Sn =

1

n

(
n∑
i=1

X+
i −

n∑
i=1

X−i

)
a.s.→ E(X+

1 )− E(X−1 ) = E(X1) = µ (4.189)

as n→∞.
This completes the proof of the theorem.

4.11.5 Summary

This section states and proves the strong law of large numbers, and contrasts it with the
weak law of large numbers.

4.11.6 Exercises

1. Vocabulary. Explain in your own words:

(a) σ-field

(b) convergence in probability

(c) almost sure convergence

(d) weak law of large numbers

(e) strong law of large numbers

2. Consider the sequence of independent random variables defined by

Xn =

{
n with probability 1/n

0 with probability 1− 1/n
.

(a) Does Xn converge almost surely? If so, to what random variable does it converge?
Explain your answer.

(b) Does Xn converge in probability? If so, to what random variable does it converge?
Explain your answer.

3. Consider the sequence of independent random variables defined by

Xn =


n with probability 1/2n log n

0 with probability 1− 1/n log n

−n with probability 1/2n log n

.

Answer the same questions as in problem 2.

4.11.7 Reference

Many probability books have proofs of the strong law of large numbers. This one is due to
Grimmett and Stirzaker (2001); in general I can recommend this book as being both clear
and concise.



Chapter 5

Transformations

5.1 Introduction

Transformations of random variables are essential tools. If X is a random variable, and g is
a function, then Y = g(X) is a new random variable. If I know the distribution of X and I
know the function g, how do I find the distribution of Y ?

Section 5.2 addresses this question when X is discrete. The continuous univariate case,
both linear and non-linear, is the subject of 5.3. To deal with the continuous multivariate
case requires the development of some matrix algebra, which begins in section 5.4, and
culminates in 5.8. For a one-to-one transformation, one substitutes the function value into
the density of X, and rescales locally so that the density of Y integrates to one. Then 5.9
shows the derivation of the absolute value of the determinant of the Jacobian matrix as the
necessary scaling factor in the multivariate case, linear or non-linear.

The chapter concludes with a discussion of the Borel-Kolmogorov paradox in sec-
tion 5.10.

5.2 Transformations of discrete random variables

Suppose X is a discrete random variable, such that

P{X = xi} = pi > 0, i = 1, 2, . . . (5.1)

where
∑∞
i=1 pi = 1.

Let g be a function such that g(xi) 6= g(xj) if xi 6= xj . Such a function is called one-to-
one. Each one-to-one function g has a one-to-one inverse g−1 such that g−1g(xi) = xi for
all i. We seek the distribution of Y = g(X).

P{Y = yj} = P{g−1(Y ) = g−1(yj)} = P{X = g−1(yj)} = pj (5.2)

if g−1(yj) = xj .
It is easy to tell whether a function g is one-to-one. The way to tell is to find the inverse

function g−1. If you can solve for g−1 uniquely, then the function is one-to-one. For example,
suppose g(x) = x2. Then we might have g−1(x) = ±

√
x, so if the random variable X can

take both positive and negative values, g would not be one-to-one in general. However if X
is restricted to be positive, then g is one-to-one, and g−1(x) =

√
x.

To make this concrete, let’s look at an example. Suppose X has a Poisson distribution
with parameter λ, i.e.,

P{X = k} =

{
e−λλk

k! k = 0, 1, 2, . . .

0 otherwise
.

Let g(x) = 2x. Then we seek the distribution of Y = 2X. Clearly Y has positive values on

185
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only the even integers. Also clearly g−1(y) = y/2 so g is one-to-one. Then

P{Y = j} = P{X = j/2} =

{
e−λλ(j/2)

(j/2)! j = 0, 2, 4, . . .

0 otherwise
. (5.3)

Suppose now that X = (X1, X2, . . . , Xk) is a vector of discrete random variables, satisfying
P{X = xj} = pj , j = 1, 2, . . . , and

∑∞
j=1 pj = 1 and that g(x) = (y1, y2, . . . , yk) is a one-to-

one function. We seek the distribution of YYY = g(XXX), where now YYY is a k-dimensional vector.
Again, to check whether the function g is one-to-one, we compute the inverse function g−1.
If g−1 can be solved for uniquely, the function g is one-to-one. In this case

P{YYY = yj} = P{g−1(YYY ) = g−1(yj)} = P{X = g−1(yj)} = pj
if g−1(yj) = xj .

(5.4)

Thus the multivariate case works exactly the way the univariate case does.
Of course, marginal distributions are found from joint distributions by summing, and

conditional distributions are found by application of Bayes Theorem.
As an example, let X1 and X2 have the joint distribution

P{X1 = x1, X2 = x2} = x1x2/60 for x1 = 1, 2, 3 and x2 = 1, 2, 3, 4.

(a) Find the joint distribution of Y1 = X1X2 and Y2 = X2.

(b) Find the marginal distribution of Y2.

(c) Find the conditional distribution of Y1 given Y2.

Solution:

(a) Let g(x1, x2) = (x1x2, x2). Let y1 = x1x2 and y2 = x2. Then x1 = y1/y2 and x2 = y2.
Since this inverse function exists, the function g is one-to-one.
Hence, applying (5.4),

P{Y1 = y1, Y2 = y2} = y1/60 for

(y1, y2)ε{(1, 1), (2, 1), (3, 1), (2, 2), (4, 2), (6, 2),

(3, 3), (6, 3), (9, 3), (4, 4)(8, 4), (12, 4)} = D

and
P{Y1 = y1, Y2 = y2} = 0 otherwise.

(b)

P{Y2 = y2} =
∑

(y1,y2)εD

P{Y1 = y1, Y2 = y2}

=
∑

(y1,y2)εD

y1/60 = y2 · 6/60 = y2/10, y2 = 1, 2, 3, 4

and P{Y2 = y2} = 0 otherwise.

(c)

P{Y1 = y1 | Y2 = y2} =

P{Y1 = y1, Y2 = y2}
P{Y = y2}

=
y1/60

y2/10
= (y1/y2) · 1

6

for y1ε{y2, 2y2, 3y2}
and P{Y1 = y1 | Y2 = y2} = 0 otherwise.

As can be seen from this example, keeping the domain straight is an important part of
the calculation.
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Now suppose that g is not necessarily one-to-one. Then fix a value for Y = g(X), say
yj , and let Sj be the set of values xi of X such that g(xi) = yj , i.e., Sj = {Xi | pi >
0 and g(xi) = yj}. Also let Zj be an indicator function for yj . Then, applying property 6
of section 3.5,

P{Y = yj} = E[Z] = EE[Z | X].

Now

E[Z | X = xi] =

{
1 Y = g(xi)

0 otherwise
.

Hence

P{Y = yj} =
∑
xiεSj

pi. (5.5)

This demonstration applies equally well to univariate and multivariate random variables
and transformations. Also note that in the special case that Sj consists of only a single
element, (5.5) coincides with (5.2) in the univariate case and (5.4) in the multivariate case.

5.2.1 Summary

To transform a discrete random variable with a function g, one must check to see if the
function is one-to-one. This may be done by calculating the inverse of the function, g−1. If
there is an inverse, the function is one-to-one. In this case, probabilities that the transformed
random variable take particular values can be computed using (5.2) in the univariate case,
or (5.4) in the multivariate case.

When g is not one-to-one, (5.5) applies.

5.2.2 Exercises

1. Let X have a Poisson distribution with parameter λ. Suppose Y = X2. Find the distri-
bution of Y . Is g one-to-one?

2. Let X1 and X2 be independent random variables each having the distribution

P{Xi = i} =

{
1/6 i = 1, 2, 3, 4, 5, 6

0 otherwise
.

(a) Find the joint distribution of Y1 = X1 +X2 and Y2 = X1.

(b) Find the marginal distribution of Y1.

(c) Find the conditional distribution of Y1 given Y2.

[Y1 is the distribution of the sum of two fair dice X1 and X2 on a single throw.]

5.3 Transformation of univariate continuous distributions

Suppose X is a random variable with cdf FX(x) and density fX(x), so that

FX(x) =

∫ x

−∞
fX(y)dy.

Suppose also that g is a real valued function of real numbers. Then Y = g(X) is a new
random variable. The purpose of this section is to discuss the distribution of Y , which
depends on g and the distribution of X.
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Suppose X is a continuous variable on [−1, 1], and let Y = X2, so g(x) = x2, as illustrated
in Figure 5.1. Consider the set S = [0.25, 0.81]. Then the event Y ∈ S corresponds to
X ∈ [−0.9,−0.5] ∪ [0.5, 0.9], as illustrated in Figure 5.2.

1.0 0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 5.1: Quadratic relation between X and Y .

Commands:

x=((-100:100)/100)

y=(x**2)

plot(x,y,type="l") # type="l" draws a line

Then we are asking about the probability that X falls in the two intervals marked in
Figure 5.2.

Of course, the probability that X falls in the union of these two intervals is the sum
of the probability that X falls in each. So if we can understand how to analyze each piece
separately, they can be put together to find probabilities in the more general case. What
distinguishes each piece is that within the relevant range of values for y, g is one-to-one.

It is geometrically obvious that a continuous one-to-one function on the real line can’t
double back on itself, i.e., if it is increasing it has to go on increasing, and if it is decreasing
it has to go on decreasing. (Such functions are called monotone increasing and monotone
decreasing, respectively.) So we’ll consider those two cases, at first separately, and then
together.
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1.0 0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 5.2: The set [0.25, 0.81] for Y is the transform of two intervals for X.

Commands:

x=((-100:100)/100)

y=(x**2)

plot(x,y,type="l")

#segments draws a line

#from the (x,y) coordinates

#listed first to the (x,y)

#coordinates listed second

segments (-1,0.25,0.5,0.25,lty=2) #lty=2 gives a dotted line

segments (-0.9,0.81,-0.9,0,lty=2)

segments (-0.5,0.25,-0.5,0,lty=2)

segments (0.5,0.25,0.5,0,lty=2)

segments (0.9,0.81,0.9,0,lty=2)

segments(-0.9,0,-0.5,0,lwd=5) #lwd=5 gives a line width

#5 times the usual line

segments(0.5,0,0.9,0,lwd=5)

segments(-1,0.25,-1,0.81,lwd=5)

Suppose, then, that g is a monotone increasing function on an interval in the real line.
We’ll also suppose that it is not only continuous, but has a derivative. Then we can compute
the c.d.f. of Y = g(X) is as follows:

FY (y) = P{Y ≤ y} = P{g(X) ≤ y}
= P{X ≤ g−1(y)} = FX(g−1(y)). (5.6)
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Differentiating with respect to y, the density of Y is

fY (y) =
dFY (y)

dy
= fX(g−1(y))

dg−1(y)

dy
(5.7)

using the chain rule. Since g is monotone increasing, so is g−1, so dg−1(y)
dy is positive.

Now suppose that g is a monotone decreasing differentiable function on an interval in
the real line. Then the c.d.f. of Y = g(X) is

FY (y) = P{Y ≤ y} = P{g(X) ≤ y}
= 1− P{X < g−1(y)} = 1− FX(g−1(y)). (5.8)

Again (5.8) can be differentiated to give

fY (y) =
dFY (y)

dy
= −fX(g−1(y))

dg−1(y)

dy
. (5.9)

Because g is monotone decreasing, so is g−1. Therefore in this case dg−1(y)
dy is negative, but

the result for fY (y) is positive, as it must be.
Formulae (5.7) and (5.8) can be summarized as follows: If g is one-to-one, then Y = g(X)

has density

fY (y) = fX(g−1(y)) | dg
−1(y)

dy
| . (5.10)

Let’s see how this works in the case of a linear transformation, i.e., a function g(x) of the
form g(x) = ax+ b for some a and b. The first step is to compute g−1. If y = ax+ b, then

g−1(y) = x = (y − b)/a. (5.11)

From (5.11) we learn some important things. The most important is that in order for g to
be one-to-one, we must have a 6= 0. Indeed, if a > 0, then g is monotone increasing. If a < 0,
then g is monotone decreasing. The derivative of g−1 is now easy to compute:

dg−1(y)

dy
= 1/a (5.12)

so the absolute value is available:

| dg
−1(y)

dy
|= 1

| a |
. (5.13)

Thus for a linear g(x) = ax+ b, Y = g(X) has density

fY (y) = fX(
y − b
a

) · 1

| a |
. (5.14)

Suppose, for example, that X has a uniform density on [0, 1], which is to say

fX(x) =

{
1 0 < x < 1

0 otherwise
. (5.15)

The corresponding c.d.f. is FX(x) =


0 x ≤ 0

x 0 < x < 1

1 x ≥ 1

.
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Then, with g(x) = ax+ b and a > 0, Y will have values in the interval (b, a+ b), and its
density is

fY (y) =

{
fX(y−ba ) · 1

|a| = 1
|a| b < y < a+ b

0 otherwise
.

The corresponding c.d.f. is FY (y) =


0 y ≤ b
y−b
a b < y < a+ b

1 y ≥ a+ b

.

If a < 0, then Y has values in the interval (a+ b, b), and its density is

fY (y) =

{
fX(y−ba ) · 1

|a| = 1
|a| a+ b < y < b

0 otherwise
.

The corresponding c.d.f. here is FY (y) =


0 y ≤ a+ b
y−b
|a| a+ b < y < b

1 y ≥ b
.

Therefore, in both cases y has a uniform distribution on an interval of length |a|. Thus

the role of the factor dg−1(y)
dy is to compensate for the fact that the length of the interval has

been changed by the transformation from 1 (because X is uniform on (0, 1)), to |a|. And
this, in turn, is because the derivative of a function (here a c.d.f.) depends on the scale of
the variable the derivative is being taken with respect to, which is what the chain rule is all
about.

Now consider an example of a linear transformation of a non-uniform random variable.
Suppose X has the density

fX(x) =

{
| x | −1 < x < 1

0 otherwise
. (5.16)

First, we’ll check that this is a legitimate density. It is certainly non-negative. Its integral is∫ ∞
−∞

fX(x)dx =

∫ 1

−1

| x | dx =

∫ 0

−1

(−x)dx+

∫ 1

0

xdx

=
−x2

2

∣∣∣∣0
−1

+
x2

2

∣∣∣∣1
0

= −(−1

2
) +

1

2
= 1,

so (5.16) is a legitimate density. Its cumulative distribution function is

FX(x) =


0 x ≤ −1
1
2 −

x2

2 −1 < x < 0
1
2 + x2

2 0 ≤ x < 1

1 x > 1

.

Then if g(x) = ax + b with a > 0, the random variable Y = g(X) has positive density
in the range b− a to b+ a, and has density

fY (y) =

{
| y−ba2 | b− a < y < b+ a

0 otherwise
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and has c.d.f.

FY (y) =


0 y ≤ b− a
1
2 −

1
2 (y−ba )2 b− a < y ≤ b

1
2 + 1

2 (y−ba )2 b < y < b+ a

1 y ≥ b+ a

.

A similar derivation can be found for a < 0, and is offered below as an exercise.
Finally, let’s look at some examples of non-linear functions. Suppose X again has a

uniform density on [0, 1], i.e., its density satisfies (5.15), and now let g(x) = x2. Thus
Y = g(X) has positive density also only on the space (0, 1). Computing g−1(x), we find
g−1(y) = ±√y. Hence it appears that g is not 1 to 1, because both

√
x and −

√
x are

possible values of the inverse. However the inverse −
√
x is irrelevant here, because X takes

values only on (0, 1). Hence g is one-to-one as a function from (0, 1) to (0, 1), with inverse
g−1(y) =

√
y. Then the derivative is

dg−1(y)

dy
=

d

dy
y1/2 =

1

2
y−1/2 =

1

2
√
y
.

Hence Y has density

fY (y) = fX(g−1(y)) | dg
−1(y)

dy
|=

{
1

2
√
y 0 < y < 1

0 otherwise

and c.d.f.

FY (y) =


0 y ≤ 0
√
y 0 < y < 1

1 y ≥ 1

.

This example illustrates an important point. Given an arbitrary function (especially a
non-linear one), it may not be obvious whether it is one-to-one. Computing the inverse is
an excellent way to check. If the inverse is found and is unique, then the function is indeed
one-to-one. In the example, the function g(x) = x2 is one-to-one as a function from (0, 1) to
(0, 1), but not as a function, say, from (−1, 1) to (0, 1). Thus, in that example, had X had
a uniform distribution on (−1, 1), it would have been necessary to do separate analyses for
X in (−1, 0) and (0, 1) and then to put them together, because g(x) = x2 is one-to-one as
a function from (−1, 0) to (0, 1) (with inverse −

√
x) and from (0, 1) to (0, 1) (with inverse√

x).

5.3.1 Summary

If X has a continuous distribution with pdf fX(x), and g is a differentiable one-to-one
function on the set where fX(x) > 0, then the density of Y = g(x) is given by (5.8).
Whether g is one-to-one can be checked by computing its inverse.

5.3.2 Exercises

1. Vocabulary. State in your own words the meaning of:

(a) one-to-one function

(b) inverse function

(c) monotone increasing (decreasing) function

2. Let X have the density specified by (5.16) and let g(x) = ax + b with a < 0. Find the
p.d.f. and the c.d.f. of Y = g(X).
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5.3.3 A note to the reader

The purpose of the remainder of this chapter is to develop the multivariate analog of the
results of section 5.3. This requires what may seem like a long digression into linear algebra,
but it also provides tools we’ll need for the rest of the book. An alternative would be to
retreat to “it can be shown that. . .,” but that makes the book less self-contained, and by
not showing the proofs, obscures the force of the assumptions made.

A reader whose grasp of matrix and vector notation is not solid might benefit from
rereading section 2.12.1 at this point.

5.4 Linear spaces, inner products and orthogonality

This section introduces some of the tools needed to understand linear transformations, and
then non-linear transformations, in many dimensions.

Definition: A linear space (also called a vector space) is a set of elements M closed in the
following sense: if xεM, yεM and α and β are real numbers, then

αx + βy εM.

If α = β = 0, then 0 εM. Also, of course, by induction, if x1, . . . ,xnεM and α1, α2, . . . , αn
are real numbers, then

n∑
i=1

αixi εM.

Consider the following examples:

(i) S1 = {(a, a, 0)′ ,−∞ < a <∞}.
(ii) S2 = {(a, a, 0)′ , a ≤ 0}.
(iii) S3 = {(a, b, 0)′ ,−∞ < a <∞, −∞ < b <∞}.
(iv) S4 = {(a, b, c)′,−∞ < a <∞,−∞ < b <∞,−∞ < c <∞, c 6= 0}.

S1 and S3 are linear spaces, but S2 is not, since if α = −1, (−a,−a, 0)′ 6∈ S2 if a < 0.
Also S4 is not a linear space because (0, 0, 0) is excluded. However, each of these examples
has more than finitely many elements.

Definition: A set of vectors x1,x2, . . . ,xn is said to span a linear space M if every element
xεM can be expressed as a linear combination of {x1,x2, . . . ,xn}, i.e., if there exist numbers
α1, α2, . . . , αn such that

x =

n∑
i=1

αixi.

Definition: A set of vectors {x1, . . . ,xn} is said to be linearly independent if the only numbers
α1, . . . , αn satisfying

n∑
i=1

αixi = 0

are α1 = α2 = . . . = αn = 0. Otherwise they are said to be linearly dependent.
If the vectors {x1,x2, . . . ,xn} are linearly independent and∑n
i=1 αixi =

∑n
i=1 α

′
ixi for some numbers αi and α′i, then αi = α′i. The reason for this

is 0 =
∑n
i−1 αixi −

∑n
i=1 α

′
ixi =

∑n
i=1(αi −α′i)xi. By definition of linear independence, we

must have αi − α′i = 0 for all i, so αi = α′i.
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Lemma 5.4.1. A set of non-zero vectors {x1,x2, . . . ,xn} is linearly dependent if and only
if some xk, 2 ≤ k ≤ n is a linear combination of the preceding ones.

Proof. A single vector x1 is automatically linearly independent. Let k be the first integer for
which x1, . . . ,xk are linearly dependent, 2 ≤ k ≤ n. Then there are numbers α1, α2, . . . , αk,
not all zero, such that α1x1 + α2x2 + . . .+ αkxk = 0.

Also αk 6= 0 by definition of k. Then

xk = −(α1/αk)x1 + . . .+ (−αk−1/αk)xk−1.

Conversely, if xk is a linear combination of x1, . . . ,xk−1, then obviously the set {x1, . . . ,xn}
is linearly dependent.

We need two more definitions before we can begin to prove something:

Definition: A set of vectors {x1, . . . ,xn} is said to be a basis for a linear space M if they
are linearly independent and span M.

Definition: A linear space M is finite dimensional if it has a finite basis.

Theorem 5.4.2. If M is finite dimensional every linearly independent set can be extended
to be a basis.

Proof. Let {y, . . .ym} be a linearly independent set. Since M is finite dimensional, it has
a finite basis {x, . . . ,xn}. Now consider the vectors

y1, . . . ,ym,x1, . . . ,xn

in that order. This set is linearly dependent, since the x’s form a basis, so each yi may be
expressed as a linear combination of the x’s. Applying the lemma, there is a first element that
is a linear combination of the others. Furthermore, since the y’s are linearly independent,
this first element must be an x, say xi. Now consider

y1, . . . ,ym,x1, . . . ,xi−1,xi+1, . . . ,xn.

Every vector in M is a linear combination of vectors in this set, since xi is a linear com-
bination of them, and x1, . . . ,xn are a basis for M. If this set is linearly independent, the
theorem is proved. If not, the lemma is applied recursively until it is. Thus we obtain a
linearly independent set that includes y1, . . . ,ym and that spans M, and is therefore a
basis for M.

Theorem 5.4.3. If {x1, . . . ,xn} and {y1, . . . ,ym} are both bases of a linear spaceM, then
n = m.

Proof. First, we use the properties of a basis that y1, . . . ,ym are independent and x1, . . . ,xn
span M. Apply the lemma to

ym,x1, . . . ,xn.

As before, one of the x’s, say xi, is the first linearly dependent element, so

ym,x1, . . . ,xi−1,xi+1, . . . ,xn

are linearly independent, and span M. Now apply the same argument to

ym−1,ym,x1, . . . ,xi−1,xi+1, . . . ,xn.

After using this argument m times, we obtain a set y1, . . . ,ym followed by n−m x’s. Hence
n ≥ m. Reversing the roles of the x’s and y’s, we also have m ≥ n. Hence n = m.

Definition: The number of elements in the basis of a finite dimensional linear space is called
the dimension of the space.
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5.4.1 A mathematical note

There’s a very elegant theory of linear spaces, also called vector spaces. The theorems above
are from Halmos (1958), one of the most elegant of the expositions. However, we don’t need
the generality of the abstract theory, so we won’t explore it further here.

5.4.2 Inner products

Definition: The inner product of two vectors of the same dimension, x = (x1, . . . , xn) and
y = (y1, . . . , yn) is denoted < x,y >, and equals

< x,y >=

n∑
i=1

xiyi.

Some simple properties of the inner product are:

(a) < x,y >=< y,x >

(b) < ax,y >= a < x,y > for any number a

(c) < x,y + zzz >=< x,y > + < x, zzz >

Additionally, the length of a vector x is defined to be

| x |=< x, x >1/2 .

The notation for length looks like the notation for absolute value. There is no harm in this
double use of parallel vertical lines, since if x = (x), a vector of length one,

| x |= + < x, x >1/2=

(
1∑
i=1

x2
i

)1/2

= (x2)1/2 =| x | .

The distance between two vectors x and y, is < x−y, x−y >1/2. This leads to an important
geometrical interpretation. Think about a triangle (in n-dimensions) with vertices x,y and
0. Recall the Pythagorean Theorem, which says that for a right triangle, the square of the
length of hypotenuse equals the sum of squares of the lengths of the other two sides. Then,
for a right triangle,

0 = < x,x > + < y,y > − < x− y,x− y >

= < x,x > + < y,y > −{< x,x > + < y,y > − < x,y > − < y,x >}
= < x,y > + < y,x >= 2 < x,y > .

Therefore x and y form a right triangle if and only if < x,y >= 0. In this case x and
y are said to be orthogonal. Similarly a set of vectors {x1,x2, . . . ,xn} are said to be an
orthogonal set if each pair of them is orthogonal, and to be orthonormal if in addition each
xi satisfies < xi,xi >= 1.

Theorem 5.4.4. If x1, . . . ,xn are linearly independent vectors, there are numbers cij,
1 ≤ j < i ≤ n such that the vectors y1, . . . ,yn given by

y1 = x1

y2 = c21x1 + x2

...

yn = cn1x1 + cn2x2 + . . .+ cn,n−1xn−1 + xn

form an orthogonal set of non-zero vectors.
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Proof. Consider y1, . . . ,yn defined by

y1 = x1

y2 = x2 −
< y1,x2 >

< y1,y1 >
y1

...

yn = xn −
< y1,xn >

< y1,y1 >
y1 − . . .−

< yn−1,xn >

< yn−1,yn−1 >
yn−1.

We claim first that yk 6= 0 for all k, by induction. When k = 1, we have y1 6= 0. Suppose
that y1, . . . ,yk−1 are all non-zero. Then yk is well defined (i.e., no zero division), and yk is
a linear combination of x1, . . . ,xk, where xk has the coefficient 1. Since the x’s are linearly
independent, we have yk 6= 0. Hence y1, . . . ,yn are all non-zero.

Next we claim that the y’s are orthogonal, and again proceed by induction. A single
vector is trivially orthogonal. Assume that, for k ≥ 2, y1, . . . ,yk−1 are an orthogonal set.
Then

yk = xk −
k−1∑
i=1

< yi,xk >

< yi,yi >
yi.

Choose some j < k, and form the inner product < yj ,yk >.

Then < yj ,yk >=< yj ,xk > −
∑k−1
i=1

<yi,xk>
<yi,yi>

< yj ,yi >.

Since y1, . . . ,yk−1 are an orthogonal set by the inductive hypothesis,
< yj ,yi >= 0 if i 6= j. Therefore

< yj ,yk > =< yj ,xk > −
< yj ,xk >

< yj ,yj >
< yj ,yj >

= 0

Now the c’s can be deduced from the definition of the y’s.

This process is known as Gram-Schmidt orthogonalization.

Theorem 5.4.5. The set of vectors spanned by the x’s in Theorem 5.4.4 is the same as
the set of vectors spanned by the y’s.

Proof. Any vector that is a linear combination of the y’s is a linear combination of the x’s
by substitution. Hence the set spanned by the y’s is contained in or equal to the set spanned
by the x’s.

To prove the opposite inclusion, we proceed by induction on n. If n = 1 the statement is
trivial. Suppose it is true for n−1. Let z =

∑n
i=1 dixi for some set of coefficients d1, . . . , dn.

Then

z = dnxn +

n−1∑
i=1

dixi

= dn(yn − cn1x1 − . . .− cn,n−1xn−1) +

n−1∑
i=1

dixi

= dnyn +

n−1∑
i=1

(di − dncni)xi.
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By the inductive hypothesis, there are coefficients e1, . . . , en−1 such that

n−1∑
i=1

(di − dncni)xi =

n−1∑
i=1

eiyi.

Hence

z = dnyn +

n−1∑
i=1

eiyi,

so z is in the space spanned by y1, . . . ,yn. This completes the proof.

A set of orthogonal non-zero vectors x1, . . . ,xn can be turned into a set of orthonormal
non-zero vectors as follows: let

zi =
xi
| xi |

, for all i = 1, . . . , n. (5.17)

Theorem 5.4.6. Let x1, . . . ,xp be an orthonormal set in a linear space M of dimension
n. There are additional vectors xp+1, . . . ,xn such that x1, . . . ,xn are an orthonormal basis
for M.

Proof. An orthonormal set of vectors is linearly independent, since if not, there is a non-
trivial linear combination for them that is zero, i.e., there are constants c1, . . . , cp, not all
zero, such that

p∑
i=1

cixi = 0.

But then

0 =<

p∑
i=1

cixi,xj >=

p∑
i=1

ci < xi,xj >= cj

for j = 1, . . . , p, which is a contradiction.
By Theorem 5.4.2 such a linearly independent set can be extended to be a basis. By

Theorem 5.4.4 such a basis can be orthogonalized. By Theorem 5.4.5 it is a basis. And it
can be made into an orthonormal basis using (5.17), without changing its functioning as a
basis.

Theorem 5.4.7. Suppose u1, . . . ,un are an orthonormal basis. Then any vector v can be
expressed as

v =

n∑
i=1

< ui,v > ui.

Proof. Because u1, . . . ,un span the space, there are numbers α1, . . . , αn such that v =∑n
j=1 αjuj . If I show αi =< ui,v >, I will be done.
Now

n∑
i=1

< ui,v > ui =

n∑
i=1

< ui,

n∑
j=1

αjuj > ui

=

n∑
i=1

n∑
j=1

αj < ui,uj > ui.

We use the notation δij (Kronecker’s delta) which is 1 if i = j and 0 otherwise and note
that

< ui,uj >= δij .
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Then we have
n∑
i=1

< ui,v > ui =

n∑
i=1

n∑
j=1

αjδijui =

n∑
i=1

αiui.

Therefore
∑n
i=1(< ui,v > −αi)ui = 0.

Since the u’s are independent, αi =< ui,v >, which concludes the proof.

The linear space of vectors of the form x = (x1, x2, . . . , xn) where xi are unrestricted
real numbers has dimension n. To see this, consider the basis consisting of the unit vectors
ei, with a 1 in the ith position and zero otherwise. The vectors ei are linearly independent
(indeed they are orthonormal), and span the space, since every vector x = (x1, . . . , xn)
satisfies

x =

n∑
i=1

xiei.

Since there are n vectors ei, the dimension of the space is n.
There are many orthonormal sets of n vectors in this space. Indeed Theorem 5.4.6 applies

to say that one can start with an arbitrary vector of length 1, and find n − 1 additional
vectors such that together they form an orthonormal set of n vectors. These observations
show that there are many examples of the following definition:

A real n× n matrix is called orthogonal if and only if its columns (and therefore rows)
form an orthonormal set of vectors. It might seem reasonable to call such a matrix “or-
thonormal” instead of “orthogonal,” but such is not the traditional usage.

Suppose A is an orthogonal matrix. The (i, j)th element of AA′ is

n∑
k=1

aikajk =< ai,aj >= δij , where ai = (ai1, . . . , ain).

Therefore we have

AA′ = I.

Additionally A′A = I, shown by taking the transpose of both sides. Therefore an orthogonal
matrix always has an inverse, and orthogonality can also be characterized by the relation

A−1 = A′.

Having defined an orthogonal matrix, we can now state a simple Corollary to Theorem 5.4.6:
A unit vector x is a vector such that < x,x >= 1.

Corollary 5.4.8. Let x1 be a unit vector. Then there exists an orthogonal matrix A with
x1 as first column (row).

Also it is obvious that if A is orthogonal, so is A−1, because AA′ = I implies (A′)′A′ = I.
Similarly if A and B are orthogonal, so is AB, because

(AB)′AB = B′A′AB = B′IB = B′B = I.

Our next target is to characterize orthogonal matrices among all square matrices. To do
so, we need a simple lemma first:

Lemma 5.4.9. Suppose B is a symmetric matrix. Then y′By = 0 for all y if and only if
B = 0.
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Proof. First let y = ei. Then

0 = e′iBei = bii for all i. (5.18)

Now let y = ei + ej . Then

0 = (ei + ej)
′B(ei + ej) = bii + bjj + bij + bji

= bij + bji = 2bij by symmetry for all i and j 6= i.

Then bij = 0 for i 6= j. Putting this together with (5.18), bij = 0 for all i and j, i.e., B = 0.
However, if B = 0, obviously y′By = 0 for all y.

Theorem 5.4.10. The following are equivalent:

(i) A is orthogonal.

(ii) A preserves length, i.e., | Ax |=| x | for all x.

(iii) A preserves distance, i.e., | Ax−Ay |=| x− y | for all x and y.

(iv) A preserves inner products, i.e., < Ax, Ay >=< x,y > for all x and y.

Proof. (i)↔ (ii)
For all x,

| Ax |=| x | if and only if

| Ax |2=| x |2 if and only if

x′A′Ax = x′x if and only if

x′(A′A− I)x = 0.

Using the lemma and the symmetry of A′A, this is equivalent to

A′A = I,

i.e., A is orthogonal.

(ii)→ (iii) : | Ax−Ay |=| A(x− y) |=| x− y | for all x and y.
(iii)→ (ii) : Take y = 0.
(i)→ (iv) : < Ax, Ay >= (Ay)′Ax = y′A′Ax = y′x =< x,y >

for all x and y.
(iv)→ (ii) : Take y = x. Then < Ax, Ax >=< x,x >,

i.e., | Ax |=| x | for all x.

We now do something more ambitious, and characterize orthogonal matrices among all
transformations: Mirsky (1990), Theorem 8.1.11, p. 228.

Theorem 5.4.11. Let f be a transformation of the space of n-dimensional vectors to the
same space.

If f(0) = 0 and for all x and y,

| f(x)− f(y) |=| x− y |

then f(x) = Ax where A is an orthogonal matrix.

Remark: Such a function f preserves origin and distance.
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Proof.
| f(x) |=| f(x)− f(0) |=| x− 0 |=| x | for all x.

Thus < f(x), f(x) >=< x,x >.
Also for all x and y by hypothesis,

< f(x)− f(y), f(x)− f(y) >=< x− y,x− y > .

Therefore
< f(x), f(y) >=< x,y >, for all x and y.

This is the fundamental relationship to be exploited. Now let x = ei and y = ej . Then

< f(ei), f(ej) >=< ei, ej >= δij ,

which shows that the vectors f(ei) form an orthonormal set. Since there are n of them,
they form a basis. Let A be the orthogonal matrix with f(ei) in the ith row, so that

f(ei) = Aei i = 1, . . . , n.

Using Theorem 5.4.7 with v = f(x). we have

f(x) =

n∑
i=1

< f(ei), f(x) > f(ei)

=

n∑
i=1

< ei,x > Aei

= A

n∑
i=1

< ei,x > ei = Ax.

Corollary 5.4.12. Let f be a transformation of the space of n-dimensional vectors to itself.
If

| f(x)− f(y) |=| x− y |,
then

f(x) = Ax + c

where A is orthogonal and c is a fixed vector.

Proof. Let g(x) = f(x)−f(0). Then g(0) = 0 and | g(x)−g(y) |=| x−y |, so Theorem 5.4.11
applies to g. Then g(x) = Ax where A is orthogonal. Hence

f(x) = Ax + f(0).

This result allows us to understand distance-preserving transformations in n-dimensional
space. The simplest such transformation adds a constant to each vector. Geometrically this
is called a translation. It simply moves the origin, shifting each vector by the same amount.
The orthogonal transformations are more interesting. They amount to a rotation of the
axes, changing the co-ordinate system but preserving distances (and hence volumes). They
include transformations like (

1 0
0 −1

)
which leaves the first co-ordinate unchanged, but reverses the sense of the second (this
is sometimes called a reflection). Thus a distance (and volume) preserving transformation
consists only of a translation, a reflection and a rotation.
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5.4.3 Summary

Orthogonal matrices satisfy A′ = A−1. Transformations preserve distances if and only if
they are of the form f(x) = Ax+ b, where A is orthogonal.

5.4.4 Exercises

1. Vocabulary. Explain in your own words:

(a) linear space

(b) span

(c) linear independence

(d) basis

(e) finite dimensional linear space

(f) inner product, length, distance

(g) orthogonal vectors

(h) orthonormal vectors

(i) orthogonal matrix

(j) Graham-Schmidt orthogonalization

(k) Kronecker’s delta

(l) A preserves length

(m) A preserves separation

(n) A preserves inner products

2. Prove the following about inner products:

(a) < x,y >=< y,x >

(b) < ax,y >= a < x,y > for any number a

(c) < x,y + z >=< x,y > + < x, z >

5.5 Permutations

An assignment of n letters to n envelopes can be thought of as assigning to each envelope
i a letter numbered β(i), such that β(i) 6= β(j) if i 6= j (i.e., different envelopes (i 6= j)
get different letters (β(i) 6= β(j))). Such a βββ is called a permutation of {1, 2, . . . , n}, and is
written βββεA{1, 2, . . . , n}. Two (and hence more) permutations β1, β2 can be performed in
succession. The permutation β2β1 of β1 followed by β2 takes the value

β2β1(i) = β2(β1(i)).

Permutations have the following properties:

(i) if βββ1εA and βββ2εA, then βββ2βββ1εA
(ii) there is an identity permutation, 1, satisfying

βββ1 = 1βββ = βββ

(iii) if βββεA, there is a β−1εA such that ββββββ−1 = βββ−1βββ = 1.

Any set A together with an operation (here the composition of permutations) satisfying
these properties is called a group.

We now use the group structure on permutations to prove a result that is useful in the
development to follow:

Result 1: Let βββ1 be fixed, and βββ2 vary over all permutations of {1, 2, . . . , n}. Then βββ2βββ1

and βββ1βββ2 vary over all permutations of {1, 2, . . . , n}.
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Proof. Let γγγ be an arbitrary permutation. Then βββ2 = γγγβββ−1
1 has the property that βββ2βββ1 =

γγγβββ−1
1 βββ1 = γγγ. Also βββ2 = βββ−1

1 γγγ has the property that βββ1βββ2 = βββ1βββ
−1
1 γγγ = γγγ.

Result 2: Each permutation can be obtained from any other permutation by a series
of exchanges of adjacent elements.

The proof of this is obvious by induction on n. Find n among the β(i)’s. Move it to
last place by a sequence of adjacent exchanges. Now the induction hypothesis applies to the
n− 1 remaining elements.

For any real number x, let sgn (x) (pronounced “signature”) be defined as

sgn (x) =


1 if x > 0

0 if x = 0

−1 if x < 0

. (5.19)

It follows that sgn (xy) = sgn (x) sgn (y). This function definition is now extended to
permutations as follows:

sgn (βββ) = sgn

 ∏
1≤i<j≤n

(β(j)− β(i))

 . (5.20)

For example, if n = 2, there are two possible permutations: βββ1 = (1, 2), which leaves
both elements in place, and βββ2 = (2, 1), which switches them. Thus β1(1) = 1, β2(1) =
2, β1(2) = 2, and β2(2) = 1. Applying (5.20),

sgn(βββ1) = sgn(β1(2)− β1(1)) = sgn(2− 1) = sgn(1) = 1

and
sgn(βββ2) = sgn(β2(2)− β2(1)) = sgn(1− 2) = sgn(−1) = −1.

Because we are discussing the permutation of distinct integers, β(j) 6= β(i), so sgn(βββ) 6=
0, for all βββ. This extension has the following properties:

(i) Let 1 ≤ r < s ≤ n. Then

sgn (1, . . . , r − 1, s, r + 1, . . . , s− 1, r, s+ 1, . . . , n) = −1.

Proof. Let ααα be the permutation resulting from switching elements r and s, leaving all
the others alone. Among the n(n−1)/2 factors in the definition of sgn (ααα), the only ones
that are negative are those involving r or s, and numbers between r and s, specifically

(r + 1)− s, (r + 2)− s, . . . , (s− 1)− s
r − (r + 1), r − (r + 2), . . . , r − (s− 1),

and r − s.

There are exactly 2(s − r + 1) + 1 of these. Therefore sgn (ααα)
= (−1)2(s−r+1)+1 = −1.

The same argument shows that if βββ is an arbitrary permutation, and ααα is related to βββ
by switching the rth and sth elements of βββ, then

sgn (βββ) = − sgn (ααα).

(ii) Therefore, of the many ways of moving from one permutation to another by a sequence
of transpositions, all of these sequences have either an even number or an odd number
of transpositions.
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(iii) Let ααα be a permutation of the integers (1, 2, . . . , n− 1). Let βββ = (ααα, n) be the permu-
tation defined by

β(i) = α(i) i = 1, . . . , n− 1

β(n) = n.

Then sgn (βββ) = sgn (ααα).

Proof. Consider a sequence of exchanges of pairs of elements that changes ααα to the
identity permutation on {1, 2, . . . , n−1}. Each such sequence has either an odd number of
exchanges (if sgn (ααα) = −1) or an even number (if sgn (ααα) = 1). Each such sequence also
changes βββ to the identity permutation on {1, 2, . . . , n}. Therefore sgn (βββ) = sgn (ααα).

(iv) sgn (β2β1) = sgn (β2)sgn (β1).

Now consider sgn (βββ2βββ1). Consider the number of exchanges of adjacent elements re-
quired to change (1, 2, . . . , n) to β1(1), β1(2), . . . , β1(n). That number is odd if and only if
sgn (βββ1) = −1 and even if and only if sgn (βββ1) = 1. Next consider the number of ex-

changes needed to transform (β1(1), . . . , β1(n)) to (β2β1(1), β2β1(2), . . . , β2β1(n)). Again,
that number is either odd or even according to the sgn (βββ2). But the composition of these
two sequences changed (1, 2, . . . , n) to (β2β1(1), . . . , β2β1(n)).

Hence we have the result

sgn (βββ2βββ1) = sgn (βββ2) sgn (βββ1),

which is property (iv). 2

Every permutation β has an inverse permutation β−1 such that

βββ−1βββ = 1,

where 1 is the identity permutation.

Since sgn (1) = 1, we must have

1 = sgn (βββ−1βββ) = (sgn βββ−1)(sgn βββ).

Hence

sgn (βββ−1) = sgn (βββ). (5.21)

This shows that the subset of permutations βββ with sgn(βββ) = 1 also satisfies the conditions
for a group, and is called a subgroup. There is a large (and beautiful) literature on group
theory.

5.5.1 Summary

A permutation of the first n integers is a rearrangement of them. The function sgn is defined
on numbers, and then on permutations. It satisfies

sgn (βββ2βββ1) = sgn (βββ2) sgn (βββ1)

for all n and all permutations βββ1 and βββ2.
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5.5.2 Exercises

1. Vocabulary. State in your own words the meaning of:

(a) permutation

(b) signature of a number

(c) signature of a permutation

2. For n = 3,

(a) What are the six possible permutations?

(b) For each of them, apply (5.20) to find its signature.

3. Let n = 3, and let β1(1, 2, 3) = (1, 3, 2) and β2(1, 2, 3) = (2, 1, 3).

(a) Compute βββ1βββ2.

(b) Compute βββ2βββ1.

(c) Show that βββ1βββ2 6= βββ2βββ1.

4. Using the same setup as problem 3

(a) compute sgn (βββ1βββ2) directly

(b) compute sgn (βββ2βββ1) directly

(c) show sgn (βββ1βββ2) = sgn (βββ2βββ1)

5. Determine whether the following sets and operations form a group:

(a) the positive integers under addition

(b) all integers (positive, negative and zero) under addition

(c) all integers under multiplication

(d) all rational numbers (positive, negative and zero) under addition

(e) the same under multiplication

(f) all real numbers under multiplication

6. Prove or disprove: The set of permutations βββ of {1, 2, . . . , n} such that sgn(βββ) = −1
form a subgroup.

5.6 Number systems; DeMoivre’s Formula

“A rose, by any other name, would smell as sweet.”

W. Shakespeare, Romeo and Juliet

This is a good point at which to explore systems of numbers. First, I review different
kinds of numbers and their traditional names. Then I discuss those names from the viewpoint
of modern mathematics, and then move on to the specific theorem we need.

The natural numbers are the numbers 1, 2, 3, . . .. The integers include the natural num-
bers, and also 0,−1,−2, . . .. Rational numbers are zero and ratios of non-zero integers. The
real numbers include the rational numbers and limits of them. The real numbers that are
not rational numbers are called irrational numbers. The imaginary numbers are i =

√
−1

(meaning i2 = −1) and real multiples of i. Finally, the complex numbers are of the form
x+ yi where x and y are real numbers.

These are scary names. They reflect, historically, the reluctance of mathematicians to
expand their horizons to admit the possibility of more general views of what numbers are
legitimate. Each of these sets of numbers has its own set of rules, but there’s nothing “irra-
tional” about irrational numbers. Complex numbers are no less “real” than real numbers,
nor are they more complex. Every number is “imaginary” in a certain sense. Each set of
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numbers has its uses. So far in this book we have used only real numbers. But now we’ll
need to use a result from complex numbers.

The reason for studying complex numbers is to find solutions to polynomial equations.
For example, the equation

x2 + 1 = 0

cannot be solved if x is restricted to the real numbers. However, it can be solved using
complex numbers, and indeed x = ± i, where i =

√
−1, are those solutions. We begin with

some results on Taylor series for real numbers.

5.6.1 A supplement with more facts about Taylor series

Recall the general form of Taylor series around x0 = 0:

f(x) =

∞∑
k=0

f (k)(0) · xk

k!
.

The particular case of this we have used most heavily is the series for the exponential
function f(x) = ex. Since f (1) = ex, it follows (use induction for a formal proof), that
f (k)(x) = ex for all k. Combined with the observation that e0 = 1, we have f (k)(0) = 1 for
all k. Then the Taylor series for ex is

∑∞
k=0 x

k/k!. Since this series converges absolutely for
all x, we may write

ex =

∞∑
k=0

xk/k!.

The goal here is to apply the same kind of reasoning to sinx and cosx. First, we explore
the derivatives of sinx at 0. We have

f(x) = sinx f(0) = 0

f (1)(x) = cosx f (1)(0) = 1

f (2)(x) = − sinx f (2)(0) = 0

f (3)(x) = − cosx f (3)(0) = −1

f (4)(x) = sinx f (4)(0) = 0

After the 4th derivative, we are back where we started, so it is clear that the sequence
(0, 1, 0,−1) will be repeated indefinitely. Also all even powers of x will have coefficient 0 in
the Taylor series for sinx. Thus the series for sinx is

x− x3

3!
+
x5

5!
− x7

7!
+ . . . =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

This series also converges absolutely, so we may write

sinx =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

Now let’s examine cosx. Again, we explore its derivatives at x = 0:

f(x) = cosx f(0) = 1

f (1)(x) = − sinx f (1)(0) = 0

f (2)(x) = − cosx f (2)(0) = −1

f (3)(x) = sinx f (3)(0) = 0

f (4)(x) = cosx f (4)(0) = 1
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Again after four derivatives we’re back where we started, but now the pattern is (1, 0,−1, 0)
repeated indefinitely. Also all the odd powers of x will have coefficient 0 in the Taylor series
for cosx. Thus the series for cosx is

1− x2

2!
+
x4

4!
− x6

6!
+ . . . =

∞∑
k=0

(−1)kx2k

(2k)!
.

Again the series converges absolutely, so we may write

cosx =

∞∑
k=0

(−1)kx2k

(2k)!
.

5.6.2 DeMoivre’s Formula

In order to progress, we must define what is meant by the exponential function ez where z
is a complex number. The standard way to do this is by use of the Taylor series, thus:

ez =

∞∑
k=0

zk

k!
(5.22)

where z is now in general a complex number. Of course in the special case that z is a real
number, the definition coincides with the usual exponential function of a real variable. This
series converges absolutely for all complex numbers z for the same reason that it does for
all real z: it is dominated by the geometric series (see Courant (1937) Vol. 1, p. 413, and
Vol. 2, p. 529).

It is now important to show that the definition given for complex exponentials works
the same way as it does for real numbers, namely that

ez1+z2 = ez1ez2 (5.23)

where z1 and z2 are arbitrary complex numbers.

Proof. The proof is nothing more than the Binomial Theorem and a change of variable:

ez1+z2 =

∞∑
j=0

(z1 + z2)j

j!
=
∞∑
j=0

j∑
k=0

(
j

k, j − k

)
· 1

j!
zk1z

j−k
2

=
∑

0≤k≤j≤∞

zk1
k!

zj−k2

(j − k)!
.

Now let ` = j − k. Then the range of summation is 0 ≤ j ≤ ∞, 0 ≤ ` ≤ ∞, and

ez1+z2 =

∞∑
j=0

zj1
j!

∞∑
`=0

z`2
`!

= ez1ez2 .

Now consider z of the form z = it, where t is a real number, and, of course, i =
√
−1.

Substituting z = it into (5.22) yields

eit =

∞∑
k=0

(it)k

k!
=

∞∑
k=0

iktk

k!
. (5.24)
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Everything here is familiar, except for powers of i. So let’s examine those.
We have i0 = 1, i1 = i, i2 = −1, i3 = −i, i4 = 1 and then it starts over again. So once

more the powers of i have a repeating pattern of length four, with the pattern (1, i,−1,−i).
Comparing the pattern to those of sin and cos found in section 5.6.2, we see that

(1, i,−1,−i) = (1, 0,−1, 0) + i(0, 1, 0,−1),

so the pattern for powers of i equals the pattern for cosx plus i times the pattern for sinx.
Writing out the full expression for eit yields

eit =

∞∑
k=0

iktk

k!
=

∞∑
j=0

(−1)jt2k

(2j)!
+ i

∞∑
j=0

(−1)jt2j+1

(2j + 1)!

= cos t+ i sin t. (5.25)

This standard formula in complex variables is known as Euler’s Formula.
Formulas (5.23) and (5.25) can be combined to prove some important trigonometric

identities as follows:
First suppose z1 = it1 and z2 = it2. Then

ez1+z2 = cos(t1 + t2) + i sin(t1 + t2), (5.26)

using Euler’s Formula (5.25).
Using (5.23), we have

ez1+z2 = ez1ez2 =(cos t1 + i sin t1)(cos t2 + i sin t2)

=(cos t1 cos t2 − sin t1 sin t2)

+ i(cos t1 sin t2 + sin t1 cos t2). (5.27)

Equating (5.26) and (5.27), and separately displaying the real and purely imaginary parts
of the result yields

cos(t1 + t2) = cos t1 cos t2 − sin t1 sin t2 (5.28)

and
sin(t1 + t2) = cos t1 sin t2 + sin t1 cos t2. (5.29)

Formulae (5.28) and (5.29) are standard trigonometric identities for the sine and cosine of
the sums of angles.

The formula

(cos t1 + i sin t1)(cos t2 + i sin t2) = cos(t1 + t2) + i sin(t1 + t2) (5.30)

is known as DeMoivre’s Formula. Taking t = t1 = t2 and multiplying n times yields

(cos t+ i sin t)n = cosnt+ i sinnt. (5.31)

5.6.3 Complex numbers in polar co-ordinates

All complex numbers can be written in the form c = x+yi where i =
√
−1. Transforming to

polar co-ordinates, suppose x = r cos θ and y = r sin θ. Then r =
√
x2 + y2 is the distance

of the point (x, y) from the origin. The complex number c can now be written as

c = r(cos θ + i sin θ). (5.32)

The angle θ is called the amplitude of c, and r is called the absolute value or modulus of
c. When c is a real number, so when y = 0, | c | is the absolute value of the real number c.
Also if c and c′ are two complex numbers, | c− c′ | is the distance from c to c′ in the plane.
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Figure 5.3: The geometry of polar co-ordinates for complex numbers.

Commands:

s=(-100:100)/100 * pi

x=cos(s)

y=sin(s)

w=1/sqrt(2)

plot(x,y,axes=F,type="l",xlab=" ",ylab=" ")

segments(0,0,w,w)

segments(0,0,w,0)

segments(w,w,w,0)

text(w/2+0.1,w/2,"r",adj=0.5)

text(0.2,-0.1,expression(rcos(theta)),adj=0)

text(w+0.03,w/2,expression(rsin(theta)),adj=0,xpd=T)

text(.15,.05,expression(theta))

Figure 5.3 illustrates the geometry of the transformation of a complex number to polar
co-ordinates. The point x + iy is represented as r cos θ + ir sin θ, where the real axis is
horizontal and the imaginary axis is vertical.

Now suppose that a second complex number is written

c′ = r′(cos θ′ + i sin θ′). (5.33)

Multiplying c and c′ together yields

cc′ = r(cos θ + i sin θ)r′(cos θ′ + i sin θ′)

= rr′(cos(θ + θ′) + i sin(θ + θ′) (5.34)

using DeMoivre’s Formula (5.30). Thus the result of multiplying two complex numbers is
that their absolute values multiply and their amplitudes add.
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5.6.4 The fundamental theorem of algebra

Now we are in a position to tackle this famous result. The issue is solutions to polynomial
equations. As shown in section 5.6 the equation

x2 + 1 = 0

has roots x = ±i, so the equation can be factored as 0 = x2 + 1 = (x− i)(x+ i). The result
that we are after, called the Fundamental Theorem of Algebra, is that every polynomial of
the type

f(x) = xm + αm−1x
m−1 + . . .+ α0 = 0 (5.35)

where the α’s are real or complex, can be factored as

xm + αm−1x
m−1 + . . .+ α0 =

m∏
i=1

(x− λi) (5.36)

where the λi’s are, in general, complex.
The key step in proving the Fundamental Theorem of Algebra is a lemma known as

Gauss’s Theorem, because he proved it first in his doctoral thesis in 1799. It says:
Gauss’s Theorem: Consider a polynomial of the form (5.35), where m is a positive

integer and the α’s are real or complex numbers. Then there is a complex number β such
that f(β) = 0.

Proof. Suppose to the contrary that the polynomial f(x) in (5.35) has no complex root, so
that f(x) 6= 0 for all complex numbers x. Then in particular f(0) = α0 6= 0. We now study
the number of times f(x) makes circuits around 0 for various values of r as θ goes from 0
to 2π, which we’ll call g(r). When r = 0, g(r) = 0 because f(x) = f(0) = α0 for all θ. We
next show that for large r, g(r) = m. But g is constant in r because otherwise f(x) would
have a complex root, so this is a contradiction.

I interrupt the proof to give a visual image of what’s going on: It should come as no
surprise that for large r, f(x) behaves very similarly to xm, and hence that f(x) winds
around the origin m times. I imagine the path taken by f(x) as if it were a string in the
complex plane, that loops back on itself. Think of a spike at the origin, preventing f(x)
from passing through the origin. Also I think of diminishing r as pulling the string tighter
and tighter. Prevented from passing through the origin by the spike, as r → 0 the string
would be wound m times around the spike, so f(0) would be 0, a contradiction.

Figure 5.4 illustrates this mental picture. The spike at zero is the large dot. The curve
represents some function that winds around zero twice. As r shrinks, but the curve is not
allowed to pass through the origin, the string is wound more and more tightly around zero.

I now resume the formal proof.
The first part of this demonstration is to show that for large r, f(x) behaves like xm.

(This should come as no surprise, since the lower order terms in the polynomial matter less

and less for large r.) In particular, let r be larger than r0 = max{
∑m−1
i=0 | αi |, 1}. Then

| f(x)− xm | =| αm−1x
m−1 + . . .+ α0 |

≤| αm−1 || x |m−1 + . . .+ | α0 |

= rm−1[| αm−1 | +
| αm−2 |

r
+ . . .+

| α0 |
rm−1

]

≤ rm−1[| αm−1 | + | αm−2 | + . . .+ | α0 |]
≤ rm =| x |m=| x− 0 |m .

Hence for all complex numbers x whose absolute value is larger than r0, f(x) is closer to
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Figure 5.4: Illustration of a curve f(x) winding twice around the origin.

Commands:

s=(-100:100)/100 * pi

x=(1+(s**2))*cos(2*s)

y=(1+(s**2))*sin(2*s)

plot(x,y,type="l")

points(0,0,cex=3,pch=16)

xm than is the origin. Hence f(x) can be continuously stretched or shrunk to xm without
passing through the origin. Hence for | x |> r0, g(r) is the same as the number of times xm

makes circuits around the origin. But DeMoivre’s Formula shows that xm makes m circuits
around the origin.

Hence g(r) = m if r > r0, and g(0) = 0, but g(r) is constant. This contradiction
completes the proof of Gauss’s Theorem.

We proceed to prove the Fundamental Theorem, that is, equation (5.36), by induction
on m. When m = 1 the result is obvious. Suppose it is true for m− 1.

We use the following identity:

xk − βk = (x− β)(xk−1 + βxk−2 + . . .+ βk−2x+ βk−1). (5.37)

Using Gauss’s Theorem, we know there is some number β such that f(β) = 0. Then

f(x) = f(x)− f(β) = (xn − βn) + an−1(xn−1 − βn−1) + . . .+ a1(x− β).

Each of these summands has a factor (x− β), using (5.37). Hence

f(x) = (x− β)g(x)
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where g(x) is a polynomial of degree m− 1 , with leading coefficient 1, so g can be written

g(x) = xm−1 + γm−2x
m−2 + . . .+ γ0

for some numbers γ. Now the inductive hypothesis applies to g, so there are complex num-
bers λ1, . . . , λm−1 such that

g(x) =

m−1∏
i=1

(x− λi).

Therefore

f(x) =

m∏
i=1

(x− λi)

where λm = β. 2

Complex numbers and real numbers operate the same way with respect to addition,
subtraction, multiplication and division. (Technically both the complex and real numbers
form what is called a field.) The differences between real and complex numbers occur mainly
when it comes to continuity and other limiting procedures.

The next section, on determinants, uses only addition, subtraction, multiplication and
division. As a result, the Theorems derived apply to both the real and complex fields. The
neutral word “number” in the work to come, means simultaneously a real and a complex
number, as we’re proving theorems for both simultaneously.

5.6.5 Summary

Complex numbers work just like real numbers with respect to addition, division, multipli-
cation and subtraction, remembering that i2 = −1.

The Fundamental Theorem of Algebra says that every polynomial of degree m can be
factored into m linear factors with m roots, possibly complex and not necessarily distinct.

5.6.6 Exercises

1. Let x = a+ bi and y = c+ di, where a, b, c, and d are real numbers. Prove that xy = 0
if and only if at least one of x and y is zero.

2. Again suppose x and y are complex numbers. Show that x+ y = y + x and xy = yx.

5.6.7 Notes

This proof is based on that in Courant and Robbins (1958, pp. 269-271 and p. 102). Other
proofs can be found in Hardy (1955, pp. 492-497).

For more on the names and history of number systems, see Asimov (1977, pp. 97-108).

5.7 Determinants

The determinant of a square n× n matrix A may be defined as follows:

det(A) =| A |=
∑
βββεA

(sgn βββ)a1,β(1)a2,β(2) . . . an,β(n) (5.38)

where the sum extends over all n! permutations βββεA of the integers {1, 2, . . . , n}.
Some special cases will help to explain the notation. When n = 1, the matrix A consists

of a single number, i.e.,
A = [a],
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and there is only the identity permutation to consider. Hence

| A |= a.

Now suppose n = 2. Then

A =

[
a11 a12

a21 a22

]
, and

| A | = sgn (1, 2)a11a22 + sgn (2, 1)a12a21

= a11a22 − a12a21.

Finally, if n = 3, then

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 , and

| A | = sgn (1, 2, 3)a11a22a33 + sgn (1, 3, 2)a11a23a32

+ sgn (2, 1, 3)a12a21a33 + sgn (2, 3, 1)a12a23a31

+ sgn (3, 1, 2)a13a21a32 + sgn (3, 2, 1)a13a22a31

= a11a22a33 − a11a23a32 − a12a21a33

+ a12a23a31 + a13a21a32 − a13a22a31.

While the definition of the determinant may seem grossly complicated the first time a
person sees it, determinants turn out to have many useful properties.

It simplifies the notation in the work to follow to write βββ = (β1, β2, . . . , βn) where before
we were writing βββ = (β(1), β(2), . . . , β(n)).

As defined, the determinant appears to treat the rows and columns of a matrix differently.
The next result shows that this is not the case.

Theorem 5.7.1. The following both hold:

(i) If βββ = (β1 . . . , βn) is a fixed permutation of (1, 2, . . . , n) then

| A |= sgn (βββ)
∑
µµµ

sgn (µµµ)aβ1,µ1
aβ2,µ2

. . . aβn,µn ,

where the sum is over all permutations µµµ of {1, 2, . . . , n}.
(ii) If µµµ = (µ1, . . . , µn) is a fixed permutation of (1, 2, . . . , n), then

| A |= sgn (µµµ)
∑
βββ

sgn (βββ)aβ1,µ1
aβ2,µ2

, . . . aβn,µn ,

where the sum is over all permutations βββ of {1, 2, . . . , n}.

Proof. (i) | A |=
∑
νννεA( sgn ννν)a1,ν1 , . . . , an,νn .

Let µµµ = νννβββ. Then

aβ1,µ1
aβ2,µ2

, . . . , aβn,µn = aβ1,νβ1
aβ2,νβ2

, . . . , aβn,νβn .

For each i, i = 1, . . . , n, there is an integer j, 1 ≤ j ≤ n such that β(i) = j. Then
aβi,ν(βi) = aj,νj , so

aβi,vβi ε{a1,ν1 , a2,ν2 , . . . an,νn}.
Also for each j, j = 1, . . . , n, there is an integer i, 1 ≤ i ≤ n such that β(i) = j. Then
aj,νj = aβi,νβi , so the sets

{a1,ν1 , a2,ν2 , . . . , an,νn} and {aβ1,νβ1
, . . . , aβn,νβn}
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comprise the same n numbers, rearranged. And so

a1,ν1a2,ν2 , . . . , an,νn = aβ1,νβ1
, . . . , aβn,νβn . (5.39)

Also sgn (βββ) sgn (µµµ) = sgn (βββ) sgn (ννν) sgn (βββ) = sgn (ννν). Finally, using result 1 of sec-
tion 5.5,

| A |= (sgn βββ)
∑
µµµ

(sgn µµµ)aβ1µ1
, . . . , aβn,µn ,

proving (i).
The proof of (ii) is similar. Let ννν = µµµβββ−1, so µµµ = νννβββ. The above argument applies, again

proving (5.36). In addition, sgn (βββ) sgn (µµµ) = sgn (ννν), so

| A |= (sgn µµµ)
∑
βββ

(sgn βββ)aβ1,ν1 , . . . , aβn,νn ,

using result 1 of section 5.5 again. This proves (ii).

Theorem 5.7.1 shows that | A | can be written in a fully symmetric form as follows:

| A |= 1

n!

∑
ααα

∑
βββ

(sgn α)(sgn β)aα1β1aα2β2 , . . . , aαnβn . (5.40)

This is the sum of (n!)2 terms, n! groups of n! identical terms. While not very useful for
computation, this expression has one obvious and convenient consequence:

| A |=| A′ | (5.41)

where A′ is the transpose of A.

Theorem 5.7.2. If two rows (or columns) of a matrix A are interchanged, the determinant
of the resulting matrix, A∗, is given by

| A∗ |= (−1) | A | .

Proof. Let 1 ≤ r < s ≤ n, and suppose the rth and sth rows of A are interchanged. Then
A∗ = [a∗ij ], where

a∗ij =


aij if i 6= r, s

asj if i = r

arj if i = s

.

Then

| A∗ | =
∑
βββ

sgn (βββ)a∗1β1
. . . a∗nβn

=
∑
βββ

sgn(βββ)a1β1 . . . asβr . . . arβs . . . anβn .

Let φφφ = γγγβββ, where γ is the permutation that switches r and s, and leaves all other
elements unchanged. By property (i) of section 5.5, sgn (γ) = −1.

| A∗ | =
∑
φφφ

(sgn φφφ)

(sgn (γγγ))
a1β1

. . . arβr . . . asβs . . . anβn

= (−1)
∑
φφφ

(sgn φφφ)a1β1
. . . anβn = (−1) | A | .
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Corollary 5.7.3. If a matrix A has two identical rows (columns), its determinant is zero.

Proof. Switching the identical rows does not change the matrix.
Hence

| A |= − | A |,
whence

| A |= 0.

Theorem 5.7.4. If each element of a row (or column) of a matrix is multiplied by a
constant k, the determinant of the matrix is also multiplied by that constant.

Proof. Let [aij ] be the starting matrix, and suppose the rth row is multiplied by k. Then∣∣∣∣∣∣∣∣∣
a11 . . . a1n

kar1 . . . karn
...
an1 ann

∣∣∣∣∣∣∣∣∣ =
∑
βββ

sgn (βββ)a1β1
. . . (karβr ) . . . anβn

= k
∑
βββ

sgn (βββ)a1β1
. . . arβr . . . anβn = k | A | .

Corollary 5.7.5. If a row (or column) of a matrix is the zero vector, the determinant of
the matrix is zero. (Take k = 0 above.)

Theorem 5.7.6. Suppose A and B are two square n× n matrices that are identical except
for the rth row (column). Let C be a matrix that is the same as A and B on all rows
(columns) except the rth and whose rth row (column) is the sum of the rth row (column) of
A and the rth row (column) of B. Then

| C |=| A | + | B | .

Proof. Suppose A = [aij ] and B = [bij ]. Then C = [cij ], where cij = aij for i 6= r, j =
1, . . . , n and crj = arj + brj , j = 1, . . . , n.

Then

| C | =
∑
βββ

(sgn βββ)c1β1
c2β2

. . . cnβn

=
∑
βββ

(sgn βββ)c1β1
c2β2

. . . cr−1,βr−1
(arβr + brβr ) . . . cnβn

=
∑
βββ

(sgn βββ)c1β1
c2β2 . . . cr−1,βr−1

arβn . . . cnβn

+
∑
βββ

(sgn βββ)c1β1c2β2 . . . cr−1βr−1 . . . cr−1,βr−1brβn . . . cnβn

=
∑
βββ

(sgn βββ)a1β1a2β2 . . . arβr . . . anβn

+
∑
βββ

(sgn βββ)b1β1
b2β2

. . . brβnbnβn

=| A | + | B | .
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Theorem 5.7.7. Let A = [aij ] and B = [bjk] be two n× n matrices. Also let C = [cik] be
the matrix product of A and B, i.e., C = AB, where

cik =

n∑
j=1

aijbjk.

Then | C |=| A || B |.

Proof.

| C | =
∑
λλλ

sgn (λλλ)c1λ1
. . . cnλn

=
∑
λλλ

(sgn λλλ)(

n∑
µ1=1

a1µ1
bµ1λ1

)(

n∑
µ2=1

a2µ2
bµ2,λ2

) · (
n∑

µn=1

anµnbµn,λn)

=

n∑
µ1=1

. . .

n∑
µn=1

a1µ1
. . . anµn

∑
λλλ

sgn (λλλ)bµ1λ1
. . . bµnλn

The inner sum is determinant, i.e.,

∣∣∣∣∣∣∣
bµ1,1 . . . bµ1n

...
...

bµn,1 . . . bµn,n

∣∣∣∣∣∣∣
and is zero if any two µ’s are equal, by Corollary 5.7.1. Therefore, out of the nn terms in
the summation over the µ’s, only n! remain, namely those in which the µ’s are all different,
i.e., those that comprise a permutation. Hence

| C | =
∑
µµµ

a1µ1
. . . anµn

∑
λλλ

sgn (λλλ)bµ1λ1
. . . bµnλn

=
∑
µµµ

(sgn µµµ)a1µ1
. . . anµn

∑
λλλ

(sgn µµµ)( sgn λλλ)bµ1λ1
. . . bµnλn

=| A | | B | .

Theorem 5.7.8. Let A be an n × n matrix, and let A∗ be a matrix which has each row
(column) the same as A except that a constant multiple of one row (column) is added to
another. Then

| A∗ |=| A | .



216 TRANSFORMATIONS

Proof. Suppose k times the sth row is added to the rth row. Then

| A∗ |=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1n

...
...

ar1 + kas1 . . . arn + kasn
...

...
as1 . . . asn
...

...
an1 . . . arn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1n

...
...

ar1 . . . arn
...

...
as1 . . . asn
...

...
an1 . . . anr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1n

...
...

kas1 . . . kasn
...

...
as1 . . . asn
...

...
an1 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=| A | +k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1n

...
...

as1 . . . asn
...

...
as1 . . . asn
...

...
an1 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=| A | +k 0 =| A |

Lemma 5.7.9. Suppose A is an n× n matrix having the structure

A =

[
B 0
b′ a

]
where B is (n − 1) × (n − 1),0 and b are 1 × (n − 1) column vectors, and a is a number.
| A |= a | B |.

Proof. In the expression for | A | given in (5.35), of the n! summands, each has exactly one
element from the last column. Each of them, excepting those containing a, have a factor
of zero, and hence are zero. Each of those containing a is a product of a permutation in
B, multiplied by sgn (βββ), where βββ has the form βββ = (ααα, n). Using result (iii) of section 5.5,
sgn (βββ) = sgn (ααα). Therefore

| A |= a | B | .

We now study vectors x satisfying Ax = 0. One such x is always x = 0, called the trivial
solution. The question is whether there are non-trivial solutions x 6= 0.

Theorem 5.7.10. There exists a non-trivial x such that Ax = 0 if and only if | A |= 0.
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Proof. Suppose first that there is such a non-trivial x. I will show that | A |= 0.
If A has a zero row, then | A |= 0 by Corollary 2. Since x is non-trivial, there is some i,

1 ≤ i ≤ n such that xi 6= 0. Let y = x/xi. Then yi = 1 and Ay = 0.
Now let the non-zero elements of y be indexed by a set I, where φ ⊂ I ⊆ {1, 2, . . . , n}.

By Theorem 5.4.7, the rows of A may be multiplied by yj , for jεI, and added to row i,
without changing | A |. This results in a matrix whose ith row is zero, and has the same
determinant as A. Hence by Corollary 5.7 2, | A |= 0.

To complete the proof of the theorem, I now assume that | A |= 0 and prove the existence
of a non-trivial vector x such that Ax = 0. The proof proceeds by induction on n. For n = 1,
the statement is obvious. Suppose then that it is true for n− 1.

If ani = 0 for all i, 1 ≤ i ≤ n, then the vector x = (0, . . . , 0, 1) suffices. Suppose then,
that there is a non-zero element in the nth row of A. Without changing the determinant
of A, the columns can be rearranged so that ann 6= 0 (see Theorem 5.7.2). Now subtract
ani/ann from the ith row of A, to obtain the matrix[

B 0
b′ ann

]
where B is (n−1)×(n−1), and b and 0 are column vectors of length n−1. By Theorem 5.7.8,
this matrix has the same determinant as A. Using the lemma, we then have

0 =| A |= ann | B | .

Since ann 6= 0, we have 0 =| B |, where B is an (n− 1)× (n− 1) matrix. Consequently the
inductive hypothesis applies to B, where

bij = aij −
ainanj
ann

i, j = 1, 2, . . . , n− 1.

Therefore there are numbers x1, . . . , xn−1, not all zero, such that

0 =

n−1∑
j=1

bijxj =

n−1∑
j=1

(
aij −

ainanj
ann

)
xj i = 1, . . . , n− 1. (5.42)

Let xn = −1/ann

(∑n−1
j=1 anjxj

)
, so that

n∑
j=1

anjxj = 0. (5.43)

Substituting (5.43) into (5.42),

0 =

n−1∑
j=1

(aij −
ainanj
ann

)xj =

n−1∑
j=1

aijxj −
ain
ann

n−1∑
j=1

anjxj

=

n−1∑
j=1

aijxj + ainxn =

n∑
j=1

aijxj , (5.44)

for i = 1, . . . , n− 1.
Now (5.44) and (5.43) together yield

n∑
j=1

aijxj = 0 nni = 1, . . . , n, and x 6= 0.
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By the same proof, using the symmetry between rows and columns, we have | A |= 0 if
and only if there is a non-trivial x such that x′A = 0.

There is a nice geometric interpretation of the determinant. However, that discussion
must be postponed until further linear algebra has been developed later in this chapter.

5.7.1 Summary

The determinant is defined in (5.35) as a function from square matrices to numbers, either
real or complex. Among its important properties are:

| AB |=| A | | B |

and | A |= 0 if and only if there exists a non-trivial x such that Ax = 0.

5.7.2 Exercises

1. We know from Theorem 5.4.10 that if an n×n matrix A satisfies | A |= 0, then there is
some vector x,x 6= 0 such that Ax = 0. We also know from Corollary 5.7 2 that if matrix
A has a row of zeros, say the ith row, then | A |= 0. Find x 6= 0 such that Ax = 0.

2. From Corollary 5.7 1 we know that if a matrix A has two identical rows, say rows i and
j, then | A |= 0. As in exercise 1, find x 6= 0 such that Ax = 0.

5.7.3 Real matrices

We return for a moment to real matrices, to notice that there are two kinds of real matrices
for which it is easy to calculate a determinant:

(a) Suppose D is a diagonal matrix, Dλλλ. Then | D |=
∏n
i=1 λi.

(b) Suppose P is an orthogonal matrix. Then 1 =| I |=| P ′ | | P |=| P |2. Therefore
| P |= ±1.

5.7.4 References

There are many fine books on aspects of linear algebra. Two that I have found especially
helpful are Mirsky (1990) and Schott (2005).

5.8 Eigenvalues, eigenvectors and decompositions

We now study numbers λ (just what sort of numbers is part of the story), that satisfy the
following determinental equation:

| λI −A |= 0

and we restrict ourselves to symmetric matrices A.

A polynomial is a function that can be written as

f(x) = amx
m + am−1x

m−1 + . . .+ a1x+ a0.

If am 6= 0, f is said to have degree m.

Lemma 5.8.1. If A is n×n real and symmetric, there are n real numbers λj (not necessarily
distinct) such that

| λI −A |=
n∏
j=1

(λ− λj).
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Proof. Consider | λI − A | as a function of λ. It is a polynomial of degree n, and the
coefficient of λn is 1, since the highest power of λ comes from the diagonal of λI − A, and
is
∏n
i=1(λ− aii). Hence | λI −A | may be written as

| λI −A |= λn + αn−1λ
n−1 + . . .+ α0.

Therefore by the Fundamental Theorem of Algebra, this polynomial has n roots, which may
be complex numbers. It remains to show that, in this case, the roots are real. Let β be one
of them. Then we know that

| βI −A |= 0.

Now applying Theorem 5.7.10 of section 5.7, there is a complex vector x 6= 0 such that

(βI −A)x = 0,

so βx = Ax. Let β = r + is, where r and s are real numbers, and let x = w + iz where w
and z are real vectors.

Then we have
A(w + iz) = (r + is)(w + iz).

Now multiply this equation on the left by the complex vector (w − iz)′, to get

(w − iz)′A(w + iz) = (r + is)(w − iz)′(w + iz).

Because A is symmetric, w′Az = z′Aw. Then

w′Aw + z′Az = (r + is)(w′w + z′z).

Now since x 6= 0, w′w + z′z > 0. Therefore we must have s = 0, so β is real.

The numbers λj are called the eigenvalues of A (also called characteristic values). When
A is symmetric, we showed above that the λj ’s are real numbers. Hence as real numbers,

| λjI −A |= 0,

so Theorem 5.7.10 of section 5.7 applies, and assures us that there is a real vector xj 6= 0
such that

λjxj = Axj .

Without loss of generality, we may take | xj |= 1. Such a vector xj is called the eigenvector
associated with λj (also called a characteristic vector associated with λj). When the λj ’s
are not necessarily distinct, all that Theorem 5.7.10 gives us is a single vector xj associated
with possibly many equal λj ’s.

Theorem 5.8.2. (Spectral Decomposition of a Symmetric Matrix) Let A be a n× n sym-
metric matrix. Then there exists an orthogonal matrix P and a diagonal matrix D such
that

A = PDP ′.

Proof. By induction on n. The theorem is obvious when n = 1. Suppose then, that it is
true for n− 1, where n ≥ 2. We will then show that it is true for n.

Let λ1 be an eigenvalue of A. From Lemma 5.8.1, we know that λ1 is real, because A is
symmetric. We also know that there is a real eigenvector associated with λ1 such that

Ax1 = λ1x1.

Let S be an orthogonal matrix with x1 as first column. Such an S is shown to exist by
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Theorem 5.4.6 of section 5.4. In the calculation that follows, the ith row of a matrix B is
denoted Bi∗; similarly the jth column of B is denoted B∗j .

Now for r = 1, . . . , n,

(S−1AS)r1 = (S−1)r∗AS∗1 = S−1
r∗ Ax1 (S∗1 = x1 by construction)

= λ1(S−1)r∗x1 (eigenvector)

= λ1(S−1)r∗S∗1 (by construction)

= λ1(S−1S)r1 = λ1Ir1 = λ1δr1.

Since A is symmetric, so is S−1AS = S′AS. Therefore (S−1AS)1r = λ1δr1 r = 1, . . . , n.
Then the matrix B = S−1AS has the form

B =

(
λ1 0n−1

1

01
n−1 B1

)
where B1 is a symmetric (n− 1)× (n− 1) matrix. The inductive hypothesis applies to B1.
Therefore there is an orthogonal matrix C1 and a diagonal matrix D1, both of order n− 1,
such that B1C1 = C1D1. Therefore(

λ1 0
0 B1

)(
1 0
0 C1

)
=

(
1 0
0 C1

)(
λ1 0
0 D1

)
.

Let C =

(
1 0
0 C1

)
and D =

(
λ1 0
0 D1

)
. Then D is diagonal. Also

C ′C =

(
1 0
0 C1

)′(
1 0
0 C1

)
=

(
1 0
0 C ′1

)(
1 0
0 C1

)
=

(
1 0
0 C ′1C1

)
=

(
1 0
0 In−1

)
= I.

Therefore C is orthogonal. Let P = SC. P is orthogonal, as it is the product of two
orthogonal matrices.

Also S−1ASC = CD, or A = SCD(SC)−1 = PDP−1 = PDP ′.

Before we proceed to the next decomposition theorem, we need one more lemma:

Lemma 5.8.3. Let T be an n× n real matrix such that | T |6= 0. Then T ′T has n positive
eigenvalues.

Proof. Since T ′T is symmetric, we know from Lemma 5.8.1 that it has n real eigenvalues.
It remains to show that they are positive.

Let y = Tx. Then

x′T ′Tx = y′y =

n∑
i=1

y2
i ≥ 0.

Because | T |6= 0, Theorem 5.4.10 of section 5.4 applies, and says that if x 6= 0 then y 6= 0.
Therefore, for x 6= 0, x′T ′Tx > 0.

Now let λj be an eigenvalue of T ′T , and xj 6= 0 an associated eigenvector. Then

0 < x′jT
′Txj = λjx

′
jxj = λj .



EIGENVALUES, EIGENVECTORS AND DECOMPOSITIONS 221

Theorem 5.8.4. (Singular Value Decomposition of a Matrix) Let A be an n × n matrix
such that | A |6= 0. There exist orthogonal matrices P and Q and a diagonal matrix D with
positive diagonal elements such that A = PDQ.

Proof. From Lemma 5.8.3, we know that A′A has positive eigenvalues. Let D2 be an n× n
diagonal matrix whose diagonal elements are those n positive eigenvalues, and let D be
the diagonal matrix whose diagonal elements are the positive square roots of the diagonal
elements of D2.

Since A′A is symmetric, by Theorem 1, there is an orthogonal matrix Q such that

QA′AQ′ = D2.

Let P = AQ′D−1. Then P is orthogonal, because

P ′P = D−1QA′AQ′D−1 = D−1D2D−1 = I.

Also

P ′AQ′ = D−1QA′AQ′ = D−1D2 = D, or

A = PDQ.

Corollary 5.8.5. A has an inverse matrix if and only if | A |6= 0.

Proof. If | A |6= 0, then Theorem 5.8.4 shows that, defining A−1 = Q′D−1P ′, we have

AA−1 = PDQQ′D−1P ′ = PDD−1P ′ = PP ′ = I

A−1A = Q′D−1P ′PDQ = Q′D−1DQ = Q′Q = I.

Suppose | A |= 0. Then Theorem 5.7.10 applies, and says that there is a vector x 6= 0
such that Ax = 0. Suppose A−1 existed, contrary to hypothesis. Then 0 = A−1Ax = x,
contradiction. Therefore A has no inverse if | A |= 0.

When A has an inverse, | A |= 1/ | A−1 |, because 1 =| I |= | AA−1 |=| A | | A−1 |.
Theorem 5.8.4 offers a geometric interpretation of the absolute value of the determinant

of a non-singular matrix A. We know that such an A can be written as A = PDQ, where
P and Q are orthogonal. We also know | A |=| P | | D | | Q |, and that || P ||= 1 (meaning
the absolute value of the determinant of P ), and || Q ||= 1, while || D || is the product of
the numbers down the diagonal of D.

Consider a unit cube. What happens to its volume when operated on by A? First, we
have the orthogonal matrix Q. From Theorem 5.4.10, we know that an orthogonal matrix
rotates the cube, but it is still a unit cube after operation by Q. Now what does D do to
it? D stretches or shrinks each dimension by a factor di, so the volume of the cube (in
n-space) is now

∏n
i=1 di. The resulting figure is no longer a cube, but rather a rectangular

solid. Finally P again rotates the rectangular solid, but does not change its volume. Hence
the volume of the cube is multiplied by

∏n
i=1 di, which is || A ||.

You may recall the following result from section 5.3: Suppose X has a continuous dis-
tribution with pdf fX(x). Let g(x) = ax+ b with a 6= 0. Then Y = g(X) has the density

fY (y) = fX

(
y − b
a

)
· 1

| a |
. (5.45)

The time has come to state the multivariate generalization of this result. Suppose X has
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a continuous multivariate distribution with pdf fX(x). Let g(x) = Ax + b, with | A |6= 0.
Then Y = g(X) has the density

fY(y) = fx(A−1(y − b)) · 1

|| A ||
= fX(A−1(y − b)) || A−1 || .

Thus || A || is the appropriate multivariate generalization of | a | in the univariate case.
The next decomposition theorem is useful as an alternative way of decomposing a

positive-definite matrix. (Recall the definition of positive-definite in section 2.12.2.) A few
preliminary facts are useful to establish:

Lemma 5.8.6. If A is symmetric and positive definite, every submatrix whose diagonal is
a subset of the diagonal of A is also positive definite.

Proof. Let A1 be such a submatrix. Without loss of generality, we may reorder the rows
and columns of A so that A1 is the upper left-hand corner of A, and then write

A =

(
A1 A2

A′2 A3

)
.

Let A1 be m×m, and x a vector of length m, x /∈ 0. If A is n× n, append a vector of 0’s
of length n−m to x, and let y = (x,0)′. Then

0 < y′Ay = x′A1x.

So A1 is positive definite.

A lower triangular matrix T has zeros above the main diagonal. Its determinant is the
product of its diagonal elements. If those diagonal elements are not zero, T is non-singular,
and therefore has an inverse.

Theorem 5.8.7. (Schott) Let A be an n × n positive definite matrix. Then there exists a
unique lower triangular matrix T with positive diagonal elements such that

A = TT ′.

Proof. To shorten what is written, let “ltmwpde” stand for “lower triangular matrix with
positive diagonal elements.” The proof proceeds by induction on n. When n = 1, A consists
of a single positive number a. Then the 1 × 1 matrix T consisting of

√
a is ltmwpde. Now

assume the theorem is true for all (n− 1)× (n− 1) positive definite matrices. Let A be an
n× n positive definite matrix. Then A can be partitioned as

A =

(
A11 a12

a′12 a22

)
where A11 is (m− 1)× (m− 1) and positive definite. So the induction hypothesis applies to
A11, yielding the existence of T11, a ltmwpde, which is (n − 1) × (n − 1). Now the relation
A = TT ′ where T is ltmwpde, holds if and only if(

A11 a12

a′12 a22

)
=

(
T ∗11 0
t′12 t22

)(
T ∗′11 t12

0′ t22

)
=

(
T ∗11T

∗′
11 T ∗11t12

t′12T
∗′
11 t′12t12 + t222

)
.

Which yields three necessary and sufficient equations:

1. A11 = T ∗11T
∗′
11
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2. a12 = T ∗11t12

3. a22 = t′12t12 + t222

Now because the inductive hypothesis, T11 is unique, so T ∗11 = T11 from (1). Because
T11 is ltmwpde, it is non-singular and has an inverse. Then the only solution to (2) is
t12 = T−1

11 a12. Using (3),

t222 = a22 − t′12t12 =a22 − a′12T
−1′
11 T−1

11 a12

=a22 − a′12(T11T
′
11)−1a12

=a22 − a′12A
−1
11 a12.

Now we check that the last will be positive: Because A is positive definite, x′Ax > 0 for all
x 6= 0. Consider x of the form x = (a′12A

−1
11 ,−1)′. Because of its last element, x 6= 0. Then

0 < x′Ax =a′12A
−1
11 A11A

−1
11 a12 − 2a′12A

−1
11 a

′
12 + a22

=a22 − a′12A
−1
11 a12.

Thus the only solution is
t22 = (a22 − a′12A

−1
11 a12)1/2.

Thus these solutions are unique. This completes the inductive step, and the proof.

The uniqueness part of Theorem 5.4.4 proves important in its application in Chapter 8.

5.8.1 Generalizations

An infinite dimensional linear space with an inner product and a completeness assumption
is called a Hilbert Space. The equivalent of a symmetric matrix in infinite dimensions is
called a self-adjoint operator. There is a spectral theorem for such operators in Hilbert
Space (see Dunford and Schwartz, 1988).

There is also a singular value decomposition theorem for non-square matrices of not-
necessarily full rank (see (Schott, 2005, p. 140).

5.8.2 Summary

This section gives three decompositions that are fundamental to multivariate analysis: the
spectral decomposition of a symmetric matrix, the singular value decomposition of a non-
singular matrix, and the triangular decomposition of a positive definite matrix.

5.8.3 Exercises

1. Let A be a symmetric 2× 2 matrix, so A can be written

A =

(
a11 a12

a12 a22

)
.

Find the spectral decomposition of A.

2. Let B be a non-singular 2× 2 matrix, so B can be written

B =

(
b11 b12

b21 b22

)
,

where b11b22 6= b12b21.
Find the singular value decomposition of B.



224 TRANSFORMATIONS

3. Let C be a positive definite 2× 2 matrix, so C can be written

C =

(
c11 c12

c21 c22

)
,

where c11 > 0, c22 > 0 and c11c22 − c21c12 > 0.
Find the triangular decomposition of C.

5.9 Non-linear transformations

It may seem that the jump from linear to non-linear transformations is a huge one, because
of the variety of non-linear transformations that might be considered. Such is not the case,
however, because locally every non-linear transformation is linear, with the matrix governing
the linear transformations being the matrix of first partial derivatives of the function. Thus
we have done the hard work already in section 5.8 (and the sections that led to it).

Theorem 5.9.1. Suppose X has a continuous multivariate distribution with pdf fX(x) in
n-dimensions. Suppose there is some subset S of Rn such that P{XεS} = 1. Consider new
random variables Y = (Y1, . . . , Yn) related to X by the function g(X) = Y, so there are n
functions

y1 = g1(x) = g1(x1, x2, . . . , xn)

y2 = g2(x) = g2(x1, x2, . . . , xn)

...

yn = gn(x) = gn(x1, x2, . . . , xn).

Let T be the image of S under g, that is, T is the set (in Rn) such that there is an xεS
such that g(x)εT . (This is sometimes written g(S) = T.)

We also assume that g is one-to-one as a function from S to T , that is, if g(x1) = g(x2)
then x1 = x2. If this is the case, then there is an inverse function u mapping points in T to
points in S such that

xi = ui(y) for i = 1, . . . , n.

Now suppose that the functions g and u have continuous first partial derivatives, that
is, the derivatives ∂ui/∂yj and ∂gi/∂xj exist and are continuous for all i = 1, . . . , n and
j = 1, . . . , n. Then the following matrices can be defined:

J =


∂u1

∂y1
. . . ∂u1

∂yn
...

...
∂un
∂y1

. . . ∂un
∂yn

 and J∗ =


∂g1
∂x1

. . . ∂g1
∂xn

...
...

∂gn
∂x1

. . . ∂gn
∂xn

 .
The matrices J and J∗ are called Jacobian matrices.

Then

fY(y) =

{
fx(u(y)) || J || if yεT

0 otherwise

=

{
fx(u(y)) (1/ || J∗ ||) if yεT

0 otherwise.
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Proof. Let ε > 0 be a given number. (Of course, toward the end of this proof, we’ll be taking
a limit as ε→ 0.) There are bounded subsets Sε ⊂ S and Tε ⊂ T such that g(Sε) = Tε and
P{XεSε} ≥ 1− ε.

We now divide Sε into a finite number of cubes whose sides are no more than ε in
length. (This can always be done. Suppose Sε, which is bounded, can be put into a box
whose maximum side has length m. Divide each dimension in 2, leading to 2n boxes whose
maximum length is m/2. Continue this process k times, until m/2k < ε.) For now, we’ll
concentrate on what happens inside one particular such box, Bε.

Suppose x0εBε, and let y0 = g(x0), so x0 = u(y0). Taylor’s Theorem says that

yj − y0
j =

n∑
i=1

dgj
dxi

(xi − x0
i ) +HOT

where y = (y1, . . . , yn) = r(x1, . . . , xn) and HOT stands for “higher order terms,” which
go to zero as ε goes to zero. This equation can be expressed in vector notation as

y − y0 =


∂g1
∂x1

. . . ∂g1
∂xn

...
∂gn
∂x1

∂gn
∂xn

 (x− x0) +HOT

y − y0 = J∗(x− x0) +HOT

or

y = J∗x + b +HOT for xεBε

where b = y0 − J∗x0.
This is exactly of the form studied in section 5.8.
Hence

fy(y) = fx(u(y)) · 1

|| J∗ ||
+HOT for xεBε.

Putting the pieces together, we have

fY(y) = fX(u(y)) · 1

|| J∗ ||
+HOT for xεTε

and, letting ε→ 0

fY(y) = fX(u(y)) · 1

|| J∗ ||
for xεT.

Since

x = u(g(x) is an identity in x,

I = J · J∗, so

1 =| I |=| J | · | J∗ |, so

| J | = 1/ | J∗ | so

|| J || = 1/ || J∗ || .

This completes the proof.
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For the one-dimensional case, we obtained

fY (y) = fX(g−1(y)) | dg
−1(y)

dy
| . (5.46)

Once again, | dg−1(y)
dy | becomes the absolute value of the Jacobian matrix in the n-

dimensional case.
There are two difficult parts in using this theorem. The first is checking whether an n-

dimensional transformation is 1-1. An excellent way to check this is to compute the inverse
function. The second difficult part is to compute the determinant of J . Sometimes it is
easier to compute the determinant of J∗, and divide.

As an example, consider the following problem: Let

fX,Y (x, y) =

{
k if x2 + y2 ≤ 1

0 otherwise
.

Find k. From elementary geometry, we know that the area of a circle is πr2. Here r = 1,
so k = 1/π. But we’re going to use a transformation to prove this directly, using polar
co-ordinates.

Let x = r cos θ and y = r sin θ. These are already inverse transformations. The direct
substitutions are r =

√
x2 + y2 and θ = arctan(y/x). Also notice that the point (0, 0) has

to be excluded, since θ is undefined there. Thus the set S = {(x, y) | 0 < x2 + y2 < 1}. A
single point has probability zero in any continuous distribution, so we still have P{S} = 1.

The Jacobian matrix is

J =

[
∂ r cos θ
∂r

∂ r sin θ
∂r

∂ r cos θ
∂θ

∂ r sin θ
∂θ

]
=

[
cos θ sin θ
r sin θ −r cos θ

]
whose determinant is | J |= −r cos2(θ)− r sin2(θ) = −r, thus || J ||= r. Hence we have

fR,Θ(r, θ) =

{
kr , 0 < r < 1, 0 < θ < 2π

0 otherwise
.

Therefore

1 =

∫ 1

0

∫ 2π

0

krdθdr =

∫ 1

0

krθ

∣∣∣∣2π
0

dr =

∫ 1

0

2πkrdr

= 2πk
r2

2

∣∣∣∣1
0

= kπ.

Hence k = 1/π as claimed.

5.9.1 Summary

This section (finally) shows that the absolute value of the determinant of the Jacobian
matrix is the appropriate scaling factor for a general one-to-one multivariate non-linear
transformation. This completes the main work of this chapter.

5.9.2 Exercise

Let X1 and X2 be continuous random variables with joint density fX1,X2
(x1, x2). Let

Y1 = X1/(X1 +X2) and Y2 = X1 +X2.
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(a) Is this transformation one-to-one?

(b) If so, find its Jacobian matrix, and the determinant of that matrix.

(c) Suppose in particular that

fX1,X2
(x1, x2) =

{
1 0 < x1 < 1 , 0 < x2 < 1

0 otherwise
.

Find the joint density of (Y1, Y2).

5.10 The Borel-Kolmogorov Paradox

This paradox is best shown by example, which has the added benefit of giving further
practice in computing transformations.

Let X = (X1, X2) be independent and both uniformly distributed on (0, 1). Then their
joint density is

fX(x) =

{
1 0 < x1 < 1, 0 < x2 < 1

0 otherwise
.

Now consider the transformation given by g(x1, x2) = (x2/x1, x1), i.e., y1 = x2/x1, y2 = x1.
The inverse transformation is u(y1, y2) = (y2, y1y2), so, because the inverse transformation
can be found, g is one-to-one.

The Jacobian matrix is

J =

[
du1

dy1
du1

du2
du2

dy1
du2

dy2

]
=

[
0 1
y2 y1

]
so || J ||= y2, and

fY(y) =

{
y2 0 < y2 < 1, 0 < y1 < 1/y2

0 otherwise
.

As a check, it is useful to make sure that the transformed density integrates to 1. If it does
not, a mistake has been made, often in finding the limits of integration. In this case∫

fY(y)dy =

∫ 1

0

∫ 1/y2

0

y2dy1dy2

=

∫ 1

0

[
y2y1

∣∣∣∣1/y2
0

]
dy2

=

∫ 1

0

y2 [(1/y2)− 0] dy2

=

∫ 1

0

1dy2 = 1.

We wish to find the conditional distribution of Y2 given Y1. To do so, we have to find
the marginal distribution of Y1. And to do that, it is necessary to re-express the limits of
integration in the other order.

We have 0 < y2 < 1 and 0 < y1 < 1/y2. Clearly y1 has the limits 0 < y1 < ∞, but,
for a fixed value of y1, what are the limits on y2? We have 0 < y2 < 1/y1, but we also
have 0 < y2 < 1. Consequently the limits are 0 < y2 < min{1, 1/y1}. Hence fY (y) can be
re-expressed as

fY(y) =

{
y2 0 < y1 <∞, 0 < y2 < min{1, 1/y1}
0 otherwise

.
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Once again, it is wise to check that this density integrates to 1. We have∫
fY(y)dy =

∫ ∞
0

∫ min{1,1/y1}

0

y2dy2dy1

=

∫ ∞
0

y2
2

2

∣∣∣∣min{1,1/y1}

0

dy1

=

∫ ∞
0

(min{1, 1/y1})2

2
dy1

=

∫ 1

0

(min{1, 1/y1})2

2
dy1 +

∫ ∞
1

(min{1, 1/y1})2

2
dy1

=

∫ 1

0

1

2
dy1 +

∫ ∞
1

1

2y2
1

dy1

=
y1

2

∣∣∣∣1
0

+ (
1

2
)(−1) · 1

y1

∣∣∣∣∞
1

=
1

2
+

1

2
= 1.

So our check succeeds.
The marginal distribution of Y1 is then

fY1
(y1) =

∫
fY(y)dy2 =

∫ min{1,1/y1}

0

y2dy2 =
y2

2

2

∣∣∣∣min{1,1/y1}

0

= (min{1, 1/y1})2/2 for 0 < y1 <∞

=


1/2 0 < y1 < 1

1/(2y2
1) 1 ≤ y1 <∞

0 otherwise

.

Then the conditional distribution of Y2 given Y1 is

fY2|Y1
(y2 | y1) =

fY2,Y1(y2, y1)

fY1(y1)
=


y2
2 0 < y1 < 1
y2
2y21

1 ≤ y1 <∞
0 otherwise

.

Now we consider a second transformation of X1, X2. (The point of the Borel-Kolmogorov
Paradox is to compare the answers derived in these two calculations.)

To distinguish the new variables from the ones just used, we’ll let them be z = (z1, z2),
but the z’s play the role of Y in section 5.8. The transformation we now consider is
g(x1, x2) = (x2 − x1, x1), i.e., z1 = x2 − x1, z2 = x1. The inverse transformation is
u(z1, z2) = (z2, z1 + z2). Again, because the inverse transformation has been found, the
function g is one-to-one. The Jacobian matrix is

J =

[
du1

dz1
du1

dz2
du2

dz1
du2

dz2

]
=

[
0 1
1 1

]
so || J ||= 1.

Therefore

fZ(z) =

{
1 0 < z2 < 1, −z2 < z1 < 1− z2

0 otherwise
.
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We check, just to be sure, that this integrates to 1:∫
fz(z) =

∫ 1

0

∫ 1−z2

−z2
dz1dz2

=

∫ 1

0

z1

∣∣∣∣1−z2
−z2

dz2 =

∫ 1

0

[(1− z2)− (−z2)] dz2

=

∫ 1

0

1dz2 = 1.

Now we wish to find the conditional distribution of z2 given z1, so we have to find the
marginal distribution of z1. Once again, this requires re-expression of the limits of integration
in the other order.

We have 0 < z2 < 1 and−z2 < z1 < 1−z2. Then z1 ranges from -1 to 1, i.e.,−1 < z1 < 1,
and, given z1, z2 ranges from z1 to z1 + 1, i.e., z1 < z2 < z1 + 1. Since we already know
0 < z2 < 1, we have max(0, z1) < z2 < min(1, 1 + z1). Hence fz(z) may be re-expressed as

fZ(z) =

{
1 −1 < z2 < 1, max(0, z1) < z2 < min(1, 1 + z1)

0 otherwise
.

Again, we check to make sure that this density integrates to 1, as follows:∫
fZ(z)dz =

∫ 1

−1

∫ min(1,1+z1)

max(0,z1)

dz2dz1

=

∫ 1

−1

(
z2

∣∣∣∣min(1,1+z1)

max(0,z1)

)
dz1

=

∫ 1

−1

(min(1 + z1)−max(0, z1))dz1

=

∫ 0

−1

(min(1, 1 + z1)−max(0, z1))dz1

+

∫ 1

0

(min(1, 1 + z1)−max(0, z1))dz1

=

∫ 0

−1

[(1 + z1)− 0] dz1 +

∫ 1

0

(1− z1)dz1

= (z1 + z2
1/2)

∣∣∣∣0
−1

+ (z − z2
1/2)

∣∣∣∣1
0

= −(−1 + 1/2) + 1− 1/2 = 1.

Now we find the marginal distribution of z1:

fZ1
(z1) =

∫
fZ(z)dz2 =

∫ min(1,1+21)

max(0,z1)

1dz2

=

{
min(1, 1 + z1)−max(0, z1) if − 1 < z1 < 1

0 otherwise
.

fZ1(z1) can be conveniently re-expressed as follows:

fZ1
(z1) =


1 + z1 −1 < z1 ≤ 0

1− z1 0 < z1 < 1

0 otherwise

.
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So now we can write the conditional distribution of Z2 given Z1 as

fZ2|Z1
(z2 | z1) =


1

1+z1
−1 < z1 ≤ 0

1
1−z1 0 < z1 < 1

0 otherwise

.

Now (finally!) we are in a position to discuss the Borel-Kolmogorov Paradox. The random
variable X1 is the same as the random variables Y2 and Z2. The event {Y1 = 1} is the same
as the event {Z1 = 0}, yet we observe that

fY2|Y1
(y2 | y1 = 1) 6= fZ2|Z1

(z2 | z1 = 0).

The failure of these two conditional distributions to be equal is what is known as the Borel-
Kolmogorov Paradox.

It is certainly the case that X1, Y2 and Z2 are the same random variables, so that’s not
where the problem lies. Consequently it must lie in the conditioning event. Recall that in
section 4.3 we defined the conditional density of Y given X as follows:

fY |X(y | x) = lim
∆→0

d

dy
P{Y ≤ y | XεN∆(x)} (4.11)

where N∆(x) = {x− ∆
2 , x+ ∆

2 }.

What is going on in the Borel-Kolmogorov Paradox is that N∆(y1) at y1 = 1 is not
the same as N∆(z1) at z1 = 0. Since limits are a function of the behavior of the function
in the neighborhood of, but not at, the limiting point, there is no reason to expect that
fY2|Y1

(y2 | y1 = 1) should equal fZ2|Z1
(z2 | z1 = 0). Perhaps one can interpret this analysis

as a reminder that observing Y1 = 1 is not the same as observing Z1 = 0. However, the
fact that they are different is a salutary reminder not to interpret conditional densities too
casually.

This example is illustrated by Figure 5.5. In this figure, the dark solid line is the line
x1 = x2. The dotted lines (in the shape of an x) represent a sequence of lines that approach
the line x1 = x2 by lines of the form x1/x2 = b, where b→ 1. This is the sense of closeness
(topology, for those readers who know that term) suggested by y1. The dashed lines (parallel
to the line x1 = x2) represent a sequence of lines that approach the line x1 = x2 by lines of
the form x2 = x1 + a, where a→ 0. This is the sense of closeness suggested by z1.
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Figure 5.5: Two senses of lines close to the line x1 = x2.

Commands:

x = (-100:100)/100

y = x

plot (x,y, type ="l", xlab = expression (x[1]),

ylab = expression (x[2]), lwd = 3)

# expression makes the label with the subscript

abline (-.1, 1, lty=2)

#lty = 2 gives the lightly dotted line

abline (.1,1,lty=2)

abline (0,0.5,lty=3)

#lty = 3 gives the heavily dotted line

abline (0,1.5,lty=3)

5.10.1 Summary

When considering conditional densities, the conditional distributions given the same point
described in different co-ordinate systems may be distinct. This is called the Borel-
Kolmogorov Paradox.

5.10.2 Exercises

1. What is the Borel-Kolmogorov Paradox?

2. Is it a paradox?

3. Is it important? Why or why not?





Chapter 6

Characteristic Functions, the Normal
Distribution and the Central Limit Theorem

6.1 Introduction

The purpose of this chapter is to introduce the normal distribution, and to show that, in
great generality, the distribution of averages of independent random variables approach a
normal distribution as the number of summands get large (i.e., to prove a central limit
theorem).

6.2 Moment generating functions

The probability generating function, introduced in section 3.6, is limited in its application to
distributions on the non-negative integers. The function introduced in this section relaxes
that constraint, and applies to continuous distributions as well as discrete ones, and to
random variables with negative as well as positive values. The expectations in this chapter
are to be taken in the McShane (Lebesgue) sense, so that the bounded and dominated
convergence theorems apply.

The moment generating function of a random variable X is defined to be

MX(t) = E(etX). (6.1)

For all random variables X,
MX(0) = 1. (6.2)

Before exploring the properties of the moment generating function, we first display the
moment generating function for some familiar random variables.

First, suppose X takes the value 0 with probability 1−p and the value 1 with probability
p. Then

MX(t) = E(etX) = (1− p)e0 + pet = 1− p+ pet. (6.3)

Now suppose Y has a binomial distribution (see section 2.9), with parameters n and p, that
is

P{Y = k} =

{(
n

k,n−k
)
pk(1− p)n−k k = 0, 1, . . . , n

0 otherwise
. (6.4)

Then

MY (t) =

n∑
k=0

(
n

k, n− k

)
pk(1− p)n−ketk

=

n∑
k=0

(
n

k, n− k

)
(pet)k(1− p)n−k

= (1− p+ pet)n (6.5)

233
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using the binomial theorem (section 2.9). The last expression in (6.5) is the nth power of
(6.3), a matter we’ll return to later.

If Z has the Poisson distribution (section 3.9) with parameter λ, then the moment
generating function of Z is

MZ(t) =

∞∑
j=0

e−λλj

j!
ejt

= e−λ
∞∑
j=0

(λet)j

j!
= e−λeλe

t

= e−λ(1−et). (6.6)

Now suppose W has a uniform distribution on (a, b), that is, W was the probability
density function

fW (w) =

{
1
b−a a < w < b

0 otherwise
. (6.7)

Then the moment generating function of W is

MW (t) = E(etW )

=

∫ b

a

etx

b− a
dx

=
etx

(b− a)t

∣∣∣b
a

=
etb − eta

(b− a)t
. (6.8)

To show why moment generating functions are interesting, I first remind you about
moments, and then explain how the moment generating function “generates” them.

The kth moment of a random variable X is defined to be

αk = E(Xk) (6.9)

when it exists, which means when E(| X |k) <∞ (see sections 3.3 and 4.4).
I now prove a theorem showing why (6.1) is called the moment generating function:

Theorem 6.2.1. If the moment generating function MX(t) of a random variable X exists
for all t in a neighborhood of t = 0, then all moments of X exist, and

MX(t) =

∞∑
k=0

E(Xk)
tk

k!
. (6.10)

Proof. Suppose MX(t) exists for all tε(−t0, t0) where t0 > 0. Then e|tX| ≤ etX + e−tX , and

the latter function has a finite expectation for all | t |< t0, then e|tX| =
∑∞
k=0

|tX|k
k! also has

finite expectation.

Since this is the sum of positive quantities, E |tX|
k

k! is finite, so E | Xk | is finite for all
k, so all moments of X exist, and

MX(t) =

∞∑
k=0

E(Xk)tk

k!
.
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This is the first proof, among many in this chapter, in which the McShane (Lebesgue)
sense of integral is crucial.

Corollary 6.2.2. If the moment generating function MX(t) exists for all t in a neighbor-
hood of t = 0, then

E(Xk) = M (k)(0) for k = 1, 2, . . . (6.11)

Proof. Differentiate (6.10) k times and evaluate the result at t = 0.

One especially attractive feature of the moment generating function is the ease with
which it handles sums of independent random variables. Suppose Z = X+Y , where X and
Y are independent random variables that have moment generating functions. Then

MZ(t) = EetZ = Eet(X+Y ) = E(etXetY )

= E(etX)E(etY ) = MX(t)MY (t). (6.12)

The key step here is that because X and Y are independent, the expectation of a product
of a function of X, here g(X) = etX times a function of Y , here h(Y ) = etY , is the product
of the expectations (see sections 2.8, 3.4 and 4.4).

This explains why the moment generating function of the binomial distribution, (1 −
p + pet)n (see (6.5)) is the nth power of the moment generating function (1 − p + pet) of
the 0 − 1 variable (6.3): the binomial random variable is the sum of n independent 0 − 1
random variables.

Theorem 6.2.3. Suppose X is a random variable with a moment generating function in a
neighborhood of t = 0. Then the random variable Y = aX+ b also has a moment generating
function in a neighborhood of t = 0, and

MY (t) = ebtMX(at).

Proof.
MY (t) = EetY = Eet(aX+b) = etbEeatX = etbMX(at).

Moment generating functions can be extended to multivariate random variables. Suppose
X = (X1, X2, . . . , Xk) is a k-dimensional random variable, and let t = (t1, . . . , tk) be a k-
dimensional real vector. Then

MX(t) = Eet
′X = E(e

∑k
i=1 tiXi).

As an example, suppose that Xi = 1 (and, if this happens, Xj = 0 for j 6= i) with probability

pi, where
∑k
i=1 pi = 1. Then

MX(t) =

k∑
i=1

pie
ti .

Suppose Y is the sum of n such independent random vectors. Then

MY(t) =

(
k∑
i=1

pie
ti

)n
,

the moment generating function of the multinomial random variable (section 2.9).
Then Theorem 6.2.3 can be extended to the multivariate case as follows:

Theorem 6.2.4. Suppose X = (X1, . . . , Xk) is a k-dimensional random variable with mo-
ment generating function in a neighborhood of t = 0. Then the random vector Y = Ax + b
also has a moment generating function in a neighborhood of t = 0, and
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MY(t) = eb
′tMX(t′A).

Proof.

MY(t) = Ee
∑k
i=1 tiYi = Ee

∑k
i=1 ti(

∑k
j=1 aijXj+bi)

= Ee
∑k
i=1 tibi+

∑
i,j tiaijXj

= eb
′tMX(t′A).

Useful though moment generating functions are, they have limitations. You have already
seen an example of random variables for which means do not exist (section 3.3), and another
for which, although means do exist, variances do not (section 3.3.4, Exercise 3). Because
by Theorem 6.2.1 the moment generating function exists in a neighborhood of zero implies
that all moments exist, moment generating functions do not apply to such random variables.
When issues such as this arise, we do as we did in section 5.6, and turn to complex variables.

Moment generating functions are known in other parts of mathematics as Laplace Trans-
forms.

6.2.1 Summary

The moment generating function defined in (6.2), generates moments, as shown in Theo-
rem 6.2.1. Moment generating functions of a sum of independent random variables is the
product of the moment generating functions of the summands. Moment generating functions
do not always exist in a neighborhood of t = 0.

6.2.2 Exercises

1. Find the moment generating function of a geometric random variable (see section 3.7).

2. Find the moment generating function of a negative binomial random variable.

3. Use the moment generating function of the binomial distribution to verify:

a) E(Y ) = np

b) V (Y ) = np(1− p)
where Y has a binomial distribution (6.3).

4. Use the moment generating function of the Poisson distribution to verify:

a) E(Z) = λ

b) V (Z) = λ

6.2.3 Remark

The moment generating function may be familiar to some readers under the name of the
Laplace Transform.

6.3 Characteristic functions

The characteristic function of a random variable X is defined to be

ψX(t) = E(eitX), (6.13)
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where, of course, i =
√
−1. Here we take t to be a real number, so ψX(t) is a complex-valued

function of a real variable. Since

| eitX | =| sin tX + i cos tX |=| sin2(tX) + cos2(tX) |
=| 1 |= 1

for all x and t (using results from section 5.6), we know that the expectation in (6.13) exists,
provided the expectation is interpreted in the McShane sense, using Corollary 4.9.18. Thus,
unlike the moment generating function, the characteristic function exists for all random
variables X.

Again, let’s look at some examples. First, suppose X takes the value 0 with probability
1− p and 1 with probability p. Then

ψX(t) = E(eitX) = (1− p) + peit. (6.14)

Similarly, suppose that Y has a binomial distribution with parameters n and p, so

P{Y = k} =

{(
n

k,n−k
)
pk(1− p)n−k k = 0, 1, . . . , n

0 otherwise
.

Then

ψY (t) =

n∑
k=0

(
n

k, n− k

)
pk(1− p)n−keitk

=

n∑
k=0

(
n

k, n− k

)
(peit)k(1− p)n−k

= ((1− p) + peit)n (6.15)

again using the binomial theorem. Again, notice that (6.15) is (6.14) to the nth power, a
matter to which we’ll return. Now suppose that Z has a Poisson distribution with parameter
λ. Then

ψZ(t) =

∞∑
j=0

e−λλj

j!
eitj

= e−λ
∞∑
j=0

(λeit)j

j!

= e−λeλe
it

= e−λ(1−eit). (6.16)

Finally, suppose that W has a uniform distribution on (a, b). Then

ψW (t) =
1

b− a

∫ b

a

eitxdx

=
1

b− a

∫ b

a

(cos tx+ i sin tx)dx.

Transforming by letting y = tx, we have

ψW (t) =
1

(b− a)t

[
sin y

∣∣bt
at
− i cos y

∣∣∣bt
at

]
=

1

(b− a)t
{sin bt− sin at− i(cos bt− cos at)} .
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Since 1/i = −i, then

ψW (t) =
a

(b− a)it
[(cos bt− cos at) + i(sin bt− sin at)]

=
1

(b− a)it
(eibt − eiat). (6.17)

Thus in each of these four examples, the characteristic function is the same as the moment
generating function, substituting it for t. This suggests that perhaps

ψ(t) = M(it) (6.18)

might be valid in general. However, there is something peculiar about such an equality. Both
M(t) and ψ(t) are defined for real values of t only. Consequently (6.18) is not a legitimate
expression. Another possible route would be to extend either function to be a function of a
complex argument t. But this would lead further into the theory of complex formation of
complex variables than I wish to go.

The main strength of the moment generating function is that it permitted convenient
analysis of sums of independent random variables, because of equation (6.12). Thus, suppose
Z = X + Y , where X and Y are independent random variables. If X and Y have moment
generating functions, then (6.12) shows

MZ(t) = MX(t)MY (t).

Now let’s see what happens when the characteristic functions of X and Y are multiplied:

ψX(t)ψY (t) =E(eitX)E(eitY )

=E(cos(tX) + i sin(tX))E(cos(tY ) + i sin(tY ))

=E(cos tX)E(cos tY )− E(sin tX)E sin(tY )

+i[E(sin tX)E cos(tY ) + E(sin tX)E cos tY ].

Now using independence of X and Y (heavily),

ψX(t)ψY (t) =E(cos tX cos tY − sin tX sin tY )

+iE(sin tX cos tY − sin tX cos tY )

=E(cos t(X + Y )) + iE(sin t(X + Y ))

=ψZ(t)

where we have used the trigonometric addition formulae proved in section 5.6:

cos(t1 + t2) = cos t1 cos t2 − sin t1 sin t2 (6.19)

sin(t1 + t2) = cos t1 sin t2 + sin t1 cos t2 (6.20)

Therefore
ψX+Y (t) = ψX(t)ψY (t) (6.21)

when X and Y are independent random variables.
Once again, then, (6.15) is the product of n factors of (6.14) because the binomial

random variable is the sum of n independent 0− 1 random variables.
There is an easy analog of Theorem 6.2.3:

Theorem 6.3.1. Suppose X is a random variable with characteristic function ψX(t). The
random variable Y = aX + b has characteristic function

ψY (t) = eitbψX(at).
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Proof.

ψX(t) =E(eitY ) = E(eit(aX+b))

=EeitbeiatX

=eitbE(eiatX)

=eitbψX(at).

6.3.1 Remark

Characteristic functions are known in other parts of mathematics as Fourier Transforms.

6.3.2 Summary

The characteristic function of a random variable X, defined in (6.13) shares the property
(6.21) with moment generating functions. Unlike moment generating functions, however,
they always exist.

6.3.3 Exercises

1. Find the characteristic function of a geometric random variable.

2. Find the characteristic function of a negative binomial random variable.

6.4 Uniqueness of characteristic functions: Trigonometric polynomials

So far the properties of characteristic functions that have been shown are not very impres-
sive, namely that they exist for all random variables and that ψX+Y (t) = ψX(t)ψY (t) if X
and Y are independent. It might be noted that the quite uninteresting function βX(t) ≡ 1
shares both of these properties. However, the property we now seek to prove, uniqueness,
is more impressive. What it says is that if X and Y are random variables with character-
istic functions ψX(t) and ψY (t), respectively, and if ψX(t) = ψY (t) for all real t, then the
distribution of X is the same as that of Y .

To prove this result, it is necessary first to establish some facts about trigonometric
polynomials, and then a Weierstrass approximation theorem.

6.4.1 Trigonometric polynomials

Substituting −t2 for t2 in (6.19), and remembering that cosine is an even function, so
cos(−x) = cosx, while sine is an odd function, so sin(−x) = − sinx, yields

cos(t1 − t2) = cos t1 cos(−t2)− sin t1 sin(−t2)

= cos t1 cos t2 + sin t1 sin t2. (6.22)

Similarly, the same substitution into (6.20) gives

sin(t1 − t2) = cos t1 sin(−t2) + sin t1 cos(−t2)

= sin t1 cos t2 − cos t1 sin t2. (6.23)

Now add (6.19) and (6.22) together, which yields

cos t1 cos t2 = (1/2)(cos(t1 + t2) + cos(t1 − t2)). (6.24)
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Similarly, subtracting (6.19) from (6.22) results in

sin t1 sin t2 = (1/2)(cos(t1 − t2)− cos(t1 + t2)). (6.25)

Finally, adding (6.20) and (6.23) gives

sin t1 cos t2 = (1/2)(sin(t1 + t2) + sin(t1 − t2)). (6.26)

The last three formulas play an important role in the result that follows.
We now study three different senses of trigonometric polynomials. For the first, we let

a, aj and bj be arbitrary real numbers, and let

Sn(x) = a+

n∑
j=1

[aj cos(jx) + bj sin(jx)]. (6.27)

For the second, suppose that γ0 is a real number, and γj and γ−j are complex numbers,
for j = 1, . . . , n such that, if γj = rj − isj , then γ−j = rj + isj , where rj and sj are real
numbers (such complex numbers are often called complex conjugates). Let

Tn(x) =

n∑
j=−n

γje
ijx. (6.28)

Starting with just these two concepts, we have the following theorem:

Theorem 6.4.1. For each n, a polynomial can be expressed in the form (6.27) if and only
if it can be expressed in the form (6.28).

Proof. Let Sn(x) be as specified. From Euler’s Formula,

eijx = cos jx+ i sin jx

e−ijx = cos(−jx) + i sin(−jx) = cos jx− i sin(jx).

Solving these equations for cos jx and sin jx yields

cos jx =
1

2
(eijx + e−ijx)

sin jx =
1

2i
(eijx − e−ijx).

Substituting into Sn(x) then yields

Sn(x) =a+

n∑
j=1

aj
2

(eijx + e−ijx) +

n∑
j=1

bj
2i

(eijx − e−ijx)

=a+

n∑
j=1

(
aj
2

+
bj
2i

)
eijx +

n∑
j=1

(
aj
2
− bj

2i

)
e−ijx.

Now using 1
i = −i, we have

Sn(x) = a+

n∑
j=1

(
aj − ibj

2

)
eijx +

n∑
j=1

aj + ibj
2

e−ijx

which is of the form of Tn(x), if we take

γj =
aj − ibj

2
and γ−j =

aj + ibj
2

and γ0 =a. (6.29)
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Conversely, if Tn(x) is given as in (6.28), we may solve (6.29) for aj and bj , yielding

aj = γj + γ−j and bj =
γ−j − γj

i
, (6.30)

and a = γ0.
With these substitutions, Tn(x) is in the form of Sn(x), reversing the equalities above.

The third form of trigonometric polynomial is sums of real coefficients times powers of
cosx and sinx, in which the sum of the powers of cosx and sinx is less than or equal to n.
Thus

Un(x) =
∑

j,k;j+k≤n

rkj cosj(x) sink(x), (6.31)

where rkj are arbitrary real numbers.

Theorem 6.4.2. For each n, a polynomial can be expressed in the form (6.27) if and only
if it can be expressed in the form (6.31).

Proof. Suppose a polynomial is expressed in the form (6.27). Consider DeMoivre’s Formula
from section 5.6:

cosnx+ i sinnx = (cosx+ i sinx)n,

and expand the latter using the Binomial Theorem. This results in a polynomial of degree
n for cosnx and sinnx. Substituting these polynomials into Sn(x) yields a polynomial of
the form Un(x).

Now suppose that a polynomial is expressed in the form of Un(x) given in (6.31). We
proceed by induction on n. When n = 1, (6.31) yields

Un(x) = r00 + r01 cosx+ r10 sinx,

which is obviously equivalent to

Sn(x) = a+ a1 cosx+ b1 sinx,

so the result is proved for n = 1. Now suppose it is true for n, and we must show it for
n+ 1.

Un+1(x) =r0,n+1 cosn+1(x) + r1,n cosn(x) sinx+ . . .

+rn+1,0 sinn+1(x) + U∗n(x),

where U∗n(x) is a polynomial of degrees no larger than n. The inductive hypothesis applies
to U∗n(x). Now consider the remaining terms, which are of the form

cosj(x) sinn+1−j(x) j = 0, 1, . . . , n+ 1. (6.32)

The formulas (6.24), (6.25) and (6.26) now are used on each of these terms to express each
of (6.32) in terms of sin((n+1)x) cos((n+1)x), and sines and cosines of jx for j = 0, . . . , n.
This completes the inductive step, and hence the theorem is proved.

Corollary 6.4.3. For each n, Sn(x) in (6.27), Tn(x) in (6.28) and Un(x) in (6.31) are
three equivalent ways to represent a trigonometric polynomial.

6.4.2 Summary

The point here is the Corollary, since Sn(x), Tn(x) and Un(x) are all referred to in the
literature as “trigonometric polynomials.”
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6.4.3 Exercises

1. Express cos 2t+ sin t cos t in each of the three equivalent forms.

2. Do the same for 1 + ieit − ie−it.

6.5 A Weierstrass approximation theorem

The theorem we’re about to study shows that continuous functions on a closed set (here
in two dimensions) can be approximated uniformly and arbitrarily well by polynomials. A
corollary shows this to be the case for trigonometric functions of the sort studied in the
previous section, and this connection will be vital to establishing uniqueness of the char-
acteristic function. Before doing so, it is important to establish some facts about compact
sets and uniformly continuous functions.

6.5.1 A supplement on compact sets and uniformly continuous functions

An open cover of a set S is a system of of open sets {Aα} such that ∪αAα ⊇ S. The index
α may extend over a finite, countable, or uncountable range. A compact set S is one for
which every open cover {Aα} has a finite subcover, i.e., there are a finite number of α’s,
α1, . . . , αn, such that ∪ni=1Aαi ⊇ S. The purpose of this supplement is to give some facts
about compact sets.

Lemma 6.5.1. A closed subset of a compact set is compact.

Proof. Let K be a closed subset of a compact set T . Let Ck be an infinite open cover of
K. If Ck also covers T , then since T is compact, Ck has a finite subcover, and the lemma
is proved.

Suppose then that Ck does not cover T . Let K be an open set containing all the points
in T not covered by Ck, and we have K 6= {∅}. Let CT = CK ∪ {K}. Then CT is an open
cover for T . Since T is compact, CT has a finite subcover CT ′ . Since K covers points in T
not covered by CK , we must have K ∈ CT ′ . Then CT ′ = CK′ ∪ {K}, and CK′ is a finite
subcover of CT .

Theorem 6.5.2. (Heine-Borel) If S is a subset of <n, then the following two statements
are equivalent:

(a) S is closed and bounded.

(b) S is compact.

Proof. Let S be a compact set. Suppose p /∈ S. For each point q ∈ S, consider an open
neighborhood Wq of radius less than half d(p, q). Such a system of open neighborhoods
covers S because q ∈Wq for each q ∈ S. Since S is compact, there are finitely many points
q1, q2, . . . , qn in S such that

S ⊆ ∪ni=1Wqi = W.

Now let q∗ be one of the points qi, . . . , qn closest to p and let Vq∗ be a neighborhood of p
with radius less than half d(p, q∗). Then VqI is a neighborhood of p that does not intersect

W . Hence Vq∗ ⊂ S, so p is an interior point of S. Hence, if there is a sequence sn of points
in S converging to p, we must have p ∈ S. So S is closed.

Now consider the system {Sm}, where the set Sm consists of all points of distance m
or less from the origin. The union of these points covers the entire space <n, and hence S.
Since S is compact, there must be a finite subcover of Sm, say Sm1 , . . . , Smp . Let m∗ =
max{m1, . . . ,mp}. Then S is contained in Sm∗ , so S is bounded.

Now suppose that S is closed and bounded. It remains to show that S is compact.
Because S is bounded, it can be contained in a box of the form [a1, b1 × [a2, b2] = To where
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ak < bk for k = 1, . . . , n. In view of the lemma, it suffices to show that To is compact.
Suppose that To were not compact. Divide each side of To in half, yielding 2n boxes each
of which has 1/2n of the size of To. Given an infinite cover C of To, at least one of the 2n

sections of To must require an infinite subcover of C. Call this section T1. Now T1 can again
be bisected, yielding 2n sections, etc. Continuing in this way yields a sequence of non-empty
closed sets To, T1, etc., satisfying

To ⊃ T1 ⊃ T2 . . .

whose volumes go to zero. Now Lemma 4.7.6 applies, and says that there is some point p
belonging to each Ti. Since C covers To, there is some U ∈ C such that p ∈ U . Since U is
open, there is a neighborhood of N of p sufficiently small such that N ⊆ U . Since the T ’s
shrink to arbitrarily small lengths in each dimension, there is some n such that Tn ⊆ N ⊆ U .
But then the infinite number of members of C needed to cover Tn can be replaced by one,
U . Hence S is compact.

I now use these facts about compact sets to discuss uniformly continuous functions.
Recall the discussion in section 4.7.1 about quantified expressions, and the formal definition
of continuity of a function f at a point xo : for all ε > 0, there exists a δ > 0 such that,
for all x, if | x − xo |< δ, then | f(x) − f(x0) |< ε. Here δ can depend both on ε and on
x0. Under what circumstances can δ be taken to depend only on ε and not on x0? If that
were the case, we could write: for all ε > 0, there exists a δ > 0 such that for all x0 and
for all x, if | x − x0 |< δ, then | f(x) − f(x0) |< ε. Such a function f is called uniformly
continuous. Obviously a uniformly continuous function is continuous at each point xo, but
in general, uniform continuity is a stronger condition.

Theorem 6.5.3. (Heine-Cantor) A function f(x) continuous on a closed and bounded set
is uniformly continuous on that set.

Proof. Let ε > 0 be given. By continuity of f , to each point pεS we can associate a positive
number δ(p) such that d(p, q) < δ(p) implies d(f(p), f(q)) < ε/2, for qεS. Let K(p) be the
set of all qεS for which d(p, q) < δ(p)/2. Now pεK(p) for all p, so the sets K(p) constitute
an open cover of S. Since S is compact, there is a finite set p1, p2, . . . , pnεS such that

S ⊂ ∪ni=1K(pi).

Let δ = 1
2 min{δ(p1), δ(p2), . . . , δ(pn)}. Because n is finite, δ > 0.

Now let p and q be points of S such that d(p, q) < δ. There is some integer m such that
pεK(pm), so

d(p, pm) <
1

2
δ(pm).

Now d(q, pm) ≤ d(p, q) + d(p, pm) < δ + 1
2δ(pm) ≤ δ(pm).

Hence from the definition of δ(pm), d(f(p), f(pm) < ε/2 and d(f(q), f(pm)) < ε/2. Then

d(f(p), f(q)) ≤ d(f(p), f(pm)) + d(f(pm), f(q)) < ε/2 + ε/2 = ε.

Hence f is uniformly continuous on S.

6.5.2 Exercises

1. Define in your own words:

(a) open cover

(b) compact set

2. Which of the following sets is compact? Give your reasoning.
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(a) [0, 1]

(b) [0, 1)

(c) [0, 1]× [0, 1)

(d) (−∞, 0]

3. Consider the function f(x) = 1/x on the set (0, 1].

(a) Prove or disprove that it is continuous.

(b) Prove or disprove that it is absolutely continuous.

4. Answer the same questions for the function f(x) = 1/x on the set [1/2, 1].

5. Let S = (0, 1]. Consider the system of sets A = {An, n = 1, 2, . . .}, where An =
(1/n, 1.5).

(a) Show that A is an open cover of S.

(b) Show that S has no finite subcover of A.

Now consider the system of sets B = {B}, where B = (−0.5, 1.5). Thus B consists of a
single set, namely B.

(c) Show that B is an open cover of S.

(a) Does S have a finite subcover of B? Why or why not?

6.5.3 Summary

A set is compact if and only if it is closed and bounded. A continuous function on a compact
set is uniformly continuous.

6.5.4 The Weierstrass approximation

Theorem 6.5.4. (Weierstrass) Let f(x, y) be a continuous function on the set

S = {x, y) | 0 ≤ x, 0 ≤ y, and x+ y ≤ 1}.

Let ε > 0 be given. There is a polynomial P (x, y) such that | f(x, y) − P (x, y) |< ε for all
(x, y)εS.

Proof. Let mij(x, y) =
(

n
i,j,n−i−j

)
xiyj(1− x− y)n−i−j , where

(i, j)εSn = {(i, j) | 0 ≤ i, 0 ≤ j, i+ j ≤ n}.

We recognize mij(x, y) as trinomial probabilities (see section 2.9). Therefore the sum of
mij(x, y) over the set Sn is 1 for all (x, y)εS.

2

Now let
bn(x, y) =

∑
(i,j)εSn

f(i/n, j/n)mij(x, y)

(these are called Bernstein polynomials). I will show that n can be chosen large enough that
bn(x, y) suffices as the polynomial P .

Now
f(x, y)− bn(x, y) =

∑
i,j

(f(x, y)− f(i/n, j/n))mij(x, y),

where the sum is over the set Sn. Therefore

| f(x, y)− bn(x, y) |≤
∑
i,j

| f(x, y)− f(i/n, j/n) | mij(x, y). (6.33)
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Let ε > 0 be given. The goal is to choose n large enough so that the right-hand side of
(6.33) is less than ε.

Because f(x, y) is continuous on the closed set S, it is uniformly continuous there (Theo-
rem 6.5.3). Therefore there is a δ > 0 such that | f(x, y)−f(x′, y′) |< ε/2 when | x−x′ |< δ
and | y − y′ |< δ. Now I split the sum (6.33) into two parts by dividing the set Sn into
two parts: Sn = Tn ∪ Wn, where Tn = {(i, j) || i/n − x |< δ and | j/n − y |< δ} and
Wn = Sn − Tn.

(a) On the space Tn, we have∑
Tn

| f(x, y)− f(i/n, j/n) | mij(x, y) < ε/2 (6.34)

by choice of δ > 0.

(b) To address the space Wn, we observe first that f is bounded on the space S. Thus
| f(x, y) |≤ B for some B ≥ 0 and all (x, y)εS. Then∑

Wn

| f(x, y)− f(i/n, j/n) | mij(x, y) ≤ 2B
∑
Wn

mij(x, y). (6.35)

In light of (6.35), the strategy is to bound∑
Wn

mij(x, y).

Let B1 = {i ‖ i/n− x |< δ} and B2 = {j ‖ j/n− x |< δ}. Then Wn = (B1B2)c and∑
Wn

mij(x, y) =P{(B1B2)c} = 1− P{B1B2}

≤1− (1− P{Bc1} − P{Bc2})
=P{Bci }+ P{Bc2},

using Boole’s Inequality (see section 1.2).
Let (Y1, Y2, Y3) have a trinomial distribution with parameters (x, y, 1−x−y) and n. Then

P{Y1 = i, Y2 = j} = mij(x, y). Y1 has a marginal binomial distribution with parameter x
and n, mean nx and variance nx(1 − x) (see section 2.9). Similarly Y2 has a marginal
binomial distribution with parameters y and n, mean ny and variance ny(1− y).

Applying the Tchebychev Inequality,

P{Bc1} = P{x || X − nx |> nδ} ≤ nx(1− x)

n2δ2
=
x(1− x)

nδ2
≤ 1/(4nδ2).

Similarly
P{Bc2} ≤ 1/(4nδ2).

Hence
∑
Wn

mij(x, y) ≤ 1/(2nδ2),

so ∑
Wn

| f(x, y)− f(i/n, j/n) | mij(x, y) ≤ B

nδ2
.

Now if I choose n large enough that B
nδ2 < ε/2, or equivalently, so that n > 2B

δ2ε , I have

| f(x, y)− bn(x, y) |≤
∑
| f(x, y)− f(i/n, j/n) | mij(x, y)

≤
∑
Tn

+
∑
Wn

≤ ε/2 + ε/2 = ε
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for all (x, y)εS. This completes the proof.

Now let S∗ be a right triangle with vertices (a, c), (b, c) and (a, d), for arbitrary a < b
and c < d.

Corollary 6.5.5. If f(r, s) is continuous on S∗, then for all ε > 0 there is a polynomial
P (r, s) such that

| f(r, s)− P (r, s) |< ε for all (r, s)εS∗.

Proof. Let r = a+ (b− a)x and s = c+ (d− c)y, and apply the theorem.

Corollary 6.5.6. Let S∗∗ be a closed, bounded set of points (x, y), and let f(x, y) be con-
tinuous on S∗∗. Then for every ε > 0, there is a polynomial P (x, y) such that

| f(x, y)− P (x, y) |< ε

for all (x, y)εS∗∗.

Proof. Choose a, b, c, d so that S∗∗ ⊂ S∗.

Corollary 6.5.7. Let f(x) be continuous in the interval −π ≤ x ≤ π and satisfy f(−π) =
f(π). Then for every ε > 0, there is a trigonometric polynomial Un(x) as in (6.31) such
that

| f(x)− Un(x) |< ε

for all xε[−π, π].

Proof. Transform to polar co-ordinates ξ = ρ cosx, η = ρ sinx. Then φ(ξ, η) = ρf(x) is
continuous, and coincides with f on the unit circle ξ2+η2 = 1. Then φ may be approximated
uniformly by polynomials in ξ and η on a square containing the unit circle. Setting ρ = 1,
we have that f(x) may be approximated uniformly by a polynomial in cosx and sinx.

Corollary 6.5.8. Let f(x) be continuous in the interval a ≤ r ≤ b and satisfy f(a) = f(b).
Then for every ε > 0, there is a trigonometric polynomial Un(r) as in (6.31) such that

| f(r)− Un(r) |< ε

for all rε[a, b].

Proof. Let r = ( b−a2π )x+ (a+b
2 ).

6.5.5 Remark

Weierstrass Approximation Theorems (there are many, and a generalization by Stone) are
a very useful tool in the analysis of functions.

6.5.6 Exercise

1. State and prove a multivariate Weierstrass Approximation Theorem. You may find the
multivariate Boole’s Inequality (section 1.2) and/or the multivariate Tchebychev In-
equality (exercise 2 of section 2.13.3) useful.
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6.6 The uniqueness theorem for characteristic functions

We are now in a position to state and prove the main goal we have been working toward
since section 6.4, the Uniqueness Theorem for Characteristic Functions.

Theorem 6.6.1. (Uniqueness) If ψX(t) = ψY (t), then X and Y have the same distribution.

Proof. We know that

ψX(t) = EX(eitX) = EY (eitY ) = ψY (t) for all t.

Let H be the set of functions h(t) for which

EX(h) = EY (h).

Then we are given that eitxεH for all x. But then

n∑
j=−n

γje
itxj εH

for all complex numbers γj , and in particular, for all trigonometric polynomials of the form
Tn (6.28). Using the Corollary to Theorem 6.4.2, H therefore contains all polynomials of
the form (6.31).

Now Corollary 6.5.6 of the Weierstrass Approximation Theorem applies to show that
if f is continuous on the interval −π ≤ x ≤ π and satisfies f(−π) = f(π), then for every
ε > 0, f is uniformly approximal by such a polynomial. Consequently every such fεH. Since
the approximating polynomials are periodic with period 2π, if f is continuous and periodic
with period 2π, fεH. Indeed if h is continuous and periodic with any period, Corollary 6.5.8
of the previous subsection shows that hεH.

The strategy of the next part of the proof is to extend H once again, this time to
continuous functions zero outside a closed bounded interval K. This is done by showing
that such a function can be approximated arbitrarily closely by functions we already know
are in H, namely continuous periodic functions.

Let g(x) be a continuous function that is zero outside a closed bounded interval K, and
let ε > 0 be given. Choose ` large enough so that the interval (−`, `] contains K,FX(−`) <
ε/4, FX(`) > 1−ε/4, FY (−`) < ε/4 and FY (`) > 1−ε/4. Let h`(x) be a continuous function
of period 2` such that h`(x) = g(x) for each x in the interval −` < X ≤ `. It follows that
h`(x)εH. Because g(x) is continuous in the closed bounded interval K, | g(x) |< B for some
B, and for all xεK.

Then

| Eg(X)− E[g(X)IK(X)] |≤ Bε/2
and | Eg(Y )− E[g(Y )IK(Y )] |≤ Bε/2.

Also

| Eg(X)IK(Y )− Eh`(X)IK(X) |= 0

| Eg(Y )IK(Y )− Eh`(Y )IK(Y ) |= 0

| Eh`(X)IK(X)− Eh`(X) |≤ Bε/2
| Eh`(Y )− Eh`(Y )IK(Y ) |≤ Bε/2
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Putting this together,

| Eg(X)− Eg(Y ) |≤| Eg(X)− Eg(X)IK(X) |
+ | Eg(X)IK(X)− Eh`(X)IK(X) |
+ | Eh`(X)IK(X)− Eh`(X) |
+ | Eh`(X)− Eh`(Y ) |
+ | Eh`(Y )− Eh`(Y )IK(Y ) |
+ | Eh`(Y )IK(Y )− Eg(Y )IK(Y ) |
+ | Eg(Y )IK(Y )− Eg(Y ) |≤ Bε/2 + 0 +Bε/2 + 0 +Bε/2 + 0 +Bε/2

=2Bε.

Since ε > 0 can be made arbitrarily small, we have | Eg(X)−Eg(Y ) |= 0, so gεH. Therefore
H contains every continuous function that is zero outside a closed bounded interval.

We next would like to show that H can be extended still further, to a function g(x) that
is 1 if x < x∗ and 0 otherwise, where x∗ is a point of continuity of both FX(·) and FY (·).
Such a function is discontinuous at x∗ and fails to be zero outside a bounded interval.

Again we let ε > 0 be given. Let ` be chosen so that FX(`) < ε, FY (`) < ε and ` is a
continuity point of both FX(·) and FY (·). Let h(x) be a function such that h(x) = 0 for
x < `, h(x) = 1 for ` + ε < x < x∗, h(x) = 0 if x > x∗ + ε. For x between ` and ` + ε
and between x∗ and x∗ + ε, we let h be extrapolated linearly. Because H is extrapolated
linearly, it is continuous. Also it is zero outside the region [`, x∗ + ε]. Therefore hεH.

Now we consider | Eg(X) − Eh(X) |. This can be divided into five regions: x < `,
` ≤ x ≤ `+ ε, `+ ε ≤ x ≤ x∗, x∗ < ` < x∗ + ε and x > x∗ + ε. Since g and h are identical
in the third and fifth region, only the first, second and fourth must be considered. Their
expectations are bounded respectively by FX(`), FX(`+ ε)−FX(`) and FX(x∗+ ε)−F (x∗).
The first is bounded by ε. The latter two can be made arbitrarily small by letting ε → 0,
since FX(·) is right-continuous.

Therefore | Eg(X)− Eh(X) |= 0. Then

| Eg(X)− Eg(Y ) |≤ | E | g(X)− Eh(X) | + | Eh(X)− h(Y ) |
+ | Eh(Y )− E(g(Y )) |= 0.

Hence gεH.
This argument shows that FX(x∗) = Eh(X) = Eh(Y ) = FY (x∗) for every point of

continuity of both FX(·) and FY (·). Now, observe that the points of discontinuity of FX(·)
and FY (·) are at most countable. Let x be a point of discontinuity of FX(·), FY (·) or both.
Because the real line has more than countable points within every interval, no matter how
small, there is a sequence of points xi approaching x from below such that xi are points of
continuity of FX(·) and FY (·). Then

FX(x) = lim
i→∞

FX(xi) = lim
i→∞

FY (xi) = FY (x).

Hence FX(x) = FY (x) for all x, so X and Y have the same distribution.

The name “characteristic function” is now justified: a characteristic function character-
izes a probability distribution.

6.6.1 Notes and references

The uniqueness proof given in many books (Billingsley (1995) and Rao (1965), for example),
relies on a theorem of Lévy that gives an explicit inverse for the characteristic function. This
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inverse is rather unintuitive, although Lamperti (1996) does give some helpful remarks. The
proof given here follows Lukacs (1960, pp. 35-36), a path also mentioned in a problem in
Billingsley (1995, p. 355, problem 26.19).

6.7 Characteristic function and moments

Another topic that needs to be addressed is the relationship of moments to characteristic
functions. Part of this story, the part we need, is addressed in the following theorem:

Theorem 6.7.1. Let X be a random variable with characteristic function ψ(t). If E |
X |k<∞ for some integer k, then ψ has k continuous derivatives, satisfying

ψ(k)(t) = E[(iX)keitX ], (6.36)

so

ψ(k)(0) = ikE(Xk). (6.37)

Also

ψ(t) =

k∑
j=0

ij
E(Xi)tj

j!
+R(t),

where lim
t→0

R(t)

tk
= 0. (6.38)

Proof. Suppose first that k = 1. Then

ψ′(t) = lim
h→0

Eei(t+h)X − EeitX

h

= lim
h→0

E[ei(t+h)X − eitX ]

h
. (6.39)

To show that the limit and the expectation can be interchanged, we show that the expec-
tation of the limit is bounded by a function with finite expectation, as follows:

ei(t+h)x − eitx

h
=
eitx(eihx − 1)

h
. (6.40)

Now

eihx − 1

h
=

1

h


∞∑
j=0

[
(ihx)j

j!

]
− 1


=

1

h

∞∑
j=1

(ihx)j

j!

=ix

∞∑
j=1

(ihx)j−1

j!

=ix

∞∑
j=0

(ihx)j

(j + 1)!
. (6.41)
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Hence ∣∣∣∣ei(t+h)x − eitx

h

∣∣∣∣ =
∣∣eitx∣∣ ∣∣∣∣eihx − 1

h

≤ |ix|

∣∣∣∣∣∣
∞∑
j=0

(ihx)j

(j + 1)!

∣∣∣∣∣∣
= |x|

∣∣∣∣∣∣
∞∑
j=0

(ihx)j

(j + 1)!

∣∣∣∣∣∣ . (6.42)

Now
∑∞
j=0

(ihx)j

(j+1) is a complex number of the form a + bi, whose modulus is
√
a2 + b2.

Suppose
∑∞
j=0

(jhx)j

(j)! is expressed as a′ + b′i, whose modulus is
√
a′2 + b′2.

Because 1
(j+1)! ≤

1
j! for all j, we have | a′ |≤| a | and | b′ |≤ b.

Hence we have ∣∣∣∣∣∣
∞∑
j=0

(ihx)j

(j + 1)!

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∞∑
j=0

(ihx)j

j!

∣∣∣∣∣∣ =
∣∣eihx∣∣ = 1. (6.43)

Substituting (6.43) into (6.42) gives∣∣∣∣ei(t+h)x − eitx

h

∣∣∣∣ ≤ |x| . (6.44)

Using the assumption that E | X |< ∞, the limit and expectation can be interchanged,
yielding in (6.38)

ψ′(t) =E lim
h→0

ei(t+h)X − eitX

h

=E

eitX(iX) lim
h→0

∞∑
j=0

(ihX)j

(j + 1)!

 = E(iXeitX)

proving (6.36) at k = 1. Formula (6.37) follows immediately at k = 1.
To prove (6.38)

ψ(t) =E(eitX) = E

∞∑
j=0

(itX)j

j!

=1 + E(itX) + E

∞∑
j=2

(itX)j

j!

=1 + itE(X) +R(t)

where R(t) =E

∞∑
j=2

(itX)j

j!
.

Now limt→0
R(t)
t = limt→0E

∑∞
j=2

(itX)j

tj! .

But since E(| eitX |) = 1, E(1) = 1 < ∞, and E(| X |) < ∞, it follows that E |∑∞
j=2

(itX)j

j! |<∞.
Hence we may take the limit inside the expectation, so

lim
t→0

R(t)

t
= E lim

t→0

∞∑
j=2

(itX)j

j!t
= E lim

t→0

∞∑
j=1

(iX)j+1tj

(j + 1)!
= 0.
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This proves (6.38) at k = 1.
For k > 1, the same proof works, with a factor of (iX)k−1 in the expectations. Hence

provided E | X |k< ∞, the limit and expectation can be interchanged, leading to (6.36)
and therefore (6.37). Also the argument leading to (6.38) is exactly the same as in the case
k = 1. 2

Remark: The infinite sum of the individual expectations need not even make sense because
not all moments are assumed to be finite.

Corollary 6.7.2. Suppose X has mean µ and variance σ2 (so E(X2) = µ2 + σ2). Then

ψ(t) = 1 + iµt− (σ2 + µ2)t2

2
+ o(t2),

where o(t2) indicates a quantity that, when divided by t2, goes to zero as t approaches zero.

Theorem 6.7.3. Suppose X has all moments (so X has a moment generating function).
Then

ψ(t) =

∞∑
k=0

(it)k

k!
E(Xk).

Proof.

E
∣∣eitX ∣∣ =E

∣∣∣∣∣∣
∞∑
j=0

(itX)j

j!

∣∣∣∣∣∣ ≤ E
∞∑
j=0

|itX|j

j!

≤E
∞∑
j=0

| X |j (t)j

j!
= Ee|tX| <∞.

Therefore the expectation may be interchanged with the sum, and

ψ(t) = E(

∞∑
k=0

(it)k

k!
Xk) =

∞∑
k=0

(it)k

k!
E(Xk).

Finally it is worth noting that even with no assumptions about moments, a characteristic
function is continuous for all t. To see this, consider

ψ(t+ h)− ψ(t) =E[ei(t+h)X − eitX ]

=(eith − 1)E(eitX)

=(cos th+ i sin th− 1)ψ(t).

Now limh→0[ψ(t+ h)− ψ(t)] = 0.

6.7.1 Summary

ψX(t) is continuous for all t. If X has k moments, then (6.36), (6.37) and (6.38) hold. If X
has all moments, then ψ can be expanded as an infinite sum in these moments.

6.8 A continuity theorem for characteristic functions

The uniqueness theorem in section 6.6 yields the result that if X and Y have the same
characteristic function, then they have the same distribution in the sense that FX(x) =
FY (x) for all x. The purpose of this subsection is to extend this result to show that if Fn(x)
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is a sequence of distribution functions approaching F (x) (in a sense to be discussed), then
the associated characteristic functions ψn(t) approach ψ(t) for all t, and conversely.

To study this, the first task is to be precise about exactly what is meant by Fn(x)
approaching F (x). One possible meaning for this is

lim
n→∞

Fn(x) = F (x) for all x. (6.45)

Consider, however, the following example:
Example 1: Let Xn be a random variable that takes the value −1/n with probability 1/2
and 1/n with probability 1/2. Then

Fn(x) =


0 x < −1/n

1/2 −1/n ≤ x < 1/n

1 x ≥ 1/n

.

With this specification,

lim
n→∞

Fn(x) = G(x) =


0 x < 0

1/2 x = 0

1 x > 0

.

This limiting function G(x) is not a distribution function, because at x = 0 it is not right-
continuous, that is,

lim
x→0
x>0

G(x) = 1 6= G(0) = 1/2.

It is reasonable, however, to think that this sequence of random variables should have a
limiting distribution, namely one that equals 0 with probability 1. Such a random variable,
Y , has distribution function

FY (x) =

{
0 x < 0

1 x ≥ 0

which coincides with G(x) except at x = 0. For this reason, we exclude the point x = 0 from
the requirement stated in (6.45), and say that Fn(x) converges weakly to F (x) provided

lim
n→∞

Fn(x) = F (x) at points x of continuity of F. (6.46)

This definition has a second issue, namely that, so defined, F (x) need not be a cumu-
lative distribution function, as the following example shows:
Example 2: Let Xn be random variables that take the value −n with probability 1/2 and
n with probability 1/2. Then

Fn(x) =


0 x < −n
1/2 −n ≤ x < n

1 x > n

.

Now for each x, limn→∞ Fn(x) = 1/2.
Thus the limiting function fails to satisfy the conditions on a cumulative distribution

function that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. In this example, the probability
has “escaped” toward −∞ and ∞, and there does not appear to be a reasonable sense of
a limiting distribution here. Consequently we study weak convergence as defined in (6.46),
with the reminder that the limiting function is not necessarily a distribution function.
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6.8.1 A supplement on properties of the rational numbers

Rational numbers are numbers of the form p/q where p and q are integers. The material in
this section uses two important properties of rational numbers, that they are everywhere
dense, and that they are denumerable, as already demonstrated in section 3.1.1.

A set D is everywhere dense (often the adjective “everywhere” is dropped) provided
that for every xεR, and every ε > 0, there is a yεD such that | x − y |< ε. Thus every
real number x can be approximated arbitrarily closely (within ε) by a member y of D. To
show this is true of the rational numbers, choose a real number x and an ε > 0. Consider
an integer q large enough so that 1/q < ε. Let p be the smallest integer such that p/q > x.
Then by construction (p − 1)/q ≤ x. Then | x − p/q |= p/q − x < 1/q < ε. Therefore the
rational numbers are dense in the set of real numbers.

6.8.2 Resuming the discussion of the continuity theorem

I now show several results, all associated with the name Helly:
Lemma: Let {Fn(x)} be a sequence of non-decreasing functions and let D be a set that

is dense on the real line. Suppose that the sequence {Fn(x)} converges to some function
F (x) at all points xεD. Then Fn(x) converges weakly to F .

Proof. Let x be a continuity point of F , and choose x1 and x2 so that x1 ≤ x ≤ x2 and
x1εD, x2εD. Because Fn is a non-decreasing function

Fn(x1) ≤ Fn(x) ≤ Fn(x2).

Then

F (x1) = lim
n→∞

Fn(x1) ≤ lim
n→∞

inf Fn(x)

≤ lim
n→∞

supFn(x) ≤ lim
n→∞

Fn(x2) = F (x2).

Now replace x1 by a sequence of x’s approaching x from below, where each member of the
sequence is in D.

Similarly, replace x2 by a sequence of x’s approaching x from above, where each member
of the sequence is again in D. Then we have

lim
ε→0

F (x− ε) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ lim
ε→0

F (x+ ε). (6.47)

Since x is chosen to be a point of continuity of F we have

lim
ε→0

F (x− ε) = lim
ε→0

F (x+ ε) = F (x).

Thus equality holds in (6.47), and

lim
n→∞

Fn(x) = F (x),

for all points x that are points of continuity of F .

Theorem 6.8.1. Every sequence {Fn(x)} of uniformly bounded non-decreasing functions
contains a subsequence that converges weakly to a non-decreasing bounded function F (x).

Proof. Since the rational numbers are denumerable, they can be put in a sequence r1, r2, . . ..
Now consider the sequence Fn(r1). This is a bounded sequence of real numbers, and hence
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has an accumulation point. Therefore there is some subsequence {F1,n(·)} of the functions
Fn(·) such that {F1,n(r1)} converges. Let G(r1) be defined by

lim
n→∞

F1,n(r1) = G(r1).

Now consider the sequence of numbers {F1,n(r2)}. Again this is a bounded sequence
of real numbers, and hence has an accumulation point. Therefore there is a subsequence
F2,n(·) of F1,n(·) such that F2,n(r2) converges, and G(r2) can be defined by

lim
n→∞

F2,n(r2) = G(r2).

Because F2,n(·) is a subsequence of F1,n(·), it is also true that

lim
n→∞

F2,n(r1) = G(r1).

This process can be continued indefinitely, resulting in a series of subsequences, each of
which converges at yet another rational point. Now the diagonal sequence Fn,n(x) therefore
converges at every rational number x. Furthermore, the functions Fn,n(x) are bounded and
non-decreasing, and therefore so is G, which is defined for every rational number x.

Now let
F (x) = glbr>xG(r),

where glb stands for greatest lower bound. Then F (x) is defined for all real x, and agrees
with G at all rational numbers x. Also F (x) is bounded and non-decreasing.

Because the rational numbers are dense in the real line, the lemma applies, and shows
that

lim
n→∞

Fn,n(x) = F (x)

at all continuity points of F .

The argument of this theorem is a standard one in this kind of analysis, and is called a
“diagonalization argument.”

Theorem 6.8.2. (Helly-Bray) Suppose Xn is a sequence of random variables with distri-
bution functions Fn(x). Suppose

lim
n→∞

Fn(x) = F (x)

at every continuity point of F , where F is a distribution of a random variable X. Then

lim
n→∞

E(g(Xn)) = Eg(X)

for all bounded continuous functions g.

Proof. For all a < b, we have

E(g(Xn))− E(g(X)) =E(g(Xn)I(−∞,a)(Xn))− E(g(X)I(−∞,a)(X))

+E(g(Xn)I[a,b](Xn))− E(g(X)I[a,b](X))

+E(g(Xn)I(b,∞)(Xn))− E(g(X)I(b,∞)I(X))

=I1 + I2 + I3.

Now taking I1, first, since g is bounded, suppose | g |≤ B.

| I1 |< B[P{Xn ≤ a}+ P{X ≤ a}] = B[Fn(a) + F (a)].
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Choosing a sufficiently small, F (a) can be made small, as can Fn(a) for all n ≥M0. Hence
choose a so that a is a continuity point of F and B[Fn(a) + F (a)] < ε/5.

Similarly,

| I3 |<B[P{Xn > b}+ P{X > b}] =

B[(1− Fn(b)) + (1− F (b))].

Now b can be chosen large enough so that 1− F (b) is arbitrarily small, as is 1− Fn(b) for
all n ≥M1. Hence choose b to be a continuity point of F so that

B[1− Fn(b) + (1− F (b))] < ε/5

for all n ≥M1. Let M = max(M0,M1).
We are left, then, with I2. In the finite interval [a, b], since g is continuous, it is uniformly

continuous. Therefore we may divide [a, b] into m intervals,

x0 = a < x1 < . . . < xm−1 < xm = b

where x1, . . . , xm are continuity points of F and such that∣∣∣g(x)− g(xi)
∣∣∣ < ε/5

for all x, xi ≤ x < xi+1 and all i. Now consider the function

gi(x) = g(xi)I(x)(xi,xi+1).

Then Egi(Xn) = g(xi)[Fn(xi+1)− Fn(xi)], so

lim
n→∞

Egi(Xn) = g(xi)[F (xi+1)− F (xi)].

Hence there is an Ni such that∣∣∣Egi(Xn)− Egi(X)
∣∣∣ < ε/5m (6.48)

for all n ≥ Ni. Let g∗(x) =
∑m
i=1 gi(x).

Then for all n ≥ max{M,N1, N2, . . . , Nm} = N ,∣∣∣Eg∗(Xn)Ia≤Xn≤b(Xn)
∣∣∣ ≤ m∑

i=1

∣∣∣Eg(Xn)Ia≤Xn≤b(Xn)

−Eg∗(X)Ia≤X≤b(X)
∣∣∣

≤m(ε/5m) = ε/5.

Now ∣∣∣I2∣∣∣ =
∣∣∣Eg(Xn)Ia≤Xn≤b(Xn)− g(X)Ia≤X≤b(X)

∣∣∣
≤
∣∣∣Eg(Xn)Ia≤Xn≤b(Xn)− g∗(Xn)Ia≤Xn≤b(Xn)

∣∣∣
+
∣∣∣Eg∗(Xn)Ia≤Xn≤b(Xn)− g(Xn)Ia≤Xn≤b(Xn)

∣∣∣
+
∣∣∣Eg(Xn)Ia≤Xn≤b(Xn)− g∗(X)Ia≤X≤b(X)

∣∣∣
≤ ε

5
(Fn(b)− Fn(a)) + ε/5 + ε/5(F (b)− F (a))

≤3ε/5.
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Therefore
| Eg(Xn)− E(g(X)) |< ε

for all n ≥ N , so
lim
n→∞

Eg(Xn) = g(X).

Definition: Suppose Xn is a sequence of random variables with distribution function
Fn(x). The sequence Xn is said to converge in distribution to the random variable X if

lim
n→∞

Fn(x) = F (x)

at every point of continuity of F (x), where F (x) is the distribution function of X.

Theorem 6.8.3. The sequence of random variables Xn converges in distribution to the
random variable X if and only if

lim
n→∞

ψn(t) = ψ(t)

for each t, where ψn(t) is the characteristic function of Xn, and ψ(t) is the characteristic
function of X.

Proof. First suppose limn→∞ Fn(x) = F (x). Since the functions sinX and cosX are
bounded and continuous, the Helly-Bray Theorem applies to them. Then

lim
n→∞

ψn(t) = limE(eitXn) = lim
n→∞

E(cos tXn + i sin tXn)

= lim
n→∞

E cos(tXn) + i lim
n→∞

E sin(tXn)

=E(cos tX + i sin tX) = E(eitX) = ψ(t).

The second half of the proof is longer.
Now suppose limn→∞ ψn(t) = ψ(t), where ψ(t) is a characteristic function of a random

variable X with distribution function F . By the Helly Theorem, there is a subsequence Fnk
of Fn whose limit is a non-decreasing bounded function G, so limFnk(x) = G(x), where G
is non-decreasing and bounded. Since 0 ≤ Fnk(x) ≤ 1 for all x and k, we have 0 ≤ G(x) ≤ 1
for all x.

The next step is to show that G(x) is a legitimate distribution function, that is, to show
limx→−∞G(x) = 0 and limx→∞G(x) = 1. This depends crucially on the fact that ψ(t) is
continuous at t = 0. We do this with an indirect argument, supposing the contrary and
deriving a contradiction. Suppose then, that G(∞) − G(−∞) = ∆ < 1. Choose ε > 0 so
that 0 < ε < 1 − ∆. Because ψ(t) = 1 at t = 0 and is continuous there, there is a τ > 0
sufficiently small that

| 1

2τ

∫ τ

−τ
(ψ(t)− 1)dt |< ε/2,

or, equivalently, that
1

2τ

∫ τ

−τ
ψ(t)dt > 1− ε/2 > ∆ + ε/2.

Now ∫ τ

−τ
ψnj (t)dt =

∫ τ

−τ
Enj (e

itXj )dt

=Enj (

∫ τ

−τ
eitXdt),
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where the interchange of integrals is OK because the integrand is uniformly bounded.
Let us study, then ∫ τ

−τ
eitXdt =

∫ τ

−τ
[cos(tX) + i sin(tX)]dt.

Now let

I =

∫ τ

−τ
(cos tX)dt.

Substituting y = tX, we have

I =

∫ τX

−τX
(cos y)

dy

X
=

sin y

X

∣∣∣τX
−τX

=
sin τX

X
− sin(−τX)

X

=
2 sin τX

X
.

For the other integral, let

J =

∫ τ

−τ
(sin τX))dt.

Making the same substitution,

J =

∫ τX

−τX

(sin y)dy

X
=
− cos y

X

∣∣τX
−τX =

− cos τX

X
+

cos(−τX)

X
= 0.

Therefore ∫ τ

−τ
eitXnj dt =

2 sin τXnj

Xnj

.

Now choose a cutoff K where K is so large that 1/τK < ε/4. and K and −K are points of
continuity of G and Fnk for all k. Let L be the interval [K,−K]. We divide the space into
two parts: L and Lc, and consider a bound on∣∣∣∣2 sin τXnj

Xnj

∣∣∣∣
depending on whether Xnj is in L or not.

If Xnj εL
c, then | Xnj |> K. Together with | sin τXnj |≤ 1, this yields∣∣∣∣2 sin τXnj

Xnj

∣∣∣∣ ≤ 2

K
.

For the case where Xnj εL, we use the following bound:

0 ≤
∫ x

0

(1− cos t)dt = t− sin t |x0 = x− sinx.

Therefore x ≥ sinx if x > 0. Since both x and sinx are odd functions, this implies

| x |≥| sinx | for all x.

Applied to the function in question, ∣∣∣∣2 sin τXnj

Xnj

∣∣∣∣ ≤ 2τ
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for all Xnj , and in particular for Xnj εL.
Returning to the main integral of interest, we have∫ τ

−τ
ψnj (t)dt =Enj

[∫ τ

−τ
eitXdt

]
=Enj

2 sin τX

X
.

Then

1

2τ

∣∣∣∣∫ τ

−τ
ψnj (t)dt

∣∣∣∣ ≤ 1

2τ
EnjIL(X)

∣∣∣∣2 sin τX

X

∣∣∣∣+
1

2τ
EnjILc(X)

∣∣∣∣2 sin τX

X

∣∣∣∣
≤P{

∣∣Xnj

∣∣ ≤ K}+ 1/τK.

Now since Fnj → F , we have

P{| Xnj |≤ K} = Fnj (K)− Fnj (−K)→ G(K)−G(−K) ≤ ∆.

Therefore there is a number N such that, for all Nj ≥ N , P{| XNj ≤ K} ≤ ∆+ ε/4. Hence,
for all Nj ≥ N

1

2τ

∣∣∣∣∫ τ

−τ
ψNj (t)dt

∣∣∣∣ < ∆ + ε/4 + ε/4 = ∆ + ε/2.

However, ∣∣∣∣ 1

2τ

∫ τ

−τ
ψNj (t)dt

∣∣∣∣→ ∣∣∣∣ 1

2τ

∫ τ

−τ
ψ(t)dt

∣∣∣∣ > ∆ + ε/2

contradiction. Therefore ∆ = 1, and G(−∞) = 0 and G(∞) = 1.
So far, we have shown the existence of one subsequence Fnk that approaches a dis-

tribution function G, with characteristic function ψ(t). Now suppose there were another
subsequence that approaches a function H. By the proof above, it would also be a distribu-
tion function. Also it would have characteristic function ψ(t), By the uniqueness theorem,
we must have G(x) = H(x). Hence every convergent sequence converges to G. Consequently

lim
n→∞

Fn(x) = G(x)

for all x.

To give some intuition as to how this theorem works, reconsider Example 2, where Xn

takes the value −n with probability 1/2, and n with probability 1/2. The suggestion was
made that this sequence of random variables has no limiting distribution in any reasonable
sense. Now

ψn(t) =
1

2
(e−int + eint)

=
1

2
[cos(−nt) + i sin(nt) + cos(nt) + i sin(nt)]

=
1

2
[2 cosnt] = cosnt.

As n→∞, ψn(t) = cosnt has no limiting function.
There are subsequences of it that do converge, for example those such that cosnt is close

to 1, or 0, or -1. However each of these subsequences fails to have a limiting distribution
function that corresponds to it, as the proof breaks down at that point.



THE NORMAL DISTRIBUTION 259

6.8.3 Summary

Using the Helly and Helly-Bray Theorems, this section shows that FXn(x) → FX(x) at
every point of continuity if and only if ψXn(t)→ ψX(t).

6.8.4 Notes and references

The sensitive part of the proof is the demonstration that G(∞) = 1 and G(−∞) = 0. Here
I followed the path of Tucker (1967).

6.8.5 Exercises

1. Explain in your own words what convergence in distribution means.

2. Suppose Xn is the random variable that has probability 1/n on each of the n points
{ 1
n ,

2
n , . . . ,

n
n}. Let X be the random variable that is uniform on (0, 1). Show that Xn

converges to X in distribution.

6.9 The normal distribution

The standard normal distribution has the following density function:

φ(x) =
1√
2π
e−x

2/2 −∞ < x <∞. (6.49)

This density is shown in Figure 6.1.
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Figure 6.1: Density of the standard density normal distribution.

Commands: x=(-100:100)/20

y=(1/sqrt(2*pi))*exp (-(x**2)/2)

plot (x,y,ylab=’’density’’)
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Clearly φ ≥ 0 for all real x, but we must check that its integral is 1. This is accomplished
with a surprisingly effective trick. Instead of evaluating the integral, we evaluate its square:

I =
1

2π

∫ ∞
−∞

e−x
2/2dx

∫ ∞
−∞

e−y
2/2dx

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2dxdy.

Now we transform to polar co-ordinates: x = r sin θ, y = r cos θ, as discussed in section 5.9.
The Jacobian found there is r. Then

I =
1

2π

∫ π

−π

∫ ∞
0

e−r
2/2rdrdθ =

∫ ∞
0

re−r
2/2dr.

Now let w = r2/2 so dw = rdr. Then

I =

∫ ∞
0

e−wdw = −e−w |∞0 = 1 .

Since the square of the integral in question is 1, and since a non-negative function cannot
integrate to a negative number, the integral takes the value 1. Therefore φ(x) is a legitimate
probability density.

Now suppose that a random variable Y is related to a standard normal random variable
X by the relation Y = σX + µ. Then Y has the probability distribution

fY (y) =
1√
2πσ

e−(y−µ)2/2σ2

−∞ < y <∞, (6.50)

using the theory of transformations developed in Chapter 5.
I now derive the moment generating function of the standard normal random variable:

MX(t) =E(etX) =

∫ ∞
−∞

etx
1√
2π
e−x

2/2dx

=
1√
2π

∫ ∞
−∞

e−
1
2 (x2−2tx)dx

=
1√
2π

∫ ∞
−∞

e−
1
2 (x2−2tx+t2)et

2/2dx

=
et

2/2

√
2π

∫ ∞
−∞

e−
1
2 (x−t)2dx

=et
2/2. (6.51)

Expanding et
2/2 in a Taylor series,

et
2/2 =

∞∑
k=0

1

k!

(
t2

2

)k
=

∞∑
k=0

1

k!2k
t2k

=

∞∑
k=0

(2k)!

k!2k
t2k

(2k)!
.

Hence the odd moments of X are 0, and the kth even moments are

E(X2k) =
(2k)!

k!2k
. (6.52)
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In particular

E(X) = 0

E(X2) = 1

and so V (X) = E(X2)− (E(X))2 = 1−02 = 1. Therefore the standard normal distribution
has mean 0 and variance 1. Hence also the transformed normal distribution Y = σX+µ has
mean µ and variance σ2, and is often written Y ∼ N(µ, σ2). In this notation, X ∼ N(0, 1).
If Y ∼ N(µ, σ2), then X = Y−µ

σ ∼ N(0, 1).
I now derive the characteristic function of a standard normal random variable X. We

have

ψX(t) =E(eitX) = E(cos tX + i sin tX)

=

∫ ∞
−∞

(cos(tx) + i sin(tx)) · 1√
2π
e−x

2/2dx.

The standard normal density φ(x) is symmetric around 0. Therefore the integral of any
odd function of X with respect to such a density is 0. Since sin(tX) is an odd function of
X for every t, its integral is zero. Hence we have

ψX(t) =

∫ ∞
−∞

(cos tx) · 1√
2π
e−x

2/2dx.

We know immediately that ψX(t) is a real valued function of t. Expanding cos tX in its
Taylor series, we have

ψX(t) =

∫ ∞
−∞

∞∑
k=0

(−1)k(xt)2k

(2k)!
· φ(x)dx

=

∞∑
k=0

(−1)kt2k

(2k)!
·
∫
x2kφ(x)dx

=

∞∑
k=0

(−1)kt2k

(2k)!
· (2k)!

k!2k
=

∞∑
k=0

(−t2/2)k

k!
= e−t

2/2, (6.53)

using (6.52).
It is worthwhile to know that the cdf of a standard normal distribution

Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2dy (6.54)

is not available in closed form. The solution to this issue is typical of mathematical custom,
namely to make friends with Φ. There are both tables of Φ (available in many books) and
algorithms for computing Φ. Some of its important properties are:

Φ(x) =1− Φ(−x).

Φ(0) =0.5

Φ(1) =0.8413

Φ(2) =.9772.

If Y ∼ N(µ, σ2), then FY (x) = Φ(x−µσ ), since

FY (x) =P {Y ≤ x} = P

{
Y − µ
σ

≤ x− µ
σ

}
= P

{
X ≤ x− µ

σ

}
=Φ

(
x− µ
σ

)
.



262 NORMAL DISTRIBUTION

The moment generating function for a random variable Y ∼ N(µ, σ2) is

MY (t) = eµte(σt)2/2 = eµt+σ
2t2/2 (6.55)

using Theorem 6.2.3 with a = σ and b = µ. Also the characteristic function of Y ∼ N(µ, σ2)

is ψY (t) = eiµt−σ
2t2/2.

Theorem 6.9.1. (Linear Combinations of Independent Normal Random Variables) Let
Xj ∼ N(µj , σ

2
j ) be independent for j = 1, . . . , n and let W =

∑n
j=1 bjXj, with bj not all

zero.
Then W ∼ N(µ, σ2) with µ =

∑n
j=1 bjµj, and σ2 =

∑n
j=1 b

2
jσ

2
j .

Proof. Let ψj(t) be the characteristic function of Xj . The characteristic function of W is
then

YW (t) =

n∏
j=1

(bjtj) =

n∏
j=1

eiµjbjt−σ
2
j b

2
j t

2/2

=ei
∑n
j=1 µjbjt−

∑n
j=1 σ

2
j b

2
j t

2/2

=eiµt−σ
2t2/2,

which is the characteristic function of a N(µ, σ2) random variable. The uniqueness theorem
concludes the proof.

Corollary 6.9.2. Let Xi ∼ N(µ, σ2)i = 1, . . . , n be independent, and let X =
∑n
i=1Xi/n.

Then X̄ ∼ N(µ, σ2/n).

Proof. Let bi = 1/n, i = 1, . . . , n in the theorem.

6.10 Multivariate normal distributions

Our treatment of the multivariate normal distribution traces our treatment of the univariate
case, as follows: Suppose X = (X1, . . . , Xk) is a vector of k independent standard normal
random variables. Then the pdf of X is

fX(x) =

k∏
j=1

1√
2π
e−x

2
j/2

=
1

(2π)k/2
e−

∑k
j=1 x

2
j/2 · −∞ < xj <∞ for all j = 1, . . . , k.

Also its characteristic function is

ψX(t) =

k∏
j=1

ψXj (tj) =

k∏
j=1

e−t
2
j/2

=e−
∑
t2j/2 = e−t

′t/2.

Such a random vector’s distribution is denoted X ∼ N(0, I), for reasons that will become
apparent.

Now let
∑

be a symmetric matrix with positive eigenvalues. (I hope that the use of
∑

here, to represent a covariance matrix, as is traditional, will not confuse a reader used to
thinking of

∑
as a sign for summation.) Then by the decomposition (Theorem 1 of 5.8),

we may write
∑

in the form ∑
= PDP ′
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where P is an orthogonal matrix, and D is diagonal with positive numbers on its diagonal.
Let ∆ be a diagonal matrix with diagonal elements equal to the (positive) square root of
those of D. Finally let ∑1/2

= P∆P ′.

When
∑1/2

is defined this way,∑1/2
(∑1/2

)′
=P∆P ′P∆′P ′

=P∆∆′P ′

=PDP ′

=
∑

.

Using this definition of
∑1/2

, let Y =
∑1/2

X + µµµ, where X ∼ N(0, I). Then E(Y) = µµµ,
and

Cov(Y) =E[(Y −µµµ)′(Y −µµµ)] = E

[∑1/2
XX′

(∑1/2
)′]

=
∑1/2

E (XX′)
(∑1/2

)′
=
∑1/2

I
(∑1/2

)′
=
∑1/2

(∑1/2
)′

=
∑
.

Furthermore, the absolute value of the determinant of Jacobian of the transformation

y =
∑1/2

x +µµµ is ∥∥∥∑1/2
∥∥∥ =

∥∥∥P∆P ′
∥∥∥ =

∥∥∥P∥∥∥ ∥∥∥∆
∥∥∥ ∥∥∥P ′∥∥∥

=
∥∥∥∆
∥∥∥ =

∣∣∣D∣∣∣1/2 =
∣∣∣∑∣∣∣1/2.

Hence Y has the pdf

fY(y) =
1

(2π)k/2|
∑
|1/2

e
− 1

2 (y−µ)′
∑−1/2(

∑−1/2)′(y−µ) 1

|
∑
|1/2

−∞ < yi <∞ for i=1,...,k

where
∑−1/2

= P∆−1P ′, so∑−1/2
(∑−1/2

)′
=P∆−1P ′P∆−1P ′

=P∆−2P

=PD−1P ′

=
∑−1

,

using notation from section 5.8.
Hence

fY(y) =
1

(2π)k/2

∣∣∣∑∣∣∣−1/2

e−
1
2 (y−µ)′

∑−1(y−µ) −∞ < yi <∞i=1,...,k. (6.56)

Furthermore, the random variable Y has moment generating function

MY (t) = eµµµ
′tMX(t′A) = eµ

′tet′
∑−1/2(

∑−1/2)′t
2 = eµ

′t+
t′

∑−1 t
2 (6.57)
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and characteristic function

ψY (t) = eiµ
′tψX(t′A) = eiµ

′te−t
′∑−1/2(

∑−1/2)′t = eiµ
′t− t

′∑−1

2 . (6.58)

It comes, then, as no surprise that the distribution of Y is denoted Y ∼ N(µµµ,
∑

), and is
said to have a normal distribution with mean µµµ and covariance matrix

∑
.

6.11 Limit theorems

We are finally nearly ready to address our main goals. Before we do, there is one additional
lemma we need:

Lemma 6.11.1. limn→∞(1 + α/n+ o(1/n))n = eα, where α can be a complex number.

Proof. First, consider the simplified version as follows: limn→∞(1 + α/n)n. We pursue this
by expanding using the binomial theorem. Then we have

lim
n→∞

(1 + α/n)n = lim
n→∞

n∑
j=0

(α/n)j1n−j
(

n

j, n− j

)
.

Since n appears both in the limit of summation and in the expression summed, we can
extend this expression by using the convention that

(
n
j

)
= 0 if j > n. Then we may write

lim
n→∞

(1 + α/n)n = lim
n→∞

∞∑
j=0

(
n

j, n− j

)
(α/n)j .

The limit and the sum can be interchanged provided, after that is done, absolute convergence
can be shown, as it will.

The jth term in the sum is(
n

j, n− j

)
(α/n)j =

αj

j!

[
n!

(n− j)!nj

]
.

We have seen the expression in square brackets before, in section 3.9 (twice), and know that

lim
n→∞

[
n!

(n− j)!nj

]
= 1

for all j. Therefore

lim
n→∞

(1 + α/n)n =

∞∑
j=0

αj/j! = eα.

Since this series converges absolutely, the interchange of sum and limit is justified, and the
proof is complete.

Now we consider the limit in the lemma, limn→α(1 + α/n + o(1/n))n. This can be
expanded using the multinomial theorem (here trinomial theorem). If that is done, it is
easy to see that all summands including o(1/n) to a positive power must go to zero with
n. Consequently only those with o(1/n)0 matter, which reduces to the problem considered
above. Hence

lim
n→∞

(1 + α/n+ o(1/n))n = eα

for all complex numbers α.
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Theorem 6.11.2. (A sharper weak law of large numbers) Let X1, X2, . . . be a sequence of
independent and identically distributed random variables with mean µ. Let Sn = X1 +X2 +
. . .+Xn. Then X̄ = Sn

n converges in distribution to the random variable that takes the value
µ with probability 1.

Proof. Suppose Xi has characteristic function ψ(t). Then Xi
n has characteristic function

ψ(t/n), and Sn
n = (

∑n
i=1Xi)/n has characteristic function (ψ(t/n))n.

Because E(Xi) = µ exists, we may expand ψ in accordance with Theorem 6.7.1, so

ψ(t) = 1 + iµt+ o(t).

Substituting, X̄ has characteristic function

(1 + iµt/n+ o(t/n))n,

whose limit, by Lemma 6.11.1, is eiµt. We can recognize eiµt as the characteristic function
of the random variable taking the value µ with probability 1.

By the continuity theorem, this implies that the distribution of Sn
n converges to a dis-

tribution taking the value µ with probability 1.

This result is more general than the weak law of large numbers found in section 2.13, as
there the result depended on the existence of the variance of X, where this result does not.

Now we are in a position to explore the theorem we have aimed at all along, the Central
Limit Theorem. We already know from the Corollary in section 6.9 that X̄ ∼ N(µ, σ2/n)
if Xi ∼ N(µ, σ2) and are independent. The Central Limit Theorem is a vast generalization
of this result, in that it removes the assumption that the Xi’s are normal (although they
must still have a mean and a variance). On the other hand, the Corollary holds for all n,
while the Central Limit Theorem holds only in the limit. More formally,

Theorem 6.11.3. (Central Limit Theorem) Let X1, X2, . . . be independent, identically
distributed random variables having mean µ and variance σ2. Then the random variable

Yn =
∑n
i=1Xi−nµ
σ/
√
n

=
√
n(X̄−µ)
σ has a limiting standard normal distribution.

Proof. Because Xi has mean µ and variance σ2, the random variables Zi = Xi−µ
σ i =

1, . . . , n are independent and identically distributed, with mean 0, variance 1 and E(Z2
i ) =

(E(Zi))
2+Var(Zi) = 1. Let ψ(t) be the characteristic function of Z. Then by Theorem 6.7.1,

ψ(t) = 1− t2/2 + o(t2).
Now Yn√

n
=
∑n
i=1 Zi has characteristic function (ψ(t))n, and Yn has characteristic func-

tion
(ψ(t/

√
n))n = (1− t2/2n+ o(t2/n))n

which has limit e−t
2/2 using Lemma 6.11.1. Now e−t

2/2 is recognized as the characteristic
function of a unit normal distribution (see section 6.10). Hence by the continuity theorem,
Yn has a limiting standard normal distribution.

The central limit theorem is called that because it is central to so much of probability
theory. There are many generalizations. First, there are generalizations to independent
but not necessarily identically distributed sequences, yielding the Lyapunov and Lindeberg-
Feller conditions. Second, there are generalizations to distributions not having two moments,
leading to the stable laws. Third, there are multivariate generalizations. And fourth, there
are generalizations that relax the assumption of independence. There are also generalizations
having to do with the rate of convergence to the normal distribution, leading to Berry-Essen-
type theorems.

What is important about it for our purposes is that it explains why the normal distri-
bution plays such an important role in statistical modeling. It is the first distribution most
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statisticians think of as an error distribution, sometimes with the idea that there may be
many independent sources of error contributing. And this is why it is called the normal
distribution. It is also called the Gaussian distribution, to honor Gauss.



Chapter 7

Making Decisions

“Did you ever have to finally decide
Take up on one and let the other one ride
It’s not often easy and it’s not often kind
Did you ever have to make up your mind?”

—The Lovin’ Spoonful

7.1 Introduction

We now shift gears, returning from serious mathematics and probability, to a more philo-
sophical inquiry, the making of good decisions. The sense in which the recommended de-
cisions are good is an important matter to be explained. In addition to explaining utility
theory, this chapter explains why the conditional distribution of the parameters θθθ after
seeing the data x is a critical goal of Bayesian analyses, as shown in section 7.7.

7.2 An example

Just as in Chapter 1 there was no suggestion that you should have particular probabilities for
certain events, in this chapter there is no suggestion that you should have particular values,
that is, that you should prefer certain outcomes to others. This book offers a disciplined
language for representing your beliefs and goals, with minimal judgment about whether
others share, or should share, either.

Suppose you face a choice. The set of decisions available to you is D, and you are
uncertain about the outcome of some random variable θ. For the moment, assume that D
is a finite set. We’ll return to the more general case later. The set of pairs (d, θ), where
d ε D and θ ε Ω, is called the set of consequences C. You can think of a consequence as what
happens if you choose d ε D and θ ε Ω is the random outcome.

To take a simple example, suppose that you are deciding whether to carry an umbrella
today, so D = {carry, not carry}. Suppose also you are uncertain about whether it will
rain, so θ = 1 if it rains, and θ = 0 if it does not. Then you are faced with four possible
consequences: {c1 = (take, rain), c2 = (do not take, rain), c3 = (take, no rain), and c4 =
(do not take, no rain)}.

The possible consequences can be displayed in a matrix as follows:

267
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uncertain outcome

rain no rain

decision

take umbrella c1 c3

do not take umbrella c2 c4

Table 7.1: Matrix display of consequences.

A second way of displaying this structure is with a decision tree. Decision trees code
decisions with squares and uncertain outcomes with circles. Time is conceived of as moving
from left to right. Then a decision tree for the umbrella problem is shown in Figure 7.1:

yes

no

yes

no

yes

no

C

C

C

C

3

2

4

1

take umbrella? rain?
Figure 7.1: Decision tree for the umbrella problem.

I need to understand how you value these consequences relative to one-another, so I
need to ask you some structural questions.

We are now going to explore your utilities for the various consequences. You can think of
your utility for c, which we will write as U(c) = U(d, θ) as how you would fare if consequence
c occurs, that is, if you make decision dεD and θεΩ is the random outcome.

First, I need you to identify which you consider the best and the worst outcome to be.
Suppose you consider c4 = cb to be the best consequence. This means that you most prefer
the consequence in which you do not bring your umbrella and it does not rain. We assign
the consequence cb to have utility 1, so U(cb) = 1. Suppose also that you consider c2, where
you do not bring your umbrella and it does rain, to be the worst outcome. Then c2 = cw,
and we assign cw to have utility 0, so U(cw) = 0. The choices of 1 and 0 for the utilities of
cb and cw, respectively may seem arbitrary now, but soon you will understand the reason
for these choices.

Now consider a new kind of ticket, Tp, that gives you cb, the best consequence, with
probability p, and cw, the worst consequence, with probability 1− p. Clearly, if Tp and Tp′

are two such tickets, with p > p′, you prefer Tp to Tp′ because Tp gives you a greater chance
of the best outcome, cb, and a smaller chance of the worst outcome, cw.

Now consider a consequence that is neither the best nor the worst, say c1, which means
that you take an umbrella and it does rain. Now we suppose that there is some p1, 0 ≤ p1 ≤ 1
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such that you are indifferent between Tp1 and c1. Then we assign to c1 the utility p1. Thus
we write U(c1) = p1 where p1 is chosen so that you are indifferent between Tp1 and c1. You
can now appreciate why 1 and 0 are the right utilities for cb and cw, respectively. Also it
is important to notice that there cannot be two values, say p1 and p′1, such that you are
indifferent between Tp1 and c1 and also indifferent between Tp′1 and c1, since you prefer Tp1
to Tp′1 if p1 > p′1. The situation can be illustrated with the following diagram:

C1

T

C

p

p1 Cb

w

1
1 p

=
1

Figure 7.2: The number p1 is chosen so that you are indifferent between these two choices.

Let’s suppose you choose p1 = 0.8, which means that the consequence that you take the
umbrella and it rains, is indifferent to you to the ticket T0.8, under which, with probability
0.8 you get cb (no rain, no umbrella) and with probability 0.2 you get cw (rain, no umbrella).

Similarly we may suppose there is some number p3 such that you are indifferent between
consequence c3 (no rain, took umbrella) and Tp3 . As we did with c1, we let U(c3) = p3.
We’ll suppose you choose p3 = 0.4.

Thus for each consequence ci, i = 1, 2, 3, 4, we take U(ci) = pi, where you are indifferent
between Tpi and ci. Utility gives a measure of how desirable you find each consequence to
be, relative to cb, the best outcome, and cw, the worst outcome.

Now how shall we assess the utility of a decision, such as taking the umbrella? There are
two possible consequences of taking the umbrella, c1 and c3. Suppose your probability of rain
is r. Then taking the umbrella is equivalent to you to consequence c1 with probability r and
c3 with probability 1−r. Since ci is indifferent to you to a ticket giving you cb with probability
pi and cw with probability 1 − pi, taking the umbrella is equivalent to a ticket giving you
cb with probability p1r + p3(1 − r) and cw with probability (1 − p1)r + (1 − p3)(1 − r) =
1 − [p1r + p3(1 − r)]. And, in general, the utility of a decision d is the expected utility of
the consequences (d, θ) where the expectation is taken with respect to your opinion about
θ, or, put into symbols,

U(d) = EU(θ | d).

Here d is indifferent to you to a ticket Tu, where u = EU(θ | d).
Suppose your probability of rain is r = 0.5. Then, with the chosen numbers, the expected

utility of bringing the umbrella is

p1r + p3(1− r) = (0.8)(0.5) + (0.4)(0.5) = (0.4) + (0.2) = 0.6.

This means that, for you, if the hypothesized numbers were your choices, bringing the
umbrella is equivalent to you to T0.6, which gives you 0.6 probability of cb, and 0.4 probability
of cw.
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We can also assess the expected utility of not bringing the umbrella. Here the possible
outcomes are c2 and c4, which happen to be cw and cb, respectively, in our scenario, and
therefore have utilities 0 and 1, respectively. Then not to bring the umbrella is equivalent
to you to a 0.5 probability of c4 = cb and a 0.5 probability of c2 = cw, and therefore you are
indifferent between not bringing the umbrella and T0.5. The expected utility of not bringing
the umbrella is then

1(0.5) + 0(0.5) = 0.5.

Since T0.6 is preferred to T0.5, the better decision is to bring the umbrella. The choices,
with nodes labeled with probabilities and utilities, are given in Figure 7.3 (in which time
goes from left to right, as you make the decision before you find out whether it rains):

p(yes)=0.5 U(C )=0.8

3

4

U(C )=0.4

U(C )=0

U(C )=1

p(yes)=0.5

p(no)=0.5

rain?

p(no)=0.5

2

U(yes)=0.6

U(no)=0.5

bring umbrella?

1

Figure 7.3: Decision tree with probabilities and utilities.

It is now easy to see that choosing dεD to maximize U(d) gives you the equivalent of
the largest probability of the best outcome, and hence is the best choice for you.

7.2.1 Remarks on the use of these ideas

The scheme outlined above starts from a very common-sense perspective. First, it asks you
what alternatives D you are deciding among. Second, it asks you what uncertainties Ω you
face. Third, it asks you how you value the consequences C, which consists of pairs, one from
D and one from Ω, against each other, in a technique that articulates well with probability
theory. Finally, it asks how likely you regard each of the possible uncertain outcomes. It
is hard to see how any sensible organization of the requisite information for making good
decisions would avoid asking these questions.

The usefulness of this way of thinking depends critically on the ability of the decision
maker to specify the requested information. Often, for example, what appears to be a
difficult decision problem is alleviated by the suggestion of a previously uncontemplated
alternative decision. Similarly the space of uncertainties is sometimes too narrow. In my
experience, the careful structuring of the problem can lead the decision maker to consider
the right, pertinent questions, which can be an important contribution in itself.

I should also remind you of the sense in which these are “good” decisions. There should
be no suggestion that decisions reached by maximizing expected utility have, ipso facto, any
moral superiority. Whether or not they do depends on the connection between moral values
and the declared utilities of the decision maker. Thus the decisions made by maximizing
expected utility are good only in the sense that they are the best advice we have to achieve
the decision maker’s goals, whether those are morally good, bad or indifferent.
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There is also nothing in the theory of expected utility maximization that bars deciding
to let others choose for you. For example, in her wise and insightful book “The Art of
Choosing,” Sheena Iyengar (2010) relates the story of her parents’ arranged marriage. She
presents it as accepting a centuries-old tradition, and of wanting to do one’s duty within
that tradition (see pages 22-45). If “abiding by tradition” is what’s most important to you,
then that can be expressed in your utility function.

7.2.2 Summary

To make the best decisions, given your goals, maximize your expected utility with respect
to your probabilities on whatever uncertainties you face.

7.2.3 Exercises

1. Vocabulary. State in your own words the meaning of:

(a) consequence

(b) utility of a consequence

(c) utility of a decision

2. Assess your own utilities for the decision problem discussed in this section. Is there a
probability for rain, r, above which maximization of expected utility suggests to taking
an umbrella, and below which not? If so, what is that probability? Would you, in fact,
choose to take an umbrella if your probability were above that critical value, and not
take an umbrella if it were below? Why or why not?

3. Suppose that in the example of section 7.2, your utilities are as follows:

U(c4) = 1, U(c3) = 1/3, U(c2) = 0, U(c1) = 2/3.

Suppose your probability of rain is 1/2. What is your optimal decision?

7.3 In greater generality

To be more precise, it is important to distinguish D from Ω. The set of decisions D that
you can make are in your control, but which θεΩ is, in general, not. To make this distinct
salient in the notation, I follow Pearl (2000), and use the function do(di) to indicate that you
have chosen di. Furthermore, it is possible that your probability distribution may depend
on which diεD you choose. Consequently, I should in general ask you for your probabilities
p{θ | do(di)}.

In the case of whether or not to carry an umbrella, it is implausible that your probability
of rain will depend on whether you carry an umbrella (joking aside). However, suppose that
your decisions D are whether to drive carefully or recklessly, and your uncertainty is about
whether you will have an accident. Here it is entirely reasonable that your probability of
having an accident depends on your decision about whether to drive carefully or recklessly,
i.e., on what you do. (It is a wonder of the English language that reckless driving can cause
a wreck).

So start with decisions D = {d1, . . . , dm} and Ω = {θ1, . . . , θn} of uncertain events.
Suppose your probabilities are p{θj | do(di)}. A consequence Cij is the outcome if you
decide to do di and θj ensues. Let cb be at least as desirable as any Cij , and let cw be
no more desirable than any Cij . Let u(Cij) be the probability of getting cb, and otherwise
getting cw, such that you are indifferent between getting Cij for sure, and this random
prospect. In symbols,

u(Cij) = p{cb | θj , do(di)}. (7.1)
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Then if you decide on di, your probability of getting cb (and otherwise cw), is

p{cb | do(di)} =

n∑
j=1

p{cb | θj , do(di)}p{θj | do(di)}

=

n∑
j=1

u(Cij)p{θj | do(di)}. (7.2)

Therefore you maximize your probability of achieving the best outcome for you by choosing
di to maximize

ū(di) =

n∑
j=1

u(Cij)p{θj | do(di)}. (7.3)

When the set of possible decisions D has more than finitely many choices, there may not
exist a maximizing choice. For example, suppose D consists of the open interval D = {x |
0 < x < 1}. Suppose also (to keep it very simple) that there is no uncertainty, and that your
utility function is U(x) = x. There is no choice of x that will maximize U(x). However, for
every ε > 0, no matter how small, I can find a choice, such as x = 1− ε/2, that gets better
than ε-close. The casual phrase “maximization of expected utility” will be understood to
mean “choose such an ε-optimal decision” if an optimal decision is not available. (The word
“ε-optimal” is pronounced “epsilon-optimal”.)

Suppose you are debating between two decisions that, as near as you can calculate,
are close in expected utility, and therefore you find this a hard decision. Because these
decisions are close in expected utility, it does not matter very much (in prospect, which
is the only reasonable way to evaluate decisions you haven’t yet made) which you choose.
The important point is to avoid really bad decisions. Consequently, “hard” decisions are
not hard at all. If necessary, one way of deciding is to flip a coin, and then to think about
whether you are disappointed in how the coin came out. If so, ignore the coin and go with
what you want. If not, go with the coin.

Decisions can be thought of as tools available to the decision maker to achieve high
expected utility. Thus the right metric for whether a decision is nearly optimal is whether
it achieves nearly the maximum expected utility possible under the circumstances, and not
whether the decision is close, in some other metric, to the optimal decision.

When Ω has more than finitely many elements, the finite sum in (7.3) is replaced by an
infinite sum (as in Chapter 3) in the case of a discrete distribution, or by an integral (as in
Chapter 4) in the case of a continuous one.

So far the utilities in (7.1), (7.2) and (7.3) depend on the choice of cb and cw. The
argument I now give shows that if instead other choices were made, the only effect would be
a linear transformation of the utility, which has no effect on the ordering of the alternative
decisions by maximation of expected utility. Suppose instead that c′b is at least as desirable
as cb, and that c′w is no more desirable than cw. Again, suppose there is some probability
P such that you would be indifferent between cb for sure, and the random prospect that
would give you c′b with probability P and would otherwise give you c′w. Similarly, suppose
there is some probability p such that you would be indifferent between cw for sure and the
random prospect that would give you c′b with probability p and would otherwise give you
c′w. As in the material before (7.1), let u′(Cij) = P{C ′ | θj , d0(di)} be the probability such
that you would be indifferent between Cij and the random prospect that gives you c′b with
probability u′(Cij) and c′w with probability 1 − u′(Cij). What is the relationship between
u(Cij) and u′(Cij)?

The consequence Cij is indifferent to you to a random prospect that gives you cb with
probability u(Cij) and cw with probability 1− u(Cij). But cb itself is indifferent to you to
a random prospect giving you c′b with probability P and the c′w with probability 1 − P .
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Similarly cw is indifferent to you to a random prospect giving you c′b with probability p and
c′w with probability 1 − p. Therefore Cij is indifferent to you to a random prospect giving
you c′b with probability Pu(Cij) + p(1− u(Cij)) and otherwise gives you c′w. Therefore

u′(Cij) = Pu(Cij) + p(1− u(Cij))

= p+ (P − p)u(Cij). (7.4)

In interpreting (7.4) it is important to notice that P − p > 0 since cb is more desirable than
cw to you. Hence, using c′b and c′w instead of cb and cw, leads to choosing di to maximize

ū′(di) =

n∑
i=1

u′(Cij)p{θj | do(di)}

= p+ (P − p)u(di). (7.5)

Therefore the optimal (or ε-optimal) choices are the same (note that ε has to be rescaled).
Also the resulting achieved expected utilities are related by

ū′(di) = a+ bu(di) (7.6)

where b > 0 [of course, a = p and b = P − p]. A transformation of the type (7.6) is always
possible for a utility function, and always leads to the same ranking of alternatives as the
untransformed utilities. The construction of utility as has been done here amounts to an
implicit choice of a and b by using u(C) = 1 and u(c) = 0, where C is more desirable than
c, leading to b > 0.

To maximize expected utility is of course the same as to minimize expected loss, if loss
is defined as

`(Cij) = −u(Cij). (7.7)

Much of the statistical literature is phrased in terms of losses, possibly reflecting the dour
personalities that seem to be attracted to the subject.

As developed here, utilities can be seen as a special case of probability. Conversely,
probability, as developed in Chapter 1, can be seen as a special case of utility. There we
took cb = $1.00 and cw = $0.00. As a result, probability and utility are so intertwined as
to be, from the perspective of this book, virtually the same subject.

Rubin (1987) points out that from a person’s choice of decisions, all that might be
discerned is the product of probability and utility. The ramifications of this observation are
still being discussed.

7.3.1 A supplement on regret

Another transformation of utility is regret, defined as τ(Cij) = maxi u(Cij)− u(Cij). Now
gj = maxi u(Cij) does not depend on i. It turns out that there are circumstances under
which minimizing expected regret is equivalent to maximizing expected utility, and other
circumstances in which it is not. To examine this, write the minimum expected regret as
follows:

min
i
E r(Cij) = min

i
E[gj − u(Cij)]

= min

∑
j

gjp(θj | do(di))−
∑
j

u(Cij)p(θj | do(di))

 .

The second term is exactly expected utility, thus minimizing expected regret is equivalent
to maximizing expected utility provided

∑
j gjp(θj | do(di)) does not depend on i, which in
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general is true if p(θj | do(di)) does not depend on i. As previously explained in section 7.3,
jokes aside, we do not think the weather is influenced by a decision about whether to carry
an umbrella, so in this example, p(θj | do(di)) is reasonably taken not to depend on i. Hence
for the decision about whether to take an umbrella, you can either maximize expected utility
or minimize expected regret, and the best decision will be the same, as will the achieved
expected utility.

However, there are other decision problems in which it is quite reasonable to suppose
that p(θj | do(di)) does depend on i, and thus on what you do. In the example given in
section 7.3, ΘΘΘ is whether or not you have an automobile accident, and do(di) is whether or
not you drive carefully. In this case, it is very reasonable to suppose that your probability of
having an accident does depend on your care in driving. For such an example, minimizing
expected regret is not the same as maximizing expected utility. It will lead, in general, to
suboptimal decisions and loss of expected utility.

For more on expected regret, see Chernoff and Moses (1959, pp. 13, 276).

7.3.2 Notes and other views

There is a lot of literature on this subject, dating back at least to Pascal (born 1623, died
1662). Pascal was a mathematician and a member of the ascetic Port-Royal group of French
Catholics. Pascal developed an argument for acting as if one believes in God, which went
roughly as follows: If God exists and you ignore His dictates during your life, the result is
eternal damnation (minus infinity utility). While if He exists and you follow His dictates,
you gain eternal happiness (plus infinity utility). If God does not exist and you follow
His dictates, you lose some temporal pleasures you would have enjoyed by not following
God’s dictates, but so what (difference of some finite number utility). Therefore the utility
optimizing policy is to act as if you believe God exists. This is called Pascal’s Wager. (See
Pascal (1958), pp. 65-96.)

More recent important contributors include Ramsey (1926), Savage (1954), DeGroot
(1970) and Fishburn (1970, 1988). Much of the recent work concerns axiom systems. For
instance, an Archimedean condition says that cb and cw are comparable (to you), in the
sense that for each consequence Cij , there is some P ∗ < 1 that you would prefer cb with
probability P ∗ and cw otherwise to Cij for sure, and some other p∗ > 0 such that you would
prefer Cij for sure to the random prospect yielding cb with probability p∗ and cw otherwise.
From this assumption it is easy to prove the existence of a p such that you are indifferent
between Cij and the random prospect yielding cb with probability p and otherwise cw.
Pascal’s argument violates the Archimedean condition.

A distinction is drawn in some economics writing between “risk” and “uncertainty,” the
rough idea being that “risk” concerns matters about which there are agreed probabilities,
while “uncertainty” deals with the remainder. This distinction is attributed by some to
Knight (1921), a view challenged by LeRoy and Singell (1987). Others attribute it to Keynes
(1937, pp. 213, 214). The view taken in this book is that from the viewpoint of the individual
decision-maker, this distinction is not useful, a point conceded by Keynes (ibid, p. 214).

The sense in which I am using the term uncertain is that in which the prospect of a
European war is uncertain, or the price of copper and the rate of interest twenty years
hence, or the obsolescence of a new invention, or the position of private wealth-owners
in the social system in 1970. About these matters there is no scientific basis on which
to form any calculable probability whatever. We simply do not know. Nevertheless,
the necessity for action and for decision compels us as practical men to do our best to
overlook this awkward fact and to behave exactly as we should if we had behind us a
good Benthamite calculation of a series of prospective advantages and disadvantages,
each multiplied by its appropriate probability, waiting to the summed.
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There is a whole other literature dealing with descriptions of how people actually make
decisions. A good summary of this literature can be found in von Winterfeld and Edwards
(1986) and Luce (2000). In risk communication, researchers try to find effective ways to
combat systematic biases in risk perception. The field of behavioral finance tries to make
money by taking advantage of systematic errors people make in decision making.

The development here closely follows that of Lindley (1985), which I highly recommend.

7.3.3 Summary

Utilities are defined in such a way that the optimal decision is to maximize expected utility.
When optimal decisions do not exist, ε-optimal decisions are nearly as good. Minimizing
expected loss is the same as maximizing expected utility, where loss is defined as negative
utility.

7.3.4 Exercises

1. Vocabulary. Define in your own words:

(a) consequence

(b) utility

(c) loss

(d) ε-optimality

(e) Pascal’s Wager

2. Prove that, if loses are defined in (7.7), minimizing expected loss is the same as maxi-
mizing expected utility.

7.4 Unbounded utility and the St. Petersburg Paradox

The utilities or losses found as suggested in sections 7.2 and 7.3 for finite sets D of possible
decisions, are bounded. Indeed, the bounds are 0 and 1 in the untransformed case. To discuss
unbounded utilities, it is useful to distinguish utility functions that are bounded above (i.e.,
loss functions bounded below), from those that are unbounded in both directions.

To set the stage, it is a good idea to have an example in mind. Suppose a statistician
has decided to estimate a parameter θεR, which means to replace the distribution of θ,
which we’ll denote p(θ), with a single number θ̂. (The reasons why I regard this as an
over-used maneuver in statistics are addressed in Chapter 12.) The most commonly used

loss function in statistics for such a circumstance is squared error: (θ − θ̂)2. Because of the
simple relationship

E(θ − θ̂)2 = E(θ − µ+ µ− θ̂)2

= E(θ − µ)2 + (µ− θ̂)2 (7.8)

where µ = E(θ), it is easy to see that expected loss is minimized, or utility maximized, by

the choice θ̂ = µ = E(θ), and the expected loss resulting from this is E(θ − µ)2, which is
the variance of θ. (Indeed squared error is so widely used that sometimes E(θ) is referred to
as “the Bayes estimate,” as though it were inconceivable that a Bayesian would have any
other loss function.)

We have seen examples of random variables θ, starting in Chapter 3, in which the mean
and/or variance do not exist. Taking squared error seriously, this would say that any possible

choice θ̂ would be as good (or bad) as any other, leading to infinite expected loss, or minus
infinity expected utility. What’s to be made of this?
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To me, what’s involved here is taking squared error entirely too seriously. When an in-
tegral is infinite, the sum is dominated by large terms in the tails, which is exactly where
the utility function is least likely to have been contemplated seriously. Therefore, I prefer
to think of utility as inherently bounded, and to use unbounded utility as an approxima-
tion only when the tails of the distribution do not contribute substantially to the sums or
integrals involved.

The same principle applies to the much less common case in which utility (or loss) is
unbounded both above and below.

A second example of this kind was proposed by Daniel Bernoulli in 1738 (see the English
translation of 1954). He proposes that a fair coin be flipped until it comes up tails. If the
number of flips required is n, the player is rewarded $2n. If utility is linear in dollars, then

EU =

∞∑
n=1

1

2n
(2n) =

∞∑
n=1

1 =∞, (7.9)

so a player should be willing to pay any finite amount to play, which few of us are. This is
called the St. Petersburg Paradox.

The first objection to this is that in practice nobody has 2n dollars for every n, and hence
nobody can make this offer. Suppose for example, that a gambling house puts a maximum
of 2k on what it is willing to pay, and if the player obtains k heads in a row, then the game
stops at that point. Then the expected earnings to the player are

EU =

k−1∑
n=1

1

2n
(2n) +

1

2k
· 2k

= k.

Since 210 = 1024, 220 will be slightly over $1 million, and 230 will be slightly over a billion.
Thus practical limits on the gambling house’s resources make the St. Petersburg game much
less valuable, even with utility linear in money. While that’s true, it should not stop us from
thinking about the possibility of unbounded payoffs.

Bernoulli proposed that the trouble lies in the use of utility that’s linear in dollars, and
proposed utility equal to log dollars instead. But of course prizes of e2n foil this maneuver.

I think that the difficulty lies instead in unbounded utility. The following result shows
that if utility is unbounded, there is a random variable such that expected utility is un-
bounded as well.

SupposeX is a discrete random variable taking infinitely many values x1, x2, . . .. Suppose
U(x) is an unbounded utility function.

Lemma 7.4.1. For every real number B, there are an infinite number of xi’s such that
U(xi) > B.

Proof. Suppose there are only a finite number of xi’s such that U(xi) > B, say i1, . . . , ik.
Let B∗ = max1≤j≤k U(xij ). Since k is finite, B∗ < ∞. Then U(x) ≤ B∗ for all x, so U is
bounded. Contradiction.

Theorem 7.4.2. If U is unbounded, there is a probability distribution for X such that

EU(X) =∞.

Proof. We construct this probability with the following algorithm by induction:
Take i = 1. There are an infinite number of xi’s such that U(xi) > 1. Choose one

of them, and let qi = 1. In the inductive step, now for j < i, suppose we have chosen
xj 6= x1, . . . , xj−1 such that U(xj) > j2. Because there are an infinite number of xi’s with
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U(xi) > i2, excepting x1, . . . , xj−1 (finite in number) doesn’t change this. Choose one of
these to be xi, and let qi = 1/i2. Now

∑∞
j=1 1/j2 =

∑∞
j=1 qj = k <∞. Then pj = ( 1

k )qj is
a probability distribution on x1, . . . , and

EU(X) ≥ 1

k

∞∑
j=1

qjU(xj) = (
1

k
)

∞∑
j=1

1/j2U(xj) > (
1

k
)

∞∑
j=1

j2

j2

= (
1

k
)

∞∑
j=1

1 =∞.

In light of this result, a St. Petersburg-type paradox may be found for every unbounded
utility. This confirms my belief that unbounded utility can be used as an approximation
only for some random variables, namely those that do not put too much weight in the tails
of a distribution.

One possible way to make infinite expected utility a useful concept is to say that we
prefer a random variable with payoff X to one with payoff Y provided E[U(X)−U(Y )] > 0,
even if E[U(X)] = E[U(Y )] = ∞. However, it is possible to have random variables X and
Y with the same distribution such that E[U(X)− U(Y )] > 0.

For this example, take the space to be N×{0, 1}, so that a typical element is (i, x) where
x = 0 or 1 and iε{1, 2, . . .} is a positive integer. The probability of {(i, x)} is 1/2i+1. Define
the random variables W,X and Y as follows:

W{(i, x)} = 2i for x = 0, 1
X{(i, 0)} = 2i+1 ;X{(i, 1)} = 2 for i = 1, 2, . . .
Y {(i, 0)} = 2 ;Y {(i, 1)} = 2i+1 for i = 1, 2, . . .

This specification has the following consequences

P{W = 2i} = P{(i, 0) ∪ (i, 1)} = 1/2i+1 + 1/2i+1 = 1/2i

P{X = 2} = P{∪∞i=1(i, 1)} =
∑∞
i=1 1/2i+1 = 1/2

and for i = 1, 2, . . .
P{X = 2i+1} = P{(i, 0)} = 1/2i+1.

Thus X and W have the same distribution. Similarly Y also has the same distribution. Now
consider the random variable X + Y − 2W . First

X{(i, 0)}+ Y {(i, 0)} − 2W{i, 0} = 2i+1 + 2− 2(2i) = 2.

Similarly
X{(i, 1)}+ Y {(i, 1)} − 2W{i, 1} = 2 + 2i+1 − 2(2i) = 2.

Therefore we have
X + Y − 2W = 2.

Now suppose we have the opportunity to choose among the random variables X,Y and
W , and have the utility function U(R, {(i, x)}) = i for R = X,Y and W . (All this means is
that we rank random variables by their expectations.) Then we have

E[U(X)− U(W )] + E[U(Y )− U(W )] = 2

so either X is preferred to W or Y is preferred to W , or both, although X,Y and W have
the same distribution. However,

E[U(X)] = E[U(Y )] = E[U(W )] =

∞∑
i=1

2i(1/2i) =∞.
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Thus ranking random variables with infinite expected utility according to the difference in
their expected utilities leads to ranking identically distributed random variables differently.
This example comes from Seidenfeld et al. (2006). 2

Another example of anomalies in trying to order decisions with infinite expected utility
comes from a version of the “two envelopes paradox.” Suppose an integer is chosen, where

P{N = n} =
1

3
(2/3)n n = 0, 1, 2, . . . (7.10)

Two envelopes are prepared, one with 2N dollars, and the other with 2N+1 dollars. Your
utility is linear in dollars, so u(x) = x. You choose an envelope without knowing its contents,
and are asked whether you choose to switch to the other envelope. Your expected utility
from choosing the envelope with the smaller amount is

∞∑
n=0

1

3
2n(2/3)n =

∞∑
n=0

(4/3)n · 1

3
=∞ (7.11)

so you really don’t care which envelope you have, and are indifferent between switching and
not switching.

Now suppose you open your envelope, and find $x there. If x = 1, then you know N = 0,
the other envelope has $2, and it is optimal to switch. Now suppose x = 2k > 1. Then there
are two possibilities, N = k and N = k − 1. Then we have

lP{N = k − 1 | x} =
P{x and N = k − 1}

P{x and N = k}+ P{x and N = k − 1}

=
P{x|N = k − 1}P{N = k − 1}

P{x|N = k − 1}P{N = k − 1}+ P{x|N = k}P{N = k}

=
1/2[ 1

3 (2/3)k − 1]
1
2 [ 1

3 (2/3)k + 1
3 (2/3)k−1]

=
1

1 + 2/3
=

3

5
. (7.12)

Therefore P{N = k | x} = 2/5.
Consequently the expected utility of the unseen envelope is

3

5

x

2
+

2

5
(2x) =

11x

10
> x. (7.13)

Therefore it is to your advantage to switch. Since you would switch whatever the envelope
contains, there’s no reason to bother looking. It seems that the optimal thing to do is
to switch. Your friend, who has the other envelope, reasons the same way, and willingly
switches. Now you start over again, and, indeed, switch infinitely many times! This is pretty
ridiculous, since there’s no reason to think either envelope better than the other.

Whenever one can go from a reasonable set of hypotheses to an absurd conclusion, there
must be a weak step in the argument. In this case, the weak step is going from dominance
(“whatever amount x is in your envelope, it is better to switch”) to the unconditional
conclusion (“Therefore you don’t need to know x, it is better to switch”). That step is true
if the expected utilities of the options are finite. However, here the expected utilities of both
choices are infinite, and so the step is unjustified. Indeed, even though if you knew x it would
be in your interest to switch envelopes, in the case where you do not know x, switching
and not switching are equally good for you. So beware of hasty analysis of problems with
infinite expected utilities!

There are decisions that many people would refuse to make regardless of the conse-
quences to other values they care about. These choices come up especially in discussions
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of ethics. It is convenient to think of these ultimately distasteful decisions as having minus
infinity utility. Thus the theory here, which casts doubt on unbounded utility, contrasts
with many discussions in philosophy that go by the general title of utilitarianism.

Such concerns can be accommodated, however, by lexicographic utility which does not
satisfy the Archimedean condition. To give a simple example, imagine a bivariate utility
function, together with a decision rule that maximizes the expectation of the first compo-
nent, and, among decisions that are tied on the first component, maximizes the expectation
of the second. So perhaps the first component is “satisfies my ethical principles” (and sup-
pose there is no uncertainty about whether a decision does so), and the second component
is some, perhaps uncertain, function of wealth. Then provided there is at least one ethically
acceptable decision, maximizing this utility function would choose the expected function of
wealth maximizing decision subject to the ethical constraint. Hence, I believe the issue with
unacceptable choices is more properly focused on the Archimedean condition, and not on
unbounded utility. The Archimedean condition might still apply within each component,
but not across components. (See Chipman (1960).) For applications of this kind, a natural
generalization of the theory presented here would provide a bounded utility function for the
first coordinate of a lexicographic utility function, a bounded utility for the second, etc. I
do not pursue this theme further in this book.

7.4.1 Summary

Unbounded utilities lead to paradoxical behavior if taken too literally, as they can lead to
infinite expected utility.

7.4.2 Notes and references

The two-envelopes problem is also called the necktie paradox and the exchange paradox.
Some articles concerning it are Arntzenius and McCarty (1997) and Chalmers (2002). An
excellent website on it is http://en.wikipedia.org/wiki/two_envelopes_problem, last
visited 11/15/2007.

7.4.3 Exercises

1. Vocabulary. Define in your own words:

(a) St. Petersburg Paradox

(b) Pascal’s Wager

(c) Archimedean condition

(d) Lexicographic utility

2. Is Pascal’s Wager an example of unbounded utility?

3. What’s wrong with infinite expected utility, anyway?

4. Suppose utility is log-dollars. Find a random variable such that expected utility is infi-
nite.

5. Why does lexicographic utility violate the Archimedean condition?

7.5 Risk aversion

People give away parts of their fortunes all the time (it’s called charity). Having given away
whatever part of their fortunes they wish, we can assume that they make their financial
decisions reflecting a desire for a larger fortune rather than a smaller one. Thus it is reason-
able to assure that, if f is their current fortune, u(f) is increasing in f . If u is differentiable,

http://en.wikipedia.org/wiki/two_envelopes_problem
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this means u′(f) > 0. Suppose that there are two decision-makers (i = 1, 2) (think of them
as gamblers), each of whom like risk in the sense that

1

2
ui(fi + x) +

1

2
ui(fi − x) > ui(fi), i = 1, 2 (7.14)

for all x, where fi is the current fortune of gambler i and ui is her utility function. Then
each prefers a 1/2 probability of winning x, and otherwise losing x, to forgoing such a
gamble. Then these gamblers would find it in their interest to flip coins with each other, for
stakes x, until one or the other loses his entire fortune. Consequently, risk-lovers will have
an incentive to find each other, and, after doing their thing, be rich or broke. The more
typical case is risk aversion, where

1

2
u(f + x) +

1

2
u(f − x) < u(f). (7.15)

7.5.1 A supplement on finite differences and derivatives

For this discussion, it is useful to think of a derivative of the function f at the point x in a
symmetric way:

g′(x) = lim
ε↓0

[
g(x+ ε)− g(x− ε)

2ε

]
. (7.16)

Using this idea, what would we make of the second derivative, f ′′(x)? Well,

f ′′(x) = lim
ε↓0

g′(x+ ε)− g′(x− ε)
2ε

= lim
ε↓0

g(x+ 2ε)− g(x)− g(x) + g(x− 2ε)

(2ε)2
(7.17)

= lim
ε↓0

g(x+ 2ε)− 2g(x) + g(x− 2ε)

4ε2
.

Thus, just as the first difference, g(x + ε) − g(x − ε) is the discrete analog of the first
derivative, the second difference, g(x+ 2ε)− 2g(x) + g(x− 2ε) is the discrete analog of the
second derivative. This idea can be applied any number of times.

7.5.2 Resuming the discussion of risk aversion

Now the inequality (7.15) can be rewritten as

0 >
1

2
u(f + x)− u(f) +

1

2
u(f − x) =

1

2
[u(f + x)− 2u(f) + u(f − x)]. (7.18)

The material in square brackets is just a second difference. Thus the condition (7.15) for all
f and x is equivalent to

u′′(f) < 0 (7.19)

for all f . A function obeying (7.19) is called concave.
Now for the typical financial decision-maker whose utility satisfies u′(f) > 0 and u′′(f) <

0, we wish to investigate the extent to which this decision-maker is risk averse. Thus we ask
what risk premium m makes the decision-maker indifferent between a risk (i.e., uncertain
prospect) and the amount E(Z)−m. Then m satisfies

u(f + E(Z)−m) = E{u(f + Z)}, (7.20)

and m is a function of f and Z. Now if any constant c is added to f and subtracted from
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Z, m is unchanged. It is convenient to take c = E(Z), and, equivalently, consider only Z
such that E(Z) = 0. Then (7.20) becomes

u(f −m) = E{u(f + Z)}. (7.21)

We consider a small risk Z, that is, one with small variance σ2. This implies also that
the risk premium m is small. These conditions permit expansion of both sides of (7.21) in
Taylor series as follows:

u(f −m) = u(f)−mu′(f) + HOT, (7.22)

and

E{u(f + Z)} = E{u(f) + Zu′(f) +
1

2
Z2u′′(f) + HOT}

= u(f) +
1

2
σ2u′′(f) + HOT. (7.23)

Equating these expressions, as (7.21) mandates, we find

m = −1

2
σ2u

′′(f)

u′(f)
=

1

2
σ2r(f) (7.24)

where

r(f) =
−u′′(f)

u′(f)
. (7.25)

The quantity r(f) is called the decision-maker’s local absolute risk aversion.
To be meaningful for utility theory, a quantity like r(f) should not change if instead

of u, our decision-maker used the equivalent utility w(f) = au(f) + b, where a > 0. But
w′(f) = au′(f), and w′′(f) = au′′(f), so

− w′′(f)

w′(f)
= −au

′′(f)

au′(f)
= −u

′′(f)

u′(f)
= r(f). (7.26)

Another idea about how risk aversion might be modeled is to think about proportional
risk aversion, in which the decision-maker is assumed to be indifferent between fZ and a
non-random E(fZ)− fm.

If this is the case, then m∗ satisfies the following equation:

u(f + E(fZ)−m∗) = E{u(f + fZ)}. (7.27)

Again an arbitrary constant c may be subtracted from Z and compensated by adding fc to
f . Thus again we may take c = E(Z), or, equivalently, take E(Z) = 0. Then we have

u(f −m∗) = E{u(f + fZ)}. (7.28)

Again we expand both sides in a Taylor series for small variance σ2 of Z, as follows:

u(f −m∗) = u(f)−m∗u′(f) + HOT, (7.29)

E{u(f + fZ)} = E{u(f) + fZu′(f) + f
Z2

2
u′′(f) + HOT}

= u(f) + f
σ2

2
u′′(f) + HOT. (7.30)
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Equating (7.29) and (7.30) yields

m∗ = −1

2
fσ2u

′′(f)

u′(f)
=

1

2
σ2fr(f). (7.31)

Therefore we define the quantity r∗ = fr(f) to be the decision-maker’s local relative risk
aversion.

Under the assumptions that u′(f) > 0 and u′′(f) < 0, the absolute risk premium r(f)
and the relative risk premium r∗(f) are both positive. Let’s see what happens if they happen
to be constant in f .

If r(f) is some constant k, we have

u′′(f)

u′(f)
= −k, (7.32)

which is an ordinary differential equation. It can be solved as follows: Let y(f) = u′(f).
Then (7.32) can be written

− k =
u′′(f)

u′(f)
=
y′(f)

y(f)
=

d

df
log y(f). (7.33)

Consequently

− kx =

∫ x

0

−kdx = log y(f)

∣∣∣∣x
0

= log y(x)− log y(0). (7.34)

We’ll take − log y(0) to be some constant c1. Then (7.34) can be written

log y(x) + c1 = −kx, (7.35)

from which
u′(x) = y(x) = e−kx−c1 . (7.36)

Finally

u(x) = −e
−kx−c1

k
+ c2. (7.37)

In this form, the constants ec1 > 0 and c2 are simply the constants a and b in the equivalent
form of the utility au(x) + b. Consequently the typical form of the constant absolute risk
aversion utility with constant k is

u(x) = −e
−kx

k
. (7.38)

For this utility, it is easy to see that u′(x) = e−kx and u′′(x) = −ke−kx, from which
r(x) = ke−kx/e−kx = k as required.

Similarly we might ask what happens with constant relative risk aversion r∗(f). Using
the same notation, (7.33) is replaced by

− k/f =
u′′(f)

u′(f)
=
y′(f)

y(f)
=

d

df
log y(f). (7.39)

Consequently

log y(x) =

∫ x

c

−k/w dw = −k log x+ k log c1

= k log(c1/x) = log(c1/x)k. (7.40)
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Hence
y(x) = (c1/x)k, (7.41)

so

u(x) = ck1

∫ x

c2

(
1

y
)kdy = ck1

y−k+1

−k + 1

∣∣∣∣x
c2

= ck1

[
x1−k

1− k
− c−k+1

2

1− k

]
. (7.42)

Again, we may get rid of an additive constant and a positive multiplicative constant, to
get the reduced form of the constant relative risk utility:

u(x) = x1−k. (7.43)

Again it is useful to check that the differential equation is satisfied. But u′(x) = (1−k)x−k,
and u′′(x) = (1− k)(−k)x−k−1. Hence

r∗(x) = −xu
′′(x)

u′(x)
=

(−x)(1− k)(−k)x−k−1

(1− k)x−k
= k, (7.44)

as required.

7.5.3 References

The theory in this section is usually attributed to Pratt (1964) and Arrow (1971), and
is usually referred to as Arrow-Pratt risk aversion. The argument here follows Pratt’s.
However, Pratt and Arrow were preceeded by DeFinetti (1952), with respect to absolute
risk aversion (see Rubinstein (2006) and Kadane and Bellone (2009)).

7.5.4 Summary

This section motivates and derives measures of local absolute risk aversion and local relative
risk aversion. It also derives explicit forms of utility for constant local absolute and relative
risk aversion.

7.5.5 Exercises

1. Vocabulary. Explain in your own words:

(a) local absolute risk aversion

(b) local relative risk aversion

(c) concave function

2. Are you risk averse? If so, does absolute or relative risk aversion describe you better? Are
you comfortable with constant risk aversion as describing the way you want to respond
to financial risk? What constant k would you choose?

3. Suppose a decision-maker has absolute local risk aversion r(f).

(a) Show that the risk of gain or loss of h with equal probability (±h, each with proba-

bility 1
2 ), is equivalent, asymptotically as h→ 0, to the sure loss of h

2

2
r(f).

(b) Show that the gain of ±h with respective probabilities (1 ± d)/2 is indifferent to

you, asymptotically as h→ 0, if d = hr(f)
2 .

(c) The price of a gain h with probability p is ph(1−qh)·r(f)
2 , where q = 1− p.
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7.6 Log (fortune) as utility

A person with log(f) as utility is indifferent between the status quo and a gamble that, with
probability 1

2 , increases their fortune by some factor x, and with probability 1
2 , decreases it

by the factor 1
x , as the following algebra shows:

log f − 1
2 (log xf)− 1

2 log(f/x)

= log f − 1
2 log f − 1

2 log x− 1
2 log f + 1

2 log x = 0.

Thus such a person would be indifferent between the status quo and a flip of a coin that
leads to doubling his fortune with probability 1

2 , and halving his fortune otherwise. This is
the same as local relative risk aversion equal to one.

In the light of the results of section 7.4, we need first to consider the implications of
the fact that the log function is unbounded both from above and from below. The fact
that it is unbounded from below, so limf→0 log(f) = −∞, might be regarded as a good
quality for a utility function to have. Its implication is that a person with such a utility
function will accept no gambles having positive subjective probability of bankruptcy. A way
around having log utility unbounded below, if such were thought desirable, would be to use
log(1 + f), where f ≥ 0.

That log fortune is unbounded from above, so limf→∞ log(f) = ∞, implies, as found
in section 7.4, vulnerability to St. Petersburg paradoxes. Thus we have to recognize that
at the high end of possible fortunes, f , there may not be counter-parties able or willing to
accept the bets a gambler with this utility function wishes to make.

Consider first an individual who starts with some fortune f , whose utility function is
log f and who has the opportunity to buy an unlimited number of tickets that pay $1 on
an event A, at a price x. He can also buy an unlimited number of tickets on event A, at
price 1− x = x. How should he respond to these opportunities?

If there is some amount c of his fortune he chooses not to bet, he can achieve the same
result by spending cx on tickets for A, and cx on tickets for A, with a total cost of cx+cx = c.
If A occurs, his cx

x = c tickets on A offset exactly his cost c. If A occurs, his cx
x = c tickets

on A offset exactly his cost c. Consequently without loss of generality, we may suppose that
the gambler bets his entire fortune. He needs to know how to divide his fortune f between
bets on A and bets on A. Suppose he chooses to devote a portion ` of his fortune to tickets
on A, and the rest to A. He now wants to know the optimal value of ` to maximize his
expected utility. His answer must satisfy 0 ≤ ` ≤ 1.

Then he spends `f on tickets for A. Since they cost x, he buys a total of `fx tickets on A.

Similarly he purchases `f
x tickets on A, where ` = 1− `. Since he spends his entire fortune

f on tickets, his resulting fortune is `f
x if A occurs and `f

x if A occurs. Finally suppose that

his probability on A is q, so his probability on A is p = 1− q. Then his expected utility is

q log

(
`f

x

)
+ p log

(
`f

x

)
= (7.45)

(q + p) log f + q log `+ p log(1− `)− q log x− p log x.

The only part of (7.45) that depends on ` is the second and third terms. Taking the derivative
with respect to ` and setting it equal to zero we obtain

q

`
=

p

1− `
. (7.46)

Then q(1−`) = p`, or q = q`+p` = `. This solution satisfies the constraint, since 0 ≤ ` ≤ 1.
Thus the optimal strategy for this person is to bet on A in proportion to his personal
probability, q, on A, and on A in proportion to his personal probability, p, on A.



LOG (FORTUNE) AS UTILITY 285

The achieved utility for doing so is

log f + q log q + p log p− q log x− p log(1− x). (7.47)

Thus the optimal strategy for this person does not depend on his fortune, f , nor on x. The
quantity −[q log q + p log p] is known as entropy, or information rate (Shannon (1948)).

7.6.1 A supplement on optimization

The analysis given above to maximize (7.45) is just a little too quick. What we have shown
is that the choice ` = q is the unique choice that makes (7.45) have a zero derivative. But
zero derivatives of a function with a continuous derivative can occur for maxima, minima,
or a third possibility, a saddle point. As an example of a saddle point, consider the function
g(x) = x3 at x = 0. It has zero derivative at x = 0, but is neither a relative maximum nor
a relative minimum.

In the case of (7.45), think about the behavior of the function q log ` + p log(1 − `) as
`→ 0. Because lim`→0 q log ` = −∞ and lim`→0 p log(1− `) = 0, we have

lim
`→0

[q log `+ p log(1− `)] = −∞. (7.48)

Similarly, we also have
lim
`→1

[q log `+ p log(1− `)] = −∞. (7.49)

Thus the function increases as ` increases from zero to some point, and decreases again as
` increases toward ` one. As the derivative of (7.45) is zero only at ` = q, this must be the
global maximum of the function.

A second way to check whether a point found by setting a derivative equal to zero is a
relative maximum is to compute the second derivative of the function at the point. In this
case, the second derivative of (7.45) is

− q

`2
− p

(1− `)2
. (7.50)

Evaluated at the point ` = q, we have

− q/q2 − p/p2 = −1/q − 1/p < 0. (7.51)

Thus the second derivative is negative, so the function rises as ` approaches q from below,
and then falls afterward. Since there is only one point at which the derivative is zero, this
must be the global maximum.

Now suppose that we are asked to find the maximum of a function like (7.45) subject
to the constraint a ≤ ` ≤ b, where 0 ≤ a < b ≤ 1. If the unconstrained optimal value ` = q
satisfies the constraint, then it is the optimal value subject to the constraint as well. In this
case, we say that the constraint is not binding. But what if the constraint is binding, that
is, what if, in the case of (7.45), we have q < a or q > b?

Let’s take first the case of 0 < q < a. Then we know that the unconstrained maximum
occurs at ` = q, and that throughout the range a < ` < b, the function (7.45) is decreasing.
Hence the optimal value of ` is ` = a. Similarly, if q > b, then throughout the range
a ≤ ` ≤ b, the function (7.45) is rising, and has its maximum at ` = b. Therefore the
optimal value of ` can be expressed as follows:

` =


a if q < a

q if a ≤ q ≤ b
b if q > b

. (7.52)
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There is a little trick that can express this solution in a more convenient form. The median
of a set of numbers is the middle value: half are above and half below. When the number of
numbers in the set is even, by convention the average of the two numbers nearest the middle
is taken. Consider the median of the numbers a, q and b. When q < a < b, the median is a.
When a ≤ q ≤ b, the median is q. When a < b < q, the median is b. Hence, we may express
(7.52) as

` = median {a, b, q}. (7.53)

We’ll use this trick in the next subsection.
When optimizing a function of several variables, the same principles apply. If the point

where the partial derivatives are zero is unique, and if the function at the boundary goes
to minus infinity, then the point found by setting the partial derivatives to zero is the
maximum. The multi-dimensional analog of the second derivative being negative is that the
matrix of second partial derivatives is negative-definite. In the multi-dimensional case there
isn’t an analog of (7.52) and (7.53) that I know of.

Finally, there’s a very useful technique for maximizing functions subject to equality
constraints known as the method of undetermined multipliers or as Lagrange multipliers.
The problem here is to maximize a function f(x), subject to a constraint g(x) = 0, where
x = (x1, . . . , xk) is a vector. One method that works is to solve g(x) for one of the variables
x1, . . . , xk, substitute the result into f(x), and maximize the resulting function with respect
to the remaining k−1 variables. This method breaks the symmetry often present among the
k variables x1, . . . , xk. The method of Lagrange multipliers, by contrast, maximizes, with
respect to x and λ, the new function

f(x) + λg(x). (7.54)

If x0 maximizes f(x) subject to g(x) = 0, it is obvious that it also maximizes (7.54). To
see the converse, notice that the derivative of (7.54) with respect to λ yields the constraint
g(x) = 0. The derivatives of (7.54) with respect to the xi’s yield equations of the form

∂f(x)

∂xi
+ λ

∂g(x)

∂xi
= 0 i = 1, . . . , k. (7.55)

On an intuitive basis, if (7.55) failed to hold, it would be possible to shift the point x, while
maintaining the constraint g(x) = 0, in a way that would increase f . Lagrange multipliers
can be used for more than one constraint. If there are several constraints gj(x) = 0, (j =
1, . . . , J), then the maximum of

f(x) +

J∑
j=1

λjgj(x) (7.56)

with respect to x and λ1, . . . , λJ yields the maximum of f(x) subject to the constraints
gj(x) = 0, j = 1, . . . , J . A rigorous account of Lagrange multipliers may be found in
Courant (1937, Volume 2, pp. 190-199).

We’ll use Lagrange multipliers in the next subsection.

7.6.2 Resuming the maximization of log fortune in various circumstances

Now we extend the problem by supposing that the person has a budget B ≤ f which cannot
be exceeded in his purchases. Suppose he chooses to spend y on tickets for A and B − y on
tickets for A. For notational convenience, let f∗ = f −B. Then he buys y

x tickets on A, and
(B−y)
x tickets on A, resulting in a fortune of f∗ + y/x if A occurs, and f∗ + (B − y)/x if Ac

occurs. So his expected utility is

q log(f∗ + y/x) + p log(f∗ + (B − y)/x). (7.57)



LOG (FORTUNE) AS UTILITY 287

Setting the derivative with respect to y equal to zero, we have

q/x

f∗ + y/x
=

p/x

f∗ + (B − y)/x
, or (7.58)

q

xf∗ + y
=

p

xf∗ + (B − y)
.

Then

q(xf∗ + (B − y)) = p(xf∗ + y),

qxf∗ − pxf∗ +Bq = qy + py = y.

Since the second derivative of (7.57) is negative, the y found by setting the first derivative
equal to zero indeed maximizes (7.57).

Since the optimal y must satisfy the bounds 0 ≤ y ≤ B, we have that the optimal y is

yopt = median {0, B, qB + xxf∗
( q
x
− p

x

)
}. (7.59)

WhenB = f , so the budget constraint is non-binding, then yopt = median {0, B, qB} = qf ,
so he optimally spends proportion q of his fortune f on tickets for A, as we found before.

Now suppose that there are n events A1, . . . , An that are mutually exclusive and ex-
haustive. Suppose also that qi = P{Ai}. There are dollar tickets available on them with
respective prices x1, . . . , xn such that

∑n
i=1 xi = 1. Again the person has fortune f . The

argument given in the third paragraph of this section still applies. Thus we can assume
that the person chooses to devote portion `i to buying tickets on Ai, where 0 ≤ `i and∑n
i=1 `i = 1. Then he buys `if/xi tickets on Ai, and his expected fortune is∑

qi log(`if/xi) = log f −
∑

qi log xi +
∑

qi log `i. (7.60)

Thus we seek `i, 0 ≤ `i and
∑
`i = 1 to maximize

∑
qi log `i. Using the technique of

Lagrange multipliers, we maximize

n∑
i=1

qi log `i − λ(

n∑
i=1

`i − 1), (7.61)

with respect to `i and λ.
Taking the derivative, we have

qi
`i
− λ = 0, or

qi = λ`i.

Since
∑
qi = 1 =

∑
`i, we have λ = 1 and

`i = qi, i = 1, . . . , n. (7.62)

Again, since (7.60) approaches −∞ as any `i approaches zero, the solution to setting
the first derivative of (7.61) equal to zero yields a maximum.

This result suggests a rationale for the investment strategy called re-balancing. Dividing
the possible investments into a few categories, such as stocks, bonds and money-market
funds, re-balancing means to sell some from the categories that did well, and buy more of
those that did poorly, to maintain a predetermined proportion of assets in each category.
(This analysis neglects transaction fees.)
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7.6.3 Interpretation

The mathematics in section 7.6 are due to Kelly (1956), with some conversion to put them
in the framework of this book. While the mathematics are solid, the interpretation of them
has been beset with controversy. It began with Kelly’s discussion:

The gambler introduced here follows an essentially different criterion from the
classical gambler. At every bet he maximizes the expected value of the logarithm of
his capital. The reason has nothing to do with the value function which he attached
to his money, but merely with the fact that it is the logarithm which is additive in
repeated bets and to which the law of large numbers applies. (pp. 925, 926)

To understand Kelly, he means by “value function” what we mean by utility, and his
“classical gambler” has a utility function that is linear in his fortune. His reference to the
law of large numbers comes from the fact that if the gambler makes bets on a large number
of independent events with some probability, the proportion of success will approach the
(from the perspective of this book, subjective) probability the event occurs.

Kelly’s argument here is, I think, circular. He basically is saying that if you don’t max-
imize log fortune, your fortune will grow at an exponential rate smaller than the rate you
expect to enjoy if you do maximize log fortune. This is obviously true, but isn’t relevant to
someone whose utility is something other than log fortune.

Kelly then poses the question of what a gambler should do, who is allowed a limited
budget (one dollar per week!). He proposes that such a gambler should put the whole dollar
on the event yielding the highest expectation. It seems to me that this is correct for a
gambler with a utility function linear in his fortune, but not for a budget-limited player
with a utility that is log fortune, as shown in (7.59).

Kelly also poses the question of the optimal strategy when there is a “track take,” which
means when

∑n
i=1 xi > 1 (in Britain, this is called an “overround”). In this case a gambler

using log fortune as utility will not bet his entire fortune. Also there are some offers (maybe
all!) so unfavorable that he will not bet on them at all. It turns out, not unreasonably, that
in this modified problem, gambles are ranked by qi/xi, the gambler’s probability of a ticket
on Ai succeeding, divided by its cost.

Kelly’s work, and the resulting “Kelly criterion,” were criticized by a group of economists
led by the eminent Paul Samuelson. In an article entitled “The ‘Fallacy’ of Maximizing the
Geometric Mean in Long Sequences of Investing or Gambling,” Samuelson (1971) argues
essentially that the Kelly strategy leads to large volatility of returns. He concedes that log f
is analytically tractable, “but this will not endear it to anyone whose psychological tastes
differ significantly from log f” (Samuelson, 1971, p. 2496). Finally, and famously, Samuelson
wrote an article entitled “Why we should not make mean log of wealth big though years to
act are long” (Samuelson (1979)); in which he limits himself to words of one syllable.

One has to be careful, though, about arguments based on the volatility of returns. A
standard method of portfolio analysis, going back to Markowitz (1959), proposes that one
should examine the mean and variance of the return on a portfolio, and choose to minimize
some linear functional of them.

To model this, the only way that expected utility can be made to depend on only the
mean and variance of the returns X is for utility to be a linear function of X and X2, so
the utility is of the form U(X) = aX + bX2.

The expected utility is then

EU(X) = aµ+ b(µ2 + σ2),

where µ = E(X) and σ2 = Var(X), assuming both exist. In order to express the idea that
our investor prefers less variance for a given mean, we must have b < 0. Then the change
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in expected utility from changing µ, as measured by the first derivative, is

dE(U(X))

dµ
= a+ 2bµ.

If a ≤ 0, dE(U(X))
dµ < 0, which would mean that our investor would always prefer less

expected return, which is unacceptable. However, for a > 0, we still have dE(U(X))
dµ < 0

if µ > −a/2b, so our investor would dis-prefer large expected returns. Consequently there
is no utility function that rationalizes Markovitz’s approach. A more modern approach,
consistent with expected utility theory, is given in Campbell and Viceira (2002).

Markowitz gets around this by using variance only to compare portfolios with the same
mean return. If the returns on an optimal strategy are too volatile for your taste, then per-
haps you are using a candidate utility function that does not properly reflect your aversion
to risk. I think that’s the point Samuelson is making about log f as a utility. However, it
is worth remembering that within the theory of decision-making on the basis of expected
utility, there is no place for Var [U(θ | d)].

There is a lot of literature surrounding this debate. Some important contributions include
Rotando and Thorp (1992), Samuelson (1973) and Breiman (1961). An entertaining verbal
account of Kelly’s work, the characters surrounding it and its implications, is in Poundstone
(2005).

Markowitz’s work on this subject was preceded by DeFinetti (1940) [English translation
by Barone (2006)], a point generously conceded by Markowitz (2006) in an article entitled
“DeFinetti Scoops Markowitz.” See also Rubinstein (2006). Interestingly, DeFinetti justifies
the mean-variance approach by appeal to the central limit theorem and asymptotic nor-
mality. He does not mention the incompatibility of this approach with the maximization of
subjective expected utility, of which he is one of the modern founders.

From the perspective of this book, it is no use to argue what a person’s utility function
ought to be, any more than it is useful to argue what their probabilities ought to be.
Exploring the consequences of various choices is a contribution, and can lead people to
change their views upon more informed reflection.

7.6.4 Summary

This section explores some of the consequences of investing (or gambling – is there a differ-
ence?) using log f as a utility function. In the simplest cases one bets one’s entire fortune,
dividing the proportion bet according to one’s subjective probability of the event.

7.6.5 Exercises

1. Vocabulary. Explain in your own words:

(a) Lagrange multipliers

(b) Median

2. In your view, what is the significance of Kelly’s work?

3. Suppose a person’s fortune is f = $1000, and his utility function is log(f). Suppose
this person can buy tickets on the mutually exclusive events A1, A2 and A3 with prices
x1 = 1/6, x2 = 1/3 and x3 = 1/2. Suppose this person’s probabilities on these three
events are, respectively q1 = 1/2, q2 = 1/3 and q3 = 1/6.

(a) How much should such a person invest in each kind of ticket to maximize his expected
utility?

(b) How many tickets of each kind should he buy?
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(c) Does your optimal strategy propose that he buy tickets on event A3, even though
such tickets are expensive (x3 = 1/2) in relation to the person’s probability that event
A3 will occur (q3 = 1/6)? Explain why or why not.

4. Consider the family of utility functions indexed by γ, and of the form,

u(f ; γ) =
f1−γ − 1

1− γ
0 < γ.

These are the constant relative risk aversion utilities, with constant γ.

(a) Use L’Hôpital’s Rule (see section 2.7) to show that, as γ → 1,

lim
γ→1

u(f ; γ) = log f for each f > 0.

(b) Suppose A1, . . . , An are n mutually and exclusive events. Tickets paying $1 if event
Ai occurs are available at cost xi, where xi > 0 and

∑n
i=1 xi = 1. Also suppose that

a person has utility u(f ; γ) = f1−γ−1
1−γ , for 0 < γ, and wishes to invest this fortune to

maximize expected utility. If this person’s probabilities are qi > 0 that event Ai will
occur, where

∑n
i=1 qi = 1, how should such a person divide their fortune among these

opportunities?

(c) In part (b), how many tickets of each kind will the person optimally choose to buy?

(d) Find the limiting result, as γ → 1, of your answers to (b) and (c). Do they equal
the result obtained by using log f as utility?

5. Suppose your utility is log f and you are offered the opportunity to buy as many tickets
paying $1 if event A occurs and 0 otherwise. You have probability q that event A will
occur. Tickets cost $ x each. How many tickets would you optimally buy?

6. Reconsider the maximization of (7.60) subject to the constraint
∑n
i=1 `i = 1. Perform

this maximization by substituting `n = 1− `1− `2− . . .− `n−1 into (7.60) and maximize
with respect to `1, . . . , `n−1. Do you get the same result? Which method do you prefer,
and why?

7. Suppose that your investment advisor informs you that she believes you face an infinite
series of independent favorable bets, where your probability of success is 0.55. Suppose
that she proposes that you use log (fortune) as your utility function, and that therefore
at each opportunity, she proposes that you bet 0.55 of your fortune on the event in
question, and 0.45 of your fortune against.

(a) Run a simulation, assuming that your advisor is correct about your probability of
success at each trial and you follow the recommended strategy. Plot your fortune after
a (simulated) sequence of 100 such bets.

(b) Now suppose that you are slightly less optimistic than your investment advisor, and
believe that your probability of success is only 0.45 at each independent trial. Plot
your fortune after 100 trials, again following the recommended strategy.

(c) Now suppose that you have utility which has constant relative risk aversion instead
of log (fortune) utility. Suppose that your utility takes the form mentioned in problem
4, and consider the cases γ = 0.5, 0.3 and 0.1. Rerun your simulations of part (a) and
(b) above (your investment advisor’s beliefs and your own) for these cases.

(d) In the light of these simulations, which value of γ, 0.5, 0.3, 0.1, or 0 (which is log
(fortune)) best reflects your own utility function? Explain your reasons.
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7.7 Decisions after seeing data

We can never know about the days to come
But we think about them anyway.

—Carly Simon

Now suppose that you will have a decision to make after seeing some data. One way to
think about how to make such a decision is to wait until you have the data, decide on your
(then) current probability p(θ) for the uncertain θ you then face, and maximize (7.3). This
allows for the possibility that you may change your mind after seeing the data, as discussed
in section 1.1.1.

A second way to think about such a decision is to use the idea that you now anticipate
that, after seeing data x, your opinion about θ will be p(θ | x). Under this assumption, you
can calculate now what decision you anticipate to be optimal, as follows.

You will make your decision after seeing the data x, so your decision can be a function
of x, d(x). Since you are now uncertain about both x and θθθ, you wish to maximize, over
choices d(x), your expected utility, i.e.,

Ū = max
d(x)

∫ ∫
U(d,θθθ,x)p(θθθ,x)dθθθdx

= max
d(x)

∫ ∫
U(d,θθθ,x)p(θθθ | x)dθθθp(x)dx. (7.63)

Because d(x) is allowed to be a function of x, we can take it inside the first integral sign,
obtaining

Ū =

∫ [
max
d(x)

∫
U(d,θθθ,x)p(θθθ | x)dθθθ

]
p(x)dx. (7.64)

Thus you would use your posterior distribution of θ after seeing x, p(θθθ | x), and choose d(x)
accordingly to maximize posterior expected utility.

This is the reason why Bayesian computation is focused on computing posterior distri-
butions.

7.7.1 Summary

A Bayesian makes decisions by maximizing expected utility. When data are to be collected,
a Bayesian makes future decisions by maximizing expected utility, where the expectation
is taken with respect to the distribution of the uncertain quantity θ after the data are
observed. This is anticipated to be the conditional distribution of the θ given the data x.

7.7.2 Exercise

1. (a) Suppose that a gambler has fortune f and uses as utility the function log f . Suppose
there is a partition A1, . . . , An of n mutually exclusive and exhaustive events. Suppose
that event Ai has probability qi and that dollar tickets on Ai cost $xi. Suppose also∑
qi =

∑
xi = 1. Use the results of section 7.6 to find the expected utility of the

optimal decision this gambler can make on how to bet.

(b) Suppose that the gambler receives a signal S such that

P{S = s | Ai} = ps,i.

Find the gambler’s posterior probabilities q′i that event i will occur. Show that∑n
i=1 q

′
i = 1.

(c) Now suppose that the gambler receives a signal, from whatever source, that changes
his probabilities from qi to q′i on event i, where

∑n
i=1 q

′
i = 1. What are the gambler’s

optimal decisions now? What is the resulting expected utility?
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7.8 The expected value of sample information

Suppose you have a decision to make. You are uncertain about θ, and are contemplating
whether to observe data x before making the decision. Would you maximize your expected
utility by ignoring this opportunity, even if the data were cost-free?

An intuitive argument suggests not. After all, you could ignore the data and do just what
you would have done anyway. Alternatively, the data might be helpful to you, allowing you
to make a better, more informed, decision. This argument can be made precise, as follows.

Let U(d, θ,x) be your utility function, depending on your decision d, the unknown θ
about which you are uncertain, and the data x that you may or may not choose to observe.
Without the data x, you would maximize∫

X

∫
Θ

U(d, θ,x)p(θ, x)dθθθdx. (7.65)

If you learn x, your conditional distribution is p(θ | x), and you would choose d to maximize∫
Θ

U(d,θθθ,x)p(θθθ | x)dθθθ, (7.66)

which has current expectation with respect to the unknown value of X,∫
X

[
max
d

∫
θθθ

U(d,θθθ,x)p(θθθ | x)dθθθ

]
p(x)dx. (7.67)

It remains to show that (7.67) is at least as large as (7.65). Suppose d∗ maximizes (7.65).
Then, for each x,

max
d

∫
θθθ

U(d,θθθ,x)p(θθθ | x)dθθθ ≥
∫
θθθ

U(d∗, θθθ,x)p(θθθ | x)dθθθ. (7.68)

Integrating both sides of this equation with respect to the marginal distribution of X, yields∫
X

[max
d

∫
θθθ

U(d,θθθ,x)p(θθθ | x)dθθθ]p(x)dx

≥
∫
X

∫
θθθ

U(d∗, θθθ,x)p(θθθ | x)dθθθp(x)dx

=

∫
X

∫
θθθ

U(d∗, θθθ,x)p(θθθ,x)dθθθdx

= max
d

∫
X

∫
θθθ

U(d,θθθ,x)p(θθθ,x)dθθθdx, (7.69)

which was to be shown.
Thus a Bayesian would never pay not to see data.
The example in section 3.2 shows that with finite but not countable additivity, you

would pay not to see data in certain circumstances. The same is true if you use an improper
prior distribution (one that integrates to infinity), even one that is a limit of proper priors
(see Kadane et al. (2008)).

7.8.1 Summary

A Bayesian with a countably additive proper prior distribution does not pay to avoid seeing
data. However, a finitely additive prior, or an improper prior, can lead to such situations.
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7.8.2 Exercise

1. Recall the circumstances of exercise 7.7.2. Calculate the expected utility to the gambler
of the signal S. Must it always be non-negative? Why or why not?

7.9 An example

Sometimes to figure out how much tax is owed by a taxpayer, an enormous body of records
must be examined. A natural response to this is to take a random sample, and to analyze
the results. From such a sample, following the ideas expressed in this book, the best that
can be obtained is a probability distribution for the amount owed. Suppose θ is the amount
owed, and has some (agreed) distribution with density p(θ). [The idea that the taxpayer and
the taxing authority would agree on p(θ) often does not comport with reality, but that’s
another story.] The issue here is that the taxpayer can’t write a check for a random variable.
How much tax t should the taxpayer actually pay?

A natural first reaction to this problem is that the taxpayer should pay some measure
of central tendency of θ, perhaps E(θ). But there are three reasons why this might be too
much. In many situations, the taxpayer has the right to have his records – all of his records
- examined. By imposing sampling, the taxing authority is in effect asking the taxpayer to
give up this right, and the taxpayer should be compensated for doing so. Second, the taxing
authority typically chooses the sample size, imposing risk of overpayment on the taxpayer.
The cost of too large a sample should be born by the same party as the cost of too small a
sample, namely the taxing authority. Finally, taxation relies for the most part on voluntary
compliance. As a result, the state cannot afford to have a reputation as a pirate. For all
these reasons, while the state wants its taxes, it has reasons to think that over-collection is
worse for it than under-collection.

Suppose that the state’s interests are summarized by a loss function L(t, θ), expressing
the idea that to over-collect (t > θ) its loss is b times the extent of over-collection, while if
it under-collects, its loss is a times the extent of under-collection, and the arguments above
suggest b > a > 0. Such a loss function can be expressed as

L(t, θ) =

{
a(θ − t) if θ > t

b(t− θ) if θ < t
. (7.70)

Then expected loss is

L̄(t) =

∫ ∞
−∞

L(t, θ)p(θ)dθ

=

∫ t

−∞
b(t− θ)p(θ)dθ +

∫ ∞
t

a(θ − t)p(θ)dθ. (7.71)

We minimize (7.71) by taking its first derivative. Since t occurs in several places in (7.71),
this requires use of the chain rule. In this case it also requires remembering the Fundamental
Theorem of Calculus, to handle the derivative of a limit of integration, thus:

dL̄(t)

dt
= b(t− θ)p(θ)

∣∣∣∣θ=t − a(θ − t)p(θ)
∣∣∣∣θ=t

+

∫ t

−∞
bp(θ)dθ −

∫ ∞
t

ap(θ)dθ

= 0 + 0 + bP{θ ≤ t} − aP{θ > t}. (7.72)

To justify the differentiation under the integral sign in (7.72) we have implicitly assumed
that E | θ |<∞, but we needed that assumption anyway to have finite expected loss.
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Setting (7.72) to zero and using the fact that P{θ ≤ t} = 1− P{θ > t}, we have

a(1− P{θ ≤ t}) = bP{θ ≤ t}, or

a = (a+ b)FΘ(t), so

t = F−1
Θ

(
a

a+ b

)
. (7.73)

Since L(t, θ) → ∞ as t → ∞ and as t → −∞, the stationary point found in (7.73) is a

minimum. Thus (7.73) says that the optimal tax is the
(

a
a+b

)th
quantile of the distribution

of θ. In Bright et al. (1988), to which the reader is referred for further details, we argue that
b/a should be in the neighborhood of 2 to 4 (i.e., that over-collection might be 2 to 4 times
worse than under-collection), which has the consequence under (7.73) that the appropriate
quantile of θ for taxation should be between .33 and .2. Current practice at the time we
wrote (and still, I believe) uses either .5 (which is equivalent to a = b) or .05, which is
equivalent to b/a = 19.

Of course it is a bit of an exaggeration to think of the state as a rational actor with a
utility function, but it is still a useful exercise to model it as if it were.

7.9.1 Summary

This example shows how a simple utility function may be used to examine a public policy,
and make suggestions for its improvement.

7.9.2 Exercises

1. Suppose the result of a taxation audit using sampling is that the amount of tax owed,
θ, has a normal distribution with mean $100,000 and a standard deviation of $10,000.
Using the loss function (7.69), how much tax should be collected if:

(a) b/a = 1

(b) b/a = 2

(c) b/a = 4

(d) b/a = 19?

2. An employer’s health plan offers to employees the opportunity to put money, before tax,
into a health account the employee can draw upon to pay for health-related expenditures.
Any funds not used in the account by the end of the year are forfeited. Suppose the
employee’s probability distribution for his health-related expenditures over the coming
year has density f(θ). Suppose also that his marginal tax rate is α, 0 < α < 1, and that
he wishes to maximize his expected after-tax income. How much money, d, should he
contribute to the health account?

7.10 Randomized decisions

There are some statistical theories that suggest using randomized decisions. Thus, instead
of choosing decision d1 or decision d2, such a theory would suggest using a randomization
device such as a coin-flip that has probability α of heads, and choosing decision d1 with
probability α and decision d2 with probability 1− α. The outcome of this coin flip is to be
regarded as independent of all other uncertainties regarding the problem at hand. Under
what conditions would such a policy be optimal?

Suppose decision d1 has expected utility U(d1), and decision d2 has expected utility
U(d2). Then the expected utility of the randomized decision would be

U(αd1 + (1− α)d2) = αU(d1) + (1− α)U(d2). (7.74)
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There are two important subcases to consider. Suppose first that one decision has greater
expected utility than the other. There is no loss of generality in supposing U(d1) > U(d2),
reversing which decision is d1 and which is d2, if necessary. Then the optimal α is α = 1,
since, for α < 1,

U(d1) > αU(d1) + (1− α)U(d2). (7.75)

Thus in this case, randomized decisions are suboptimal.
Now suppose that U(d1) = U(d2). Then any α in the range 0 ≤ α ≤ 1 is as good as

any other, and each choice achieves utility U(d1) = U(d2). Thus a randomized decision is
weakly optimal, as utility maximization can be achieved without randomized decisions.

Lest the reader think that randomization is not uniquely optimal to a utility-maximizing
Bayesian is so trivial a point as not to be worth discussing, please remember that sampling
theory and randomized experimental designs use randomization extensively. I believe that
these methods are very useful in statistics. However, I believe that a proper understanding
of them belongs to the theory of more than one decision maker. Hence, further discussion
of this matter is postponed to Chapter 11, section 4.

An alternative view of the role of randomization from a Bayesian perspective, can be
found in Rubin (1978). The core of his argument is that randomization might simplify
certain likelihoods, making the findings more robust and hence more persuasive.

7.10.1 Summary

Randomized decisions are not uniquely optimal. In any problem in which randomized de-
cisions are optimal, the non-randomized decisions that are given positive probability under
the optimal randomized decision, are also optimal.

7.10.2 Exercise

Recall the circumstances of exercise 3 in section 7.2.3: The decision-maker has to choose
whether to take an umbrella, and faces uncertainty about whether it will rain. The four
consequences she faces are c1 = (take, rain), c2 = (do not take, rain), c3 = (take, no rain)
and c4 = (do not take, no rain). These have respective utilities U(c4) = 1, U(c3) = 1/3,
U(c2) = 0 and U(c1) = 2/3. Suppose the decision maker’s probability of rain is p.

(a) For what value p∗ of p is the decision-maker indifferent between taking and not taking
the umbrella?

(b) Suppose the decision-maker has the probability of rain p∗, and decides to randomize
her decision. With probability θ she takes the umbrella and with probability 1 − θ she
does not. Does she gain expected utility by doing so?

(c) Now suppose her probability of rain is p > p∗. What is her optimal decision? Answer
the same question as in part (b).

(d) Finally, suppose p < p∗. Again, what is her optimal decision? Again answer the same
question as in part (b).

7.11 Sequential decisions

So far, we have been studying only a single stage of decision-making. In such a problem, the
posterior distribution of the parameters given the data is used as the distribution to compute
expected utility, and the decision with maximum expected utility is optimal. However there
is no reason to be so restrictive. There can be several stages of information-gathering and
decisions. Furthermore, those decisions may affect the information subsequently available,
for example by deciding on the nature and extent of information to be collected. The
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important thing to understand is that the principles of dealing with multiple decision points
are exactly those of a single decision point: at each decision point, it is optimal to choose
that decision that maximizes expected utility, where the expectation is taken with respect
to the distribution of all random variables conditional on the information available at the
time of the decision.

Figure 7.4: Decision tree for a 2-stage sequential decision problem.

Figure 7.4 illustrates a decision tree for a two-stage sequential decision problem. The
posterior from the kth decision stage becomes the prior for the (k+1)st decision stage. This
suggests that the names “prior” and “posterior” are not very useful, since to make sense
they must refer to a particular time point in the decision process. It is probably better
practice to keep in mind what is uncertain, and therefore random, and what is known, and
therefore to be conditioned upon, at each stage of that process.

Now let’s consider some examples. The first example is a class of problems known in
other parts of statistics as (static) experimental design. Here there are two decision points:
first deciding what data to collect, and then, after the data are available, making whatever
terminal decision is required. The first decision requires expected utility of each possible
design where the expectation is taken with respect to both the (as yet unobserved) data
and the other parameters in the problem. At the second decision point, expected utility
is calculated with respect to the conditional distribution of the parameters given the (now
observed) data.

In some situations, data are collected in batches, and several decision points can be
envisioned. At each decision point, the available decisions are either to stop collecting data
and make a terminal decision, or to continue. Sometimes an upper limit on the number
of decision points is imposed, so at the last decision point, a terminal decision must be
made. These problems are called batch-sequential problems. One application is to the data-
monitoring committees of a clinical trial. At each meeting a decision must be made either
to stop the trial and make a treatment recommendation, or to continue the trial.

A special case of batch sequential designs are designs in which each batch is of size one.
Such designs are called fully sequential.
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Because at each stage of a sequential decision process decisions are optimally made by
maximizing expected utility, the results of section 7.10 apply to each stage. Hence random-
ization is never strictly optimal. If a randomized strategy is optimal, so are each of the
decisions the randomized strategy puts positive probability on.

7.11.1 Notes

The literature on Bayesian sequential decision making is not large; many of the analytically
tractable cases are found in DeGroot (1970). An interesting special case is studied in Berry
and Fristedt (1985). Computing optimal Bayesian sequential decisions can be difficult be-
cause natural methods lead to an exponential explosion in the dimension of the decision
space, but Brockwell and Kadane (2003) give some methods to overcome this difficulty.

There is literature on static experimental design in a Bayesian perspective. A review of
many of the analytically tractable cases is given by Chaloner and Verdinelli (1995). Other
important contributions are those of Verdinelli (2000), DuMouchel and Jones (1994), Joseph
(2006) and Lohr (1995).

Bayesian analysis allows the graceful incorporation of new data as it becomes available.
This contrasts sharply with sampling theory methods, which are sensitive to how often and
when data are analyzed in a sequential setting. This is especially critical in the design of
medical experiments, in which early stopping of a clinical trial can save lives or heartache.

7.11.2 Summary

At each stage in a sequential decision process, optimal decisions are made by maximizing
expected utility. The probability distribution used to take the expectation conditions on
all the random variables whose values are known at the time of the decision, and treats as
random all those still uncertain at the time of the decision.

7.11.3 Exercise

1. Consider the following two-stage decision problem. The investor starts at the first stage
with a fortune f0, and has log fortune as utility. At each stage there are n mutually exclu-
sive and exhaustive events A1, . . . , An that will be observed after each stage, outcomes
after the second stage are independent of those of the first stage. At each stage, there
are dollar tickets available for purchase on Ai for a price of xi > 0, where

∑n
i=1 xi = 1.

The investor’s probability on Ai in qi at each stage.

(a) Suppose the investor’s fortune after the first stage is f1. What proportions `i should
he use for the second stage to purchase tickets on event Ai? What is the amount the
investor will optimally spend on tickets on Ai?

(b) Now consider the investor’s problem at the first stage, when his fortune is f0. What
proportions `i should he use for the first stage to purchase tickets on event Ai? What
is the amount the investor will optimally spend on tickets on Ai? If Ai occurs at the
first stage, what will the investor’s resulting fortune be?

(c) Now consider both stages together. How does the outcome of the first stage affect
the proportions and amounts spent on tickets at the second stage?

(d) What is the expected utility of the two-stage process, with optimal decisions made
at each stage?





Chapter 8

Conjugate Analysis

The results of Chapter 7 make it clear that the central computational task in Bayesian
analysis is to find the conditional distribution of the unobserved parts of the model (other-
wise known as parameters θ) given the observed parts (otherwise known as data x), written
in notation as p(θ | x). There are some models for which this computation can be done
analytically, and others for which it cannot. This chapter deals with the former.

8.1 A simple normal-normal case

Suppose that you observe data X1, X2, . . . , Xn which you believe are independent and iden-
tically distributed with a normal distribution with mean µ (about which you are uncertain)
and variance σ2

0 (about which you are certain). Also suppose that your opinion about µ
is described by a normal distribution with mean µ1 and variance σ2

1 , where µ1 and σ2
1 are

assumed to be known. Before proceeding, it is useful to reparametrize the normal distribu-
tion in terms of the precision τ = 1/σ2. Thus the data are assumed to come from a normal
distribution with mean µ and precision τ0 = 1/σ2

0 , and your prior on µ is normal with mean
µ1 and precision τ1 = 1/σ2

1 . Such a reparameterization does not change the meaning of any
of your statements of belief, but it does simplify some of the formulae to come.

Our task is to compute the conditional distribution of µ given the observed data
X = (X1, X2, . . . , Xn). We start with the joint distribution of µ and X, and then divide
by the marginal distribution of X. This marginal distribution is the integral of the joint
distribution, where the integral is with respect to the distribution of µ. Consequently, after
integration, the marginal distribution of X1, . . . , Xn does not involve µ.

It is a general principle, in the calculations we are about to undertake, that we may
neglect factors that do not depend on the parameter whose posterior distribution we are
calculating. The result is then proportional to the density in question, so at the end of the
calculation, the constant of proportionality must be recovered.

Now the joint distribution of µ and (X1, . . . , Xn) = X comes to us as the conditional
distribution of x given µ times the density of µ. Hence

f(X, µ) =

(
1√
2π

)n
τ
n/2
0 e−

τ0
2

∑
(Xi−µ)2 · (τ1)1/2

√
2π

e−
τ1
2 (µ−µ1)2 . (8.1)

Now the factor
(

1√
2π

)n
τ
n/2
0

(τ1)1/2√
2π

does not depend on µ, so we may write

f(X, µ) ∝ e−Q(µ)/2 (8.2)

where Q(µ) = τ0
∑n
i=1(Xi − µ)2 + τ1(µ− µ1)2.

Since Q(µ) occurs in the exponent in (8.2), to neglect a constant factor in (8.2) is
equivalent to neglecting an additive factor in Q(µ). I write

Q(µ) ∆ Q′ (µ)

299
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to mean that Q(µ)−Q′(µ) does not depend on µ. Therefore if Q(µ)∆Q′(µ), then e−Q(µ)/2 ∝
e−Q

′(µ)/2. I rewrite Q(µ) as follows:

Q(µ) = τ0

n∑
i=1

(µ2 − 2µXi +X2
i ) + τ1(µ2 − 2µµ1 + µ2

1).

Let Q′(µ) = nτ0µ
2 − 2τ0µ

∑
Xi + τ1µ

2 − 2µτ1µ1.
Then Q(µ)∆Q′(µ) because

Q(µ)−Q′(µ) =
∑

X2
i + τ1µ

2
1

does not depend on µ.
Hence

Q(µ) ∆ [µ2(nτ0 + τ1)− 2µ(nτ0X + τ1µ1)].

But

µ2(nτ0 + τ1)− 2µ(nτ0X + τ1µ1) = (nτ0 + τ1)

[
µ2 − 2µ

(
nτ0X + τ1µ1

nτ0 + τ1

)]
.

To simplify the notation, let
τ2 = nτ0 + τ1 (8.3a)

and

µ2 =
nτ0X + τ1µ1

nτ0 + τ1
. (8.3b)

Then in this notation,
Q(µ) ∆ τ2[µ2 − 2µµ2].

The material in square brackets is a perfect square, except that it needs τ2µ
2
2, which does

not depend on µ. Therefore we may write

Q(µ) ∆ τ2(µ− µ2)2.

Returning to (8.2), we may then write

f(X, µ) ∝ e−τ2(µ−µ2)2/2. (8.4)

We can recognize this as the form of a normal distribution for µ, with mean µ2 and precision

τ2. We therefore know that the missing constant is
τ
1/2
2√
2π

.

Now let’s return to (8.3) to examine the result found in (8.4). Equation (8.3a) says
that the posterior precision τ2 of µ is the sum of the prior precision τ1 and the “data
precision” nτ0. Thus if the prior precision τ1 is small compared to the data precision nτ0,
then the posterior precision is dominated by nτ0. Conversely, if the prior precision τ1 is
large compared to the data precision nτ0, then the posterior precision is dominated by τ1.
The result of data collection in this example is always to increase the precision with respect
to which µ is known.

Equation (8.3b) can be revealingly re-expressed as

µ2 =

(
nτ0

nτ0 + τ1

)
X +

(
τ1

nτ0 + τ1

)
µ1. (8.5)

Here µ2 is a linear combination of X and µ1, where the weights are non-negative and sum
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to one (such a combination is called a convex combination). Indeed we may say that µ2

is a precision-weighted average of X and µ1. The intuition is that two information sources
are being blended together here, the prior and the sample. The mean of the posterior
distribution, µ2, is a blend of the data information, X, and the prior mean µ1, where
the weights are proportional to the precisions of the two data sources. Again, if the prior
precision τ1 is small compared to the data precision nτ0, then the posterior mean µ2 will
be close to X. Conversely if the prior precision τ1 is large compared to the data precision
nτ0, then the posterior mean µ2 will be close to the prior mean µ1.

Another feature of the calculation is that the data X enter the result only through the
sample size n and the data sum

∑n
i=1Xi, or equivalently its mean X. Such a data summary

is called a sufficient statistic, because, under the assumptions made, all you need to know
about the data is summarized in it.

With respect to the normal likelihood where only the mean is uncertain, the family of
normal prior opinions is said to be closed under sampling. This means that whatever the
data might be, the posterior distribution is also in the same family. The family of normal
distributions is not unique in this respect. The following other families are also closed under
sampling:

(i) The family of all prior distributions on µ.

(ii) Each of the opinionated prior distributions that puts probability one on some partic-
ular value of µ, say µ0. In this case, whatever the data turn out to be, the posterior
distribution will still put probability one on µ0. This corresponds to taking τ0 to be
infinity.

(iii) If the normal density for the prior is multiplied by any non-negative function g(µ) (it
has to be positive somewhere), that factor would also be a factor in the posterior. Hence
g(µ) times a normal prior results in g(µ) times a normal posterior, so it is in the same
family. (Indeed (i) and (ii) above can be regarded as special cases of (iii)).

Despite this lack of uniqueness of the family closed under sampling, it is convenient to
single out the family of normal prior distributions for µ, and to refer to the pair of likelihood
and prior as a conjugate pair.

It should also be emphasized that the calculation depends critically on the distributional
assumptions made. Nonetheless, calculations like this one, where they are possible, are useful
both for themselves and as an intuitive background for calculations in more complicated
cases.

In finding a conjugate pair of likelihood and prior, there should not be implied coercion
on you to believe that your data have the form of a particular likelihood (here normal), nor,
if they do, that your prior must be of a particular form (here also normal). You are entitled
to your opinions, whatever they may be.

8.1.1 Summary

If X1, . . . , Xn are believed to be conditionally independent and identically distributed, with
a normal distribution with mean µ and precision τ0, where µ is uncertain but τ0 is known
with certainty, and if µ itself is believed to have a normal distribution with mean µ1 and
precision τ1 (both known), then the posterior distribution of µ is again normal, with mean
µ2 given in (8.3b) and precision τ2 given in (8.3a).

8.1.2 Exercises

1. Vocabulary. Explain in your own words the meaning of:

(a) precision
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(b) sufficient statistic

(c) family closed under sampling

(d) conjugate likelihood and prior

2. Suppose your prior on µ is well represented by a normal distribution with mean 2 and
precision 1. Also suppose you observe a normal random variable with mean µ and pre-
cision 2. Suppose that observation turns out to have the value 3. Compute the posterior
distribution that results from these assumptions.

3. Do the same problem, except that the observation now has the value 300.

4. Compare your answers to questions 2 and 3 above. Do you find them equally satisfactory?
Why or why not?

8.2 A multivariate normal-normal case with known precision

We now consider a generalization of the calculation in section 8.1 to multivariate normal
distributions. In this case, the precision, which in the univariate case was a positive number,
now becomes a positive-definite matrix, the inverse of the covariance matrix. Thus we sup-
pose that the data now consist of n vectors, each of length p,X1, . . . ,Xn. These vectors are
assumed to be conditionally independent and identically distributed with a p-dimensional
normal distribution having a p-dimensional mean µµµ about which you are uncertain, and a
p × p precision matrix τττ0 which you are certain about. Your prior opinion about µµµ is rep-
resented by a p-dimensional normal distribution with mean µµµ1 and p × p precision matrix
τ1. Again we wish to find the posterior distribution of µ given the data.

We begin, as before, by writing down the joint density of µµµ and the data X =
(X1, . . . ,Xn). This joint density is

f(X,µµµ) =

(
1√
2π

)pn
| τ0 |n/2 e−

1
2

∑n
i=1(Xi−µµµ)′τ0(Xi−µµµ) (8.6)

·
(

1√
2π

)p
| τ1 |

1
2 e−

1
2 (µµµ−µµµ1)′τ1(µµµ−µµµ1).

Expression (8.6) is a straight-forward generalization of (8.1). Again the constant(
1√
2π

)pn
| τ0 |n/2

(
1√
2π

)p
| τ1 |

1
2

does not involve µ, and may be absorbed in a constant of proportionality. Thus we have

f(X,µµµ) ∝ e− 1
2Q(µµµ) (8.7)

where Q(µµµ) =
∑n
i=1(Xi −µµµ)′τ0(Xi −µµµ) + (µµµ−µµµ1)′τ1(µµµ−µµµ1), which is a generalization of

(8.2). Using the same ∆ notation as before,

Q(µµµ) = Sigmani=1(µµµ−Xi)
′τ0(µµµ−Xi) + (µµµ−µµµ1)′τ1(µµµ−µµµ1)

= nµµµ′τ0µµµ−µµµ′τ0ΣXi − ΣX′iτ0µµµ

+ ΣX′iτ0Xi + µµµ′τ1µµµ−µµµ′τ1µµµ1 −µµµ′1τ1µµµ+µµµ′1τ1µµµ1

∆[µµµ′(nτ0)µµµ−µµµ′τ0ΣXi − ΣX′iτ0µµµ+µµµ′τ1µµµ−µµµ′τ1µµµ1 −µµµ′1τ1µµµ]

= µµµ′(nτ0 + τ1)µµµ−µµµ′γγγ − γγγ′µµµ = Q1(µµµ)

where γγγ = τ0

n∑
i=1

Xi + τ1µµµ1 = nτ0X + τ1µµµ1.
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Let
τ2 = nτ0 + τ1 (8.8a)

and
µµµ2 = τ−1

2 γγγ, (8.8b)

and compute

Q1(µµµ)− (µµµ−µµµ2)′τ2(µµµ−µµµ2) =[µµµ′τ2µµµ−µµµ′γγγ − γγγ′µµµ]−µµµ′τ2µµµ+µµµ′τ2τ
−1
2 γγγ

+γγγ′τ−1
2 τ2µµµ−µµµ′2τ2µµµ2

=−µµµ′2τ2µµµ2

which does not depend on µ. Therefore (implicitly using transitivity of ∆),

Q(µµµ) ∆ (µµµ−µµµ2)′τ2(µµµ−µµµ2).

Returning to (8.7) we may write

f(X,µµµ) ∝ e− 1
2 (µµµ−µµµ2)′τ2(µµµ−µµµ2) (8.9)

which we recognize as a multivariate normal distribution for µµµ, with mean µµµ2 and precision

matrix τ2. So the missing constant is
(
|τ2|

(2π)p

)1/2

.

I hope that the analogy between this calculation and the univariate one is obvious to the
reader. The only difference is that in completing the square for Q(µµµ), care must be taken
to respect the fact that matrix multiplication does not commute. But the basic argument
is exactly the same.

Again the precision matrix of the posterior distribution, τ2, is the sum of the precision
matrices of the prior, τ1, and of the data, nτ0. Furthermore the posterior mean, µµµ2, can
be seen to be the matrix convex combination of XXX, the data mean, and µµµ, the prior mean,
with weights (nτ0 + τ1)−1nτ0 and (nτ0 + τ1)−1τ1, respectively.

Again, XXX, which is a p-dimensional vector, and is the average, component-wise, of the
observations, is a sufficient statistic, when combined with the sample size n.

8.2.1 Summary

If X1,X2, . . . ,Xn are believed to be conditionally independent and identically distributed,
with a p-dimensional normal distribution with mean µµµ and precision matrix τ0, where µµµ
is uncertain but τ0 is known with certainty, and if µµµ itself is believed to have a normal
distribution with mean µµµ1 and precision τ1 (both known), then the posterior distribution
of µµµ is again normal, with mean µµµ2 given in (8.8b), and precision matrix τ2 given in (8.8a).

8.2.2 Exercises

1. Prove that the result derived in section 8.1 is a special case of the result derived in
section 8.2.

2. Suppose your prior on µµµ (which is two-dimensional) is normal, with mean (2, 2) and
precision matrix I, and suppose you observe a normal random variable with mean µµµ,
and precision matrix ( 2 0

0 2 ). Suppose the observation is (3, 300).

(a) Compute the posterior distribution on µµµ that results from these assumptions.

(b) Compare the results of this calculation with those you found in section 8.1.2, prob-
lems 2 and 3.
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8.3 The normal linear model with known precision

The normal linear model is one of the most heavily used and popular models in statistics.
The model is given by

y = Xβββ + e (8.10)

where y is an n × 1 vector of observations, X is an n × p matrix of known constants, βββ
is a p × 1 vector of coefficients and e is an n × 1 vector of error terms. We will suppose
for the purpose of this section that e has a normal distribution with zero mean and known
precision matrix τ0. Additionally, we will assume that βββ has a prior distribution taking the
form of a p-dimensional normal distribution with mean βββ1 and precision matrix τ1, both
known.

Before we proceed to the analysis of the model, it is useful to mention some special
cases. When the elements of the matrix X are restricted to take the values 0 and 1, the
model (8.10) is often called an analysis of variance model. When the X’s are more general,
(8.10) is often called a linear regression model.

The joint distribution of y and βββ can be written

f(y,βββ) =

(
1√
2π

)n
| τ0 |1/2 e−

1
2 (y−Xβ)′τ0(y−Xβ) (8.11)

·
(

1√
2π

)p
| τ1 |1/2 e−

1
2 (β−β1)′τ1(β−β1).

Once again we recognize ( 1√
2π

)n | τ0 |1/2 ( 1√
2π

)p | τ1 |1/2 as a constant that need not be

carried. Thus we can write
f(y,βββ) ∝ e− 1

2Q(βββ) (8.12)

where

Q(βββ) =(y −Xβββ)′τ0(y −Xβββ) + (βββ − βββ1)′τ1(βββ − βββ1) (8.13)

=
[
βββ′X ′τ0Xβββ − βββ′X ′τ0y − y′τ0Xβββ + y′τ0y

+βββ′τ1βββ − βββ′τ1βββ1 − βββ′1τ1βββ + βββ′1τ1βββ1

]
∆
[
βββ′(X ′τ0X + τ1)βββ − βββ′(X ′τ0y + τ1βββ1)

−(βββ′1τ1 + y′τ0X)βββ
]

=βββ′τ2βββ − βββ′γγγ − γγγ′βββ
∆ βββ′τ2βββ − βββ′γγγ − γγγ′βββ + γγγ′τ−1

2 γγγ

=(βββ − βββ2)′τ2(βββ − βββ2)

where
τ2 = X ′τ0X + τ1, (8.14a)

γγγ = X ′τ0y + τ1βββ1 (8.14b)

and
βββ2 = τ−1

2 γγγ. (8.14c)

Therefore the algebra of the last section can be used once again, leading to the conclusion
that βββ has a normal posterior distribution with precision matrix τ2 and mean

βββ2 = τ−1
2 γγγ = (X ′τ0X + τ1)−1(X ′τ0y + τ1βββ1). (8.15)

Once again, the posterior precision matrix τ2 is the sum of the data precision matrix
X ′τ0X and the prior precision matrix τ1.
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To interpret the mean, let β̂ββ = (X ′τ0X)−1X ′τ0y. [In other literature, β̂ is called the
Aitken estimator of β.] Substituting (8.10) yields

β̂ββ =(X ′τ0X)−1X ′τ0(Xβββ + e)

=(X ′τ0X)−1X ′τ0Xβββ + (X ′τ0X)−1X ′τ0e

=βββ + (X ′τ0X)−1X ′τ0e.

The sampling expectation of β̂ is then β, and the variance-covariance matrix of β̂ is

E(β̂ββ − βββ)(β̂ββ − βββ)′ =(X ′τ0X)−1X ′τ0E(ee′)τ0X(X ′τ0X)−1

=(X ′τ0X)−1X ′τ0τ
−1
0 τ0X(X ′τ0X)−1

=(X ′τ0X)−1.

Hence the precision-matrix of β̂ is X ′τ0X. Thus I may rewrite βββ2 as

βββ2 =(X ′τ0X + τ1)−1
[
(X ′τ0X)(X ′τ0X)−1Xτ0y + τ1βββ1

]
=(X ′τ0X + τ1)−1

[
(X ′τ0X)β̂ββ + τ1βββ1

]
, (8.16)

which displays βββ2 as a matrix precision-weighted average of β̂ββ and βββ1. For this model β̂ββ, or
equivalently X ′τ0y, is a vector of sufficient statistics.

One of the issues in linear models is the possibility of lack of identification of the pa-
rameters, also known as estimability. To take a simple example, suppose we were to observe
Y1, . . . , Yn which are conditionally independent, identically distributed, and have a mean
β1 +β2 and precision 1. This is a special case of (8.10) in which p = 2, the matrix X is n×2
and has 1 in each entry, and τ0 is the identity matrix. The problem is that the classical
estimate,

β̂ββ = (X ′X)−1X ′y (8.17)

cannot be computed, since X ′X is singular (multiply it by the vector (1,−1)′ to see this).
Furthermore, it is clear that while the data are informative about β1 + β2, they are not
informative for β1 − β2. What happens to a Bayesian analysis in such a case? Nothing.
Even if X ′X does not have an inverse, the matrix X ′τ0X+τ1 does have an inverse, because
τ1 is positive definite and X ′τ0X is positive semi-definite. Thus (8.15) can be computed
nonetheless.

In directions such as β1 − β2, the posterior is the prior, because the likelihood is flat
there. This observation is not special to the normal likelihood (although most classical
treatments of identification focus on the normal likelihood). In general, a model is said to
lack identification if there are parameter values θ and θ′ such that f(x | θ) = f(x | θ′) for
all possible data points x. In this case, the data cannot tell θ apart from θ′. In the example,
θ = (β1, β2) cannot be distinguished from θ′ = (β1 + c, β2− c) for any constant c. However,
you have a prior distribution and a likelihood. The product of them determines the joint
distribution, and hence the conditional distribution of the parameters given the data. Lack
of identification does not disturb this chain of reasoning.

I should also mention the issue of multicollinearity, which is a long name for the situation
that X ′X, while not singular, is close to singular. This is not an issue for Bayesians, because
again τ1 in (8.15) creates the needed numerical stability.

8.3.1 Summary

If the likelihood is given by (8.10), with conditionally normally distributed errors with mean
0 and known precision matrix τ0, and if the prior on β is normal with mean β1 and precision
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matrix τ1, then the posterior on β is again normal with mean given by (8.15) and precision
matrix given by (8.14b).

Lack of identification and multicollinearity are not issues in the Bayesian analysis of
linear models.

8.3.2 Further reading

There is an enormous literature on the linear model, most of it from a sampling theory
perspective. Some Bayesian books dealing with aspects of it include Box and Tiao (1973),
O’Hagan and Foster (2004), Raiffa and Schlaifer (1961) and Zellner (1971). For more on
identification from a Bayesian perspective, see Kadane (1974), Dreze (1974) and Kaufman
(2001).

8.3.3 Exercises

1. Vocabulary. State in your own words the meaning of:

(a) normal linear model

(b) identification

(c) multicollinearity

(d) linear regression

(e) analysis of variance

2. Write down the constant for the posterior distribution for βββ, which was found in (8.12)

and (8.13) to be proportional to e−
1
2 (βββ−βββ2)′τ2(βββ−βββ2).

8.4 The gamma distribution

A typical move in applied mathematics when an intractable problem is found is to give it a
name, study its properties, and then redefine “tractable” to include the formerly intractable
problem. We have already seen an example of this process in the use of Φ as the cumulative
distribution function of the normal distribution in section 6.9. We’re about to see a second
example.

The gamma function is defined as follows:

Γ(α) =

∫ ∞
0

e−xxα−1dx (8.18)

defined for all positive real numbers α. Because e−x converges to zero faster than any power
of x, this integral converges at infinity. For α > 0, it also behaves properly at zero..

To study its properties, we need to use integration by parts. To remind you what that’s
about, recall that if u(x) and v(x) are both functions of x, then

d

dx
u(x)v(x) = u(x)

dv(x)

dx
+ v(x)

du(x)

dx
.

Integrating this equation with respect to x, we get

u(x)v(x) =

∫
udv +

∫
vdu,

or, equivalently, ∫
udv = uv −

∫
vdu.
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Applying this to the gamma function, let u = xα−1 and dv = e−xdx. Then, assuming α > 1,

Γ(α) =

∫ ∞
0

e−xxα−1dx = −e−xxα−1

∣∣∣∣∞
0

+ (α− 1)

∫ ∞
0

e−xxα−2dx. (8.19)

=(α− 1)Γ(α− 1).

Additionally,

Γ(1) =

∫ ∞
0

e−xdx = −e−x
∣∣∣∣∞
0

= 1.

Therefore when α > 1 is an integer,

Γ(α) = (α− 1)! (8.20)

Thus the gamma function can be seen as a generalization of the factorial function to all
positive real numbers.

In the gamma function, let y = x/β. Then

Γ(α) =

∫ ∞
0

(βy)α−1e−βy · βdy = βα
∫ ∞

0

yα−1e−βydy. (8.21)

Therefore the function

f(y | α, β) =
βα

Γ(α)
yα−1e−βy (8.22)

is non-negative for y > 0 and integrates to 1 for all positive values of α and β. It therefore
can be considered a probability density of a continuous random variable, and is called the
gamma distribution with parameters α and β.

The moments of the gamma distribution are easily found:

E(Xk) =

∫ ∞
0

xk
βα

Γ(α)
xα−1e−βxdx

=
βα

Γ(α)

∫ ∞
0

xk+α−1e−βxdx =
βα

Γ(α)

Γ(α+ k)

βα+k
=

Γ(α+ k)

Γ(α)βk
. (8.23)

Therefore
E(X) = α/β (8.24)

E(X2) =
α(α+ 1)

β2
(8.25)

and

V (X) = E(X2)− (E(X))2 =
α(α+ 1)

β2
− (α/β)

2
= α/β2. (8.26)

The special case when α = 1 is the exponential distribution, often used as a starting
place for analyzing life-time distributions. The special case in which α = n/2 and β = 1/2
is called the chi-square distribution with n degrees of freedom.

Now suppose that X = (X1, . . . , Xn) are conditionally independent and identically dis-
tributed, and have a normal distribution with known mean µ0 and precision τ , about which
you are uncertain. Also suppose that your opinion about τ is modeled by a gamma distri-
bution with parameters α and β. Then the joint distribution of X and τ is

f(X1, . . . , Xn, τ) =

(
1√
2π

)n
τn/2e−(τ/2)

∑n
i=1(Xi−µ0)2

· β
α

Γ(α)
τα−1e−βτ . (8.27)
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Now we recognize ( 1√
2π

)n βα

Γ(α) as a constant not involving τ . The remainder of (8.27) is

f(X, τ) ∝ τα+n/2−1e−τ[β+
∑n
i=1(Xi−µ0)2/2]. (8.28)

Let α1 = α+ n/2 (8.29a)

and β1 = β +

n∑
i=1

(Xi − µ0)2/2. (8.29b)

Then (8.28) can be rewritten as

f(X, τ) ∝ τα1−1e−β1τ , (8.30)

and we recognize the distribution as a gamma distribution with parameters α1 and β1. Thus
the gamma family is conjugate to the normal distribution when the mean is known but the
precision is uncertain.

8.4.1 Summary

This section introduces the gamma function in (8.18) and the gamma distribution in (8.22).
If X1, . . . , Xn are believed to be conditionally independent and identically distributed,

with a normal distribution with mean µ0 and precision τ , where µ0 is known with certainty
but τ is uncertain, and if τ is believed to have a gamma distribution with parameters α and
β (both known), there the posterior distribution of τ is again gamma, with parameters α1

given by (8.29a) and β1 given by (8.29b).

8.4.2 Exercises

1. Vocabulary. State in your own words the meaning of:

(a) Gamma function

(b) Gamma distribution

(c) Exponential distribution

(d) Chi-square distribution

2. Find the constant for the distribution in (8.30).

3. Consider the density e−x, x > 0 of the exponential distribution.

(a) Find its moment generating function.

(b) Find its nth moment.

(c) Conclude that Γ(n+ 1) = n!

8.4.3 Reference

I highly recommend the book by Artin (1964) on the gamma function. It’s magic.

8.5 The univariate normal distribution with uncertain mean and precision

Given the result of section 8.1, that when the precision of a normal distribution is known,
a normal distribution on µ is conjugate, and the result of section 8.4, that when the mean
is known, a gamma distribution on τ is conjugate, one might hope that a joint distribution
taking µ and τ to be independent (normal and gamma, respectively) might be conjugate
when both µ and τ are uncertain. This would work if the normal likelihood factored into
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one factor that depends only on µ and another on τ . However, this is not the case, since
the exponent has a factor involving the product of µ and τ . However, there is no particular
reason to limit the joint prior distribution of µ and τ to be independent. We can, for
example, specify a conditional distribution for µ given τ , and a marginal distribution for
τ . What we know already, though, is that the conditional distribution for µ given τ must
depend on τ for conjugacy to be possible.

The form of prior distribution we choose is as follows: the distribution of µ given τ is
normal with mean µ0 and precision λ0τ , and the distribution on τ is gamma with parameters
α0 and β0. This specifies a joint distribution on µ and τ , and, with the normal likelihood,
a joint distribution on X, µ and τ as follows:

f(X, µ, τ) =

(
1√
2π

)n
τn/2e−

τ
2

∑n
i=1(Xi−µ)2

· 1√
2π

(λ0τ)1/2e−
λ0τ
2 (µ−µ0)2

· β
α0
0

Γ(α0)
τα0−1e−β0τ . (8.31)

Again we may eliminate constants not involving the parameters µ and τ . Here the constant

is ( 1√
2π

)n+1λ
1/2
0

β
α0
0

Γ(α0) . Then we have

f(X, µ, τ) ∝ τn/2+1/2+α0−1e−τQ(µ), (8.32)

where

Q(µ) =

∑n
i=1(Xi − µ)2

2
+
λ0

2
(µ− µ0)2 + β0.

Q(µ) is a quadratic in µ, which is familiar. However, we cannot eliminate constants from
Q(µ), because in (8.32) it is multiplied by τ , which is one of the parameters in this calcu-
lation. Nonetheless, we can re-express Q(µ) by completing the square, as we have before in
analyzing normal posterior distributions.

To simplify the coming algebra a bit, we’ll work with

Q∗(µ) =
∑

(Xi − µ)2 + λ0(µ− µ0)2, (8.33)

and will substitute our answer into

Q(µ) =
Q∗(µ)

2
+ β0. (8.34)

We begin the analysis of Q∗(µ) is the usual way, by collecting the quadratic linear and
constant terms in µ:

Q∗(µ) =nµ2 − 2nµX +
∑

X2
i

+λ0µ
2 − 2λ0µµ0 + λ0µ

2
0

=(n+ λ0)µ2 − 2µ
[
nX + λ0µ0

]
+
∑

X2
i + λ0µ

2
0. (8.35)

Completing the square for µ, we have

Q∗(µ) =(n+ λ0)

[
µ− 2µ(nX + λ0µ0)

n+ λ0
+

(
nX + λ0µ0

n+ λ0

)2
]

+
∑

X2
i + λ0µ

2
0 −

(nX + λ0µ0)

n+ λ0

2

=(n+ λ0)

(
µ− nX + λ0µ0

n+ λ0

)2

+ C (8.36)
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where

C =
∑

X2
i + λ0µ

2
0 −

(nX + λ0µ0)2

n+ λ0
.

Now we work to simplify the constant C:

C =
∑

X2
i + λ0µ

2
0 −

(nX + λ0µ0)2

n+ λ0

=
∑

X2
i +

(n+ λ0)(λ0µ
2
0)− n2X

2 − 2nXλ0µ0 − λ2
0µ

2
0

n+ λ0

=
∑

X2
i +

nλ0µ
2
0 − 2nXλ0µ0 − n2X

2

n+ λ0

=
∑

X2
i −

n2X
2

n+ λ0
+

nλ0

n+ λ0

[
µ2

0 − 2Xµ0

]
. (8.37)

Completing the square for µ0, (8.37) becomes

C =
∑

X2
i −

n2X
2

n+ λ0
+

nλ0

n+ λ0

[
µ2

0 − 2Xµ0 +X
2
]
− nλ0

n+ λ0
X

2

=
∑

X2
i −

(n+ λ0)nX
2

n+ λ0
+

nλ0

n+ λ0
(µ0 −X)2

=

n∑
i=1

X2
i − nX

2
+

nλ0

n+ λ0
(µ0 −X)2

=

n∑
i=1

(Xi −X)2 +
nλ0

n+ λ0
(µ0 −X)2. (8.38)

Now substituting (8.38) into (8.36) and (8.36) into (8.34) we have

Q(µ) =β0 +
1

2

{
(n+ λ0)(µ− nX + λ0µ0

n+ λ0
)2

+

n∑
i=1

(Xi −X)2 +
nλ0

n+ λ0
(µ0 −X)2

}
. (8.39)

Let

β1 =β0 +
1

2

n∑
i=1

(Xi −X)2 +
nλ0

2(n+ λ0)
(µ−X)2, (8.40a)

α1 =α0 + n/2, (8.40b)

µ1 =
λ0µ0 + nX

λ0 + n
(8.40c)

and

λ1 =λ0 + n. (8.40d)

Then (8.32) can be re-expressed as

f(X, µ, τ) ∝
[
τ1/2e−

1
2λ1τ(µ−µ1)2

]
τα1−1e−τβ1 , (8.41)
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which can be recognized (the part in square brackets) as proportional to a normal distri-
bution for µ given τ that has mean µ1 and precision λ1τ , times (the part not in square
brackets) a gamma distribution for τ with parameters α1 and β1. Therefore the family
specified is conjugate for the univariate normal distribution with uncertainty in both the
mean and the precision.

8.5.1 Summary

If X1, X2, . . . , Xn are believed to be conditionally independent and identically distributed
with a normal distribution for which both the mean µ and the precision τ are uncertain,
and if µ given τ has a normal distribution with mean µ0 and precision λ0τ , and if τ has a
gamma distribution with parameters α0 and β0, then the posterior distribution on µ and
τ is again in the same family of distributions, with updated parameters given by equations
(8.40).

8.5.2 Exercise

1. Find the constant for the posterior distribution of (µ, τ) given in (8.41).

8.6 The normal linear model with uncertain precision

We now consider a generalization of the version of the normal linear model most commonly
used. Suppose our data are assembled into an n × 1 vector of observations y, as in (8.10),
i.e.,

y = Xβββ + e (8.42)

where X is an n × p matrix of known constants, βββ is a p × 1 vector of coefficients and e
is an n × 1 vector of error terms. In distinction to the analysis of section 8.3, we suppose
that e has a normal distribution with zero mean and precision matrix ττττ0, where τττ0 is
a known n × n matrix, and τ has a gamma distribution with parameters α0 and β0. We
also suppose that βββ has a normal distribution, conditional on τ , that is normal with mean
β0 and precision ττττ1, where τττ1 is a known p × p matrix. (The standard assumptions take
τττ0 and τττ1 to be identity matrices, but we can allow the greater generality without added
complication.)

Once again we write the joint density of the data, y, and the parameters, here τ and βββ,
as follows:

f(y, τ,βββ) =

(
1√
2π

)n
| ττττ0 |n/2 e−

τ
2 (y−Xβ)′τττ0(y−Xβ)

·
(

1√
2π

)p
| ττττ1 |p/2 e−

τ
2 (β−β0)′τττ1(β−β0)

· (β0)α0

Γ(α0)
τα0−1e−β0τ . (8.43)

Once again we recognize certain constants as being superfluous, namely here

(
1√
2π

)n+p

| τττ0 |n/2 | τττ1 |p/2
βα0

0

Γ(α0)
.
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So instead of (8.43) we may write

f(y, τ,βββ) ∝τn/2e− τ2 (y−Xβββ)′τττ0(y−Xβββ)

τp/2e−
τ
2 (βββ−βββ0)′τττ1(βββ−βββ0)

τα0−1e−β0τ

=τn/2+p/2+α0−1e−τQ(βββ) (8.44)

where Q(βββ) = 1
2 [(y −Xβββ)′τττ0(y −Xβββ) + (βββ − βββ0)′τττ1(βββ − βββ0)] + β0.

Again for simplicity, we work with Q∗(β) (the part of Q(βββ) in square brackets) and
complete the square in βββ; again, because here τ is a parameter we are not permitted to
discard additive constants from

Q∗(βββ) =(y −Xβββ)′τττ0(y −Xβββ) + (βββ − βββ0)′τττ1(βββ − βββ0)

=βββ′X ′τττ0Xβββ − βββ′X ′τττ0y − y′τττ0Xβββ + y′τττ0y

+βββ′τττ1βββ − βββ′τττ1βββ0 − βββ′0τττ1βββ + βββ′0τττ1βββ0

=βββ′(X ′τττ0X + τττ1)βββ − βββ′(X ′τττ0y + τττ1βββ0)

−(y′τττ0X + βββ′0τττ1)βββ + y′τττ0y + βββ′0τττ1βββ0. (8.45)

This is a form we have studied before. As in (8.13), let

τττ2 = X ′τττ0X + τττ1 (8.46a)

and

γγγ = X ′τττ0y + τττ1βββ0. (8.46b)

Then (8.45) becomes

Q∗(βββ) = βββ′τττ2βββ − βββ′γγγ − γγγ′βββ + C1 (8.47)

where C1 = y′τττ0y + βββ′0τττ1βββ0.
Then we complete the square by defining βββ∗ = τ−1

2 γγγ, and calculating

(βββ − βββ∗)′τττ2(βββ − βββ∗) =βββ′τττ2βββ − βββ′τττ2βββ
∗ − βββ∗ − τττ2βββ + βββ∗′τττ2βββ

∗

=βββ′τττ2βββ − βββ′γγγ − γγγ′βββ + βββ∗′τττ2βββ
∗.

Therefore

Q∗(βββ) =(βββ − βββ∗)′τττ2(βββ − βββ∗) + C1 − βββ∗′τττ2βββ
∗

=(βββ − βββ∗)′τττ2(βββ − βββ∗) + C2 (8.48)

where

C2 = C1 − βββ∗′τττ2βββ
∗ =y′τττ0y + βββ′0τττ1βββ0

−(βββ′0τττ1 + y′τττ0X)τ−1
2 (X ′τττ0y + τττ1βββ0).

Therefore by substitution, of (8.48) into (8.45) into (8.44), we obtain

f(y, τ,βββ) ∝
{
τp/2e−τ(βββ−βββ∗)′τττ2(βββ−βββ∗)

}
τn/2+α0−1e−τ [β0+(1/2)C2]. (8.49)

We recognize the first factor as specifying the posterior distribution of βββ given τ as
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normal with mean βββ∗ and precision matrix ττττ2, and the second factor as giving the posterior
distribution of τ as a gamma distribution with parameters

α1 = α0 + n/2 (8.50a)

and

β1 =β0 + (1/2)C2 = β0 − (1/2) [y′τττ0y + βββ′0τττ1βββ0

−(βββ′0τττ1 + y′τττ0X)τ−1
2 (X ′τττ0y + τττ1βββ0)]. (8.50b)

8.6.1 Summary

Suppose the likelihood is given by the normal linear model in (8.42). We suppose that e
has a normal distribution with mean 0 and precision matrix ττττ0, where τττ0 is a known n×n
matrix, and τ has a gamma distribution with parameters α0 and β0. Also suppose that
βββ has a normal distribution with mean β0 and precision ττττ1, where τττ1 is a known p × p
matrix.

Under these assumptions, the posterior distribution on βββ given τ is again normal, with
mean βββ∗ defined after (8.47) and precision matrix ττττ2, where τττ2 is defined in (8.46a). Also
the posterior distribution of τ is a gamma distribution given in (8.50a) and (8.50b).

8.6.2 Exercise

1. What is the constant for the posterior distribution in (8.49)?

8.7 The Wishart distribution

We now seek a convenient family of distributions on precision matrices that is conjugate to
the multivariate normal distribution when the value of the precision matrix is uncertain. A
p× p precision matrix is necessarily symmetric, and hence has p(p+ 1)/2 parameters (say
all elements on or above the diagonal).

8.7.1 The trace of a square matrix

In order to specify such a distribution, it is necessary to introduce a function of a matrix
we have not previously discussed, the trace. If A is an n× n square matrix, then the trace
of A, written tr(A), is defined to be

tr(A) =

n∑
i=1

ai,i (8.51)

the sum of the diagonal elements. One of the interesting properties of the trace is that it
commutes:

tr(AB) = tr

∑
j

aijbjk

 =
∑
i

∑
j

aijbji =
∑
j

∑
i

bjiaij = tr(BA). (8.52)

Consequently, if A is symmetric, by the Spectral Decomposition (theorem 1 of section 5.8),
it can be written in the form A = PDP ′, where P is orthogonal and D is the diagonal
matrix of the eigenvalues of A. Then

trA = trPDP ′ = trDP ′P = trDI = trD. (8.53)



314 CONJUGATE ANALYSIS

Therefore the trace of a symmetric matrix is the sum of its eigenvalues.
Also

tr(A+B) =
∑
i

(aii + bii) =
∑
i

aii +
∑
i

bii = trA+ trB. (8.54)

8.7.2 The Wishart distribution

Now that the trace of a symmetric matrix is defined, I can give the form of the Wishart
distribution, which is a distribution over the space of p(p+ 1)/2 free elements of a positive
definite, symmetric matrix V . That density is proportional to

| V |(n−p−1)/2 e−
1
2 tr(τV ) (8.55)

where n > p− 1 is a number and τ is a symmetric, positive definite p× p matrix.
When p = 1, the Wishart density is proportional to vn−2e−(1/2)τv, which is (except for a

constant) a gamma distribution with α = n−1 and β = τ/2. Thus the Wishart distribution
is a matrix-generalization of the gamma distribution.

In order to evaluate the integral in (8.55), it is necessary to develop the absolute value
of the determinants of Jacobians for two important transformations, both of which operate
on spaces of positive definite symmetric matrices.

8.7.3 Jacobian of a linear transformation of a symmetric matrix

To begin this analysis, we start with a study of elementary operations on matrices, from
which the Jacobian is then derivable. In particular we now study the effect on non-singular
matrices of two kinds of operations:

(i) the multiplication of a row (column) by a non-zero scalar.

(ii) addition of a multiple of one row (column) to another row (column).

If both of these are available, note that they imply the availability of a third operation:

(iii) interchange of two rows (columns).

To show how this is so, suppose it is desired to interchange rows i and j. We can write
the starting position as (ri, rj), and the intent is to achieve (rj , ri). Consider the following:

(ri, rj)→ (ri, ri + rj) [use (ii) to add ri to rj ]
(ri, ri + rj)→ (−rj , ri + rj) [use (ii) to multiply (ri + rj) by

−1 and add to ri]
(−rj , ri + rj)→ (−rj , ri) [use (ii) to add − rj to ri + rj ]
(−rj , ri)→ (rj , ri) [use (i) to multiply rj by − 1].

Of course the same can be shown for columns, using the same moves.
Our goal is to use elementary operations to reduce a non-singular n×n matrix A to the

identity by a series of elementary operations Ei on both the rows and columns of A in a
way that maintains symmetry. Then we would have

A = E1E2 . . . EkI.

where each Ei is a matrix that performs an elementary operation.
If A is non-singular, there is a non-zero element in the first row. Interchanging two

rows, if necessary, brings the non-zero element to the (1, 1) position. Subtracting suitable
multiples of the first row from the other rows, we obtain a matrix in which all elements in
the first column other than the first, are zero. Then, with a move of type (i), multiplying
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by 1/a where a is the element in the first row, reduces the (1, 1) element to a 1. Then the
resulting matrix is of the form 

1 c12 . . . c1n
0 c22 c2n
...

...
0 cn2 cnn

 .

Using the same process on the non-singular (n− 1)× (n− 1) matrixc22 . . . c2n
...

...
cn2 . . . cnn


recursively yields the upper triangle matrix

1 d12 d13 . . . d1n

0 1 d23 . . . d2n

... 0
. . .

... 1 dn−1,n

0 0 1

 .

Then using only type (ii) row operations reduces the matrix to I.

Each of the operations (i) and (ii) can be represented by matrices premultiplying A
(or one of its successors). Thus a move of type (i), which multiples row i by the scaler c,
is accomplished by premultiplying A by a diagonal matrix with c in the ith place on the
diagonal and 1’s elsewhere. A move of type (ii) that multiples row i by c and adds it to
row j is accomplished by premultiplication by a matrix that has 1’s on the diagonal, c in
the (i, j)th place, and all other off-diagonal elements equal to zero.

We have proved the following.

I = F1F2 . . . FkA

where Fi are each matrices of type (i) or type (ii).

Corollary 8.7.1.

A = F−1
k F−1

k−1 . . . F
−1
1 = EkEk−1 . . . E1

where the E’s are matrices of moves of type (i) or (ii).

Proof. The inverse of a matrix of type (i) has 1/c in the ith place on the diagonal in place
of c; the inverse of a matrix of type (ii) has −c in place of c in the i, jth position. Therefore
neither changes type by being inverted.

Corollary 8.7.2. Let X be a symmetric non-singular n× n matrix, and B non-singular.

Consider the transformation from X to Y by the operation

Y = BXB′.

The Jacobian of this transformation is | B |n+1.
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Proof. From Corollary 8.7.1, we may write

B = EkEk−1 . . . E1

where each E is of type (i) or type (ii). Then

Y = EkEk−1 . . . E1XE
′
1E
′
2 . . . E

′
k.

So the pre-multiplication of X by B and post-multiplication by B′ can be considered as a
series of k transformations, pre-multiplying by an E of type (i) or (ii) and post-multiplying
by its transpose. Formally, let

X0 = X and Xh = EhXh−1E
′
h h = 1, . . . , k. Then Xk = Y.

We now examine the Jacobian of the transformation from Xi−1 to Xi in the two cases. In
doing so, we remember that because the Xi’s are symmetric, we take only the differential
on or above the diagonal. The elements below the diagonal are determined by symmetry.

Now pre- and post-multiplying by a matrix of a transformation of type (i) yields

yii = a2xii
yij = axij i 6= j
yjk = xjk j 6= i, k 6= i.

Therefore the Jacobian has n − 1 factors of a, and one of a2, with all the others being 1.
Therefore the Jacobian is an+1. But an+1 =| Eh |n+1.

Pre-multiplication by a matrix of type (ii) and post-multiplying by its transpose yields

yii = xii + 2axij + a2xjj

yki = yik = xik + axjk k 6= i

yjk = xjk i 6= j, k 6= j.

This yields a Jacobian matrix with 1’s down the diagonal and 0’s in every place either above
or below the diagonal. Hence the Jacobian is 1. Trivially, then, 1 =| En |n+1.

Then the Jacobian of the transformation from Y to X is

| Ek |n+1| Ek−1 |n+1 . . . | E1 |n+1=| EkEk−1 . . . E1 |n+1=| B |n+1 .

This Jacobian argument comes from Deemer and Olkin (1951) and is apparently due to
P.L. Hsu. The analysis of elementary operations is modified from Mirsky (1990).

8.7.4 Determinant of the triangular decomposition

We have A = TT ′ when T is an n × n lower triangular matrix and wish to find the Ja-
cobian of this transformation. Because A is symmetric, we need to consider only diagonal
and sub-diagonal elements in the differential. That is also true of T . Here we consider
the elements of A in the order a11, a12, . . . , a1n, a22, . . . , a2n, etc. Similarly we consider
t11, t12, . . . , t1n, t22, . . . , t2n, etc. There is one major trick to this Jacobian: the Jacobian
matrix itself is lower triangular, so its determinant is the product of its diagonal elements.
Hence the off-diagonal elements are irrelevant. We’ll use the abbreviation NT , standing for
negligible terms, for those off-diagonal elements.

Then we have aik =
∑n
j=1 tijt

′
jk =

∑n
j=1 tijtkj .



THE WISHART DISTRIBUTION 317

Now using the lower triangular nature of T , we need consider only those terms with
j ≤ i and j ≤ k, so in summary, j ≤ min{i, k}. Thus we have

aik =

min{i,k}∑
j=1

tijtkj .

Writing out these equations, and taking the differentials:

a11 = t211 da11 = 2t11dt11

a12 = t11t12 da12 = t11dt12

...
...

a1n = t11t1n da1n = t11dt1n
a22 = t211 + t222 da22 = 2t22dt22 +NT

...
...

a2n = t12t1n + t22t2n da2n = t22dt2n +NT
...

...
ann = t21 + t22 + . . .+ t2nn dann = 2tnndtnn +NT.

Therefore the determinant of the Jacobian matrix is the product of the terms on the right,
namely

2ntn11t
n−1
22 . . . tnn = 2n

n∏
i=1

tn+1−i
ii .

We have proved that the Jacobian of the transform from A to T given by A = TT ′, where
A is n× n and symmetric positive definite and T is lower-triangular, is

2n
n∏
i=1

tn+1−i
ii .

8.7.5 Integrating the Wishart density

We now return to integrating the density in (8.55) over the space of positive definite sym-
metric matrices. We start by putting the trace in a symmetric form:

tr(τV ) = tr
(
τ1/2V τ1/2′

)
where τ1/2 = PD1/2P ′ from Theorem 1 in section 5.8. As V varies over the space of positive-
definite matrices, so does W = τ1/2V τ1/2′ . Hence this mapping is one-to-one. Its Jacobian
is | τ |p+1, as found in section 8.7.3. Therefore we have

C1 =

∫
| V |(n−p−1)/2 e−

1
2 trτV dV

=

∫
|W |(n−p−1)/2

| τ |(n−p−1)/2
e−

1
2 trW | τ |(p+1)/2 dW

=
1

| τ |n/2

∫
|W |(n−p+1)/2 e−

1
2 trW dW.

Let C2 = C1 | τ |n/2.

Then C2 =
∫
|W |(n−p−1)/2 e−

1
2 trW dW .

Now we apply the triangular decomposition to W , so W = TT ′, where T is lower
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triangular with positive diagonal elements. In section 5.8 it was shown that this mapping
yields a unique such T . Therefore the mapping is one-to-one. Its Jacobian is computed in
section 8.7.4, and is 2p

∏p
i=1 τ

p+1−i
ii in this notation.

Then we have

C2 =

∫
|W |(n−p−1)/2 e−

1
2 tr(W )dW

=

∫
| TT ′ |(n−p−1)/2 e−

1
2 trTT

′
· 2p

p∏
i=1

tp+1−i
ii dT

=

∫ p∏
i=1

tn−p−1
ii e−

1
2

∑
i,j τ

2
ij · 2p

p∏
i=1

tp+1−i
ii dT

=2p
∫ p∏

i=1

tn−iii e−
1
2 (

∑
i6=j t

2
ij+

∑
t2ii)dT.

Let C3 = C2/2
p. The integral now splits into p×(p+1)

2 different independent parts. The
off-diagonal elements are each∫ ∞

−∞
e−

1
2 t

2
ijdtij =

√
2π (i 6= j)

and there are p(p−1)
2 of them.

The ith diagonal contributes ∫ ∞
0

tn−iii e−
1
2 t

2
iidtii.

Let yi =
t2ii
2 . Then dy = tiidtii, and tii =

√
2yi.

Then we have ∫ ∞
0

tn−iii e−
1
2 t

2
iidtii =

∫ ∞
0

e−yi(
√

2yi)
n−i · dyi√

2yi

=

∫ ∞
0

e−yi(
√

2yi)
n−i−1dyi

=2
n−i−1

2

∫ ∞
0

e−yiy
n−i−1

2
i dyi

=2
n−i−1

2 Γ

(
n− i+ 1

2

)
.

Hence we have

C3 = (
√

2π)
p(p−1)

2

p∏
i=1

[
2
n−i−1

2 Γ

(
n− i+ 1

2

)]
.

Let

C4 = π
p(p− 1)

4

p∏
i=1

Γ

(
n− i+ 1

2

)
.

Then

C3 = C4

[
2
p(p−1)

4 +
∑p
i=1(

n−i−1
2 )

]
.
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Now, concentrating on the power of 2 in the last expression, we have

p(p− 1)

4
+

p∑
i=1

(
n− i− 1

2
) =

p(p− 1)

4
+
np

2
− p

2
− 1

2

p∑
i=1

i

=
p(p− 1)

4
+
np

2
− p

2
− 1

2

p(p+ 1)

2

=
p2

4
− p

4
+
np

2
− p

2
− p2

4
− p

4

=
np

2
− p.

Hence C3 = C4[2
np
2 −p].

Putting the results together, we have

C1 =
C2

| τ |n/2
=

2pC3

| τ |n/2
= C4

2p[2
np
2 −p]

| τ |n/2

=
C42

np
2

| τ |n/2
= 2

np
2
π
p(p−1)

4

∏p
i=1 Γ(n−i+1

2 )

| τ |n/2
.

Therefore

fV (v) =
| τ |n/2 | v |(n−p−1)/2 e−

1
2 tr(τv)

2np/2π
p(p−1)

4

∏p
i=1 Γ(n−i+1

2 )
(8.56)

is a density over all positive definite matrices, and is called the density of the Wishart
distribution.

8.7.6 Multivariate normal distribution with uncertain precision and certain mean

Suppose that X = (X1,X2, . . . ,Xn) are believed to be conditionally independent and iden-
tically distributed p-dimensional vectors from a normal distribution with mean vector m,
known with certainty, and precision matrix R. Suppose also that R is believed to have a
Wishart distribution with α degrees of freedom and p × p matrix τ , such that α > p − 1
and τ is symmetric and positive definite.

The joint distribution of X and R takes the form

f(X, R) =

(
1√
2π

)np
| R |n/2 e− 1

2

∑n
i=1(Xi−m)′R(Xi−m)

·c | R |(α−p−1)/2 e−
1
2 tr(τR). (8.57)

We recognize
(

1√
2π

)np
c as irrelevant constants, so we can write

f(X, R)α | R |(n+α−p−1)/2 e−
1
2 [
∑n
i=1(Xi−m)′R(Xi−m)+tr(τR)]. (8.58)

Now we notice that
∑n
i=1(xi−m)′R(Xi−m) is a number, which can be regarded as a 1×1
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matrix, equal to its trace. (I know this sounds like an odd maneuver, but trust me.) Then

n∑
i=1

(xi −m)′R(xi −m) + tr (τR) =

tr

(
n∑
i=1

(xi −m)′R(xi −m)

)
+ tr (τR) =

tr

(
n∑
i=1

(xi −m)(xi −m)′R

)
+ tr (τR) =

tr

[(
n∑
i=1

(xi −m)(xi −m)′ + τ

)
R

]
(8.59)

using (8.52) and (8.54). Therefore (8.58) can be rewritten as

f(X, R) ∝| R |(n
∗−p−1)/2 e−

1
2 tr(τ

∗R) (8.60)

where τ∗ =
∑n
i=1(Xi−m)(Xi−m)′+ τ , which we may recognize as a Wishart distribution

with matrix τ∗ and n∗ = n+ α degrees of freedom.

8.7.7 Summary

The Wishart distribution, given in (8.55) is a convenient distribution for positive definite
matrices. Section 8.7.6 proves the following result:

Suppose that X = (X1,X2, . . . ,Xn) are believed to be conditionally independent and
identically distributed p-dimensional vectors from a normal distribution with mean vector
m, known with certainty, and precision matrix R. Suppose also that R is believed to have a
Wishart distribution with α degrees of freedom and p×p matrix τ , such that α > p−1 and
τ is symmetric and positive definite. Then the posterior distribution on R is again Wishart,
with n+ α degrees of freedom and matrix τ∗ given in (8.60).

8.7.8 Exercise

1. Write out the constant omitted from (8.60). Put another way, what constant makes
(8.60) into the posterior density of R given X?

8.8 Multivariate normal data with both mean and precision matrix uncertain

Now, suppose that X = (X1,X2, . . . ,Xn) are believed to be conditionally independent and
identically distributed p-dimensional random vectors from a normal distribution with mean
vector m and precision matrix R, about both of which you are uncertain. Suppose that
your joint distribution over m and R is given as follows: the distribution of m given R
is p-dimensional multivariate normal with mean µµµ and precision matrix vR, and R has a
Wishart distribution with α > p − 1 degrees of freedom and symmetric positive-definite
matrix τ .
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Then the joint distribution of X,m and R is given by

f(X,m, R) =f(X | m,R)f(m | R)f(R)

=

(
1√
2π

)np
| R |n/2 e− 1

2

∑n
i=1(Xi−m)′R(Xi−m)

·
(

1√
2π

)p
| vR |1/2 e− 1

2 (m−µµµ)′vR(m−µµµ)

· c | R |(α−p−1)/2 e−
1
2 tr(τR). (8.61)

Again we recognize
(

1√
2π

)(n+1)p

· c · v1/2 as irrelevant constants that can be absorbed. This

yields

f(X,m, R) ∝| R |(n+α−p)/2 e−
1
2Q(m) (8.62)

where

Q(m) =

n∑
i=1

(Xi −m)′R(Xi −m) + ν(m−µµµ)′R(m−µµµ) + tr τR.

We now have some algebra to do. We begin by studying the first summand in Q(m):

n∑
i=1

(Xi −m)′R(Xi −m) =

n∑
i=1

(Xi −X + X−m)′R(Xi −X + X−m)

=

n∑
i=1

(Xi −X)′R(Xi −X) + n(X−m)′R(X−m), (8.63)

since
n∑
i=1

(Xi −X)′R(X−m) = (nX− nX)R(X−m) = 0

and similarly
n∑
i=1

(X−m)′R(Xi −X) = 0.

Now

n∑
i=1

(Xi −X)′R(Xi −X) =tr

n∑
i=1

(Xi −X)′R(Xi −X)

=

n∑
i=1

trR(Xi −X)(Xi −X)′

=trR

n∑
i=1

(Xi −X)(Xi −X)′

=tr(RS) = tr(SR) (8.64)

where S =
∑n
i=1(Xi −X)(Xi −X)′.

Our next step is to put together the two quadratic forms in m and complete the square,
as we have done before: taking the second term in Q(m) in (8.62) and the second term in
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(8.63) we have

n(X−m)′R(X−m) + ν(m−µµµ)′R(m−µµµ)

= nm′Rm− nm′RX− nX
′
Rm + nX

′
RX

+ νm′Rm− νm′Rµµµ− νµµµ′Rm + νµµµ′Rµµµ

= (n+ ν)(m′Rm)−m′R(νµµµ+ nX)− (νµµµ′ + nX
′
)Rm

+ νµµµ′Rµµµ+ nX
′
RX

= (ν + n)[m′Rm−m′Rµµµ∗ −µµµ∗′Rm +µµµ∗′Rµµµ∗]

+ νµµµ′Rµµµ+ nX
′
RX− (n+ ν)(µµµ∗

′
Rµµµ∗)

= (ν + n)(m−µµµ∗)′R(m−µµµ∗) + νµµµ′Rµµµ+ nX
′
RX

− (n+ ν)(µµµ∗′Rµµµ∗)

where µµµ∗ =
νµµµ+ nX

ν + n
. (8.65)

Now, working with the constant terms from the completion of the square,

νµµµ′Rµµµ+ nX
′
RX− (µµµ∗′Rµµµ∗)(n+ ν)

= νµµµ′Rµµµ+ nX
′
RX− 1

n+ ν
(νµµµ+ nX)′R(νµµµ+ nX)

=
1

n+ ν

[
(nν + ν2)(µµµ′Rµµµ) + (n2 + nν)X

′
RX

− ν2µµµ′Rµµµ− n2X
′
RX

− νnµµµ′RX− νnX
′
Rµµµ

]
=

nν

n+ ν

[
µµµ′Rµµµ+ X

′
RX−µµµ′RX−X

′
Rµµµ

]
=

nν

n+ ν

(
µµµ−X

)′
R(µµµ−X)

=
nν

n+ ν
tr
[(
µµµ−X

)′
R
(
µµµ−X

)]
=

nν

n+ ν
tr
[(
µµµ−X

) (
µµµ−X

)′
R
]
. (8.66)

Now putting the pieces together, we have

Q(m) =

n∑
i=1

(Xi −m)′R(Xi −m) + ν(m−µµµ)′R(m−µµµ) + tr (τR)

= tr [SR+ (ν + n)(m−µµµ∗)′R(m−µµµ∗)]

+
nν

n+ ν
(µµµ−X)′R(µµµ−X) + tr (τR)

= tr

[
(τ + S +

nν

n+ ν
(µµµ−X)(µµµ−X)′)R

]
+ (ν + n)(m−µµµ∗)′R(m−µµµ∗). (8.67)

Substituting (8.67) into (8.62) yields

f(X,m, R) ∝ | R |p/2 e− 1
2 (v+n)(m−µµµ∗)′R(m−µµµ∗)

· | R |(α+n−p−1)/2 e−
1
2 tr[(τ+S)+( nv

n+v )(µµµ−X)(µµµ−X)′]R, (8.68)
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which we recognize as a conditional normal distribution for m given R, with mean µµµ∗ and
precision matrix (ν+n)R, and a Wishart distribution for R, with α+n degrees of freedom,
and matrix

τ∗ = τ + S +
nν

n+ ν
(µµµ−X)(µµµ−X)′. (8.69)

8.8.1 Summary

Suppose that X = (X1, . . . ,Xn) are believed to be conditionally independent and identically
distributed p-dimensional random vectors from a normal distribution with mean vector m
and precision matrix R, about both of which you are uncertain. Suppose that your belief
about m conditional on R is a p-dimensional normal distribution with mean µµµ and precision
matrix νR, and that your belief about R is a Wishart distribution with α degrees of freedom
and precision matrix τ .

Then your posterior distribution on m and R is as follows: your distribution on m given
R is multivariate normal with mean µ∗ given in (8.65) and precision matrix (ν + n)R, and
your distribution for R is Wishart with α + n degrees of freedom and precision matrix τ∗

given in (8.69).

8.8.2 Exercise

1. Write down the constant omitted from (8.68) to make (8.68) the conditional density of
m and R given X.

8.9 The Beta and Dirichlet distributions

The Beta distribution is a distribution over unit interval, and turns out to be conjugate
to the binomial distribution. Its k-dimensional generalization, the Dirichlet distribution,
is conjugate to the k-dimensional generalization of the binomial distribution, namely the
multinomial distribution. The purpose of this section is to demonstrate these results.

I start by deriving the constant for the Dirichlet distribution. I have to admit that the
proof feels a bit magical to me.

Let Sk be the k-dimensional simplex, so

Sk = {(p1, . . . , pk−1) | pi ≥ 0,

k−1∑
i=1

pi ≤ 1}.

(You may be surprised not to find pk mentioned. The reason is that if pk is there, with the

constraint
∑k
i=1 pi = 1, the space has k variables of which only k−1 are free. Consequently

when we take integrals over Sk, it is better to think of Sk as having k − 1 variables. For
other purposes it is more symmetric to include pk.)

The Dirichlet density is proportional to

pα1−1
1 pα2−1

2 . . . p
αk−1−1
k−1 (1− p1 − p2 − . . .− pk−1)αk−1

over the space Sk. The question is the value of the integral.

Theorem 8.9.1.∫
Sk

pα1−1
1 pα2−1

2 . . . p
αk−1−1
k−1 (1− p1 − p2 − . . .− pk−1)αk−1dp1dp2, . . . , dpk−1

=

∏k
i=1 Γ(αi)

Γ(
∑k
i=1 αi)

for all positive αi.
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Proof. Let I =
∫
Sk
pα1−1

1 pα2−1
2 . . . p

αk−1−1
k−1 (1−p1−p2 . . .−pk−1)αk−1dp1dp2, . . . , dpk−1 and

let I∗ =
∏k
i=1 Γ(αi).

Then

I∗ =

∫ ∞
0

. . .

∫ ∞
0

k∏
i=1

xαi−1
i e−

∑k
i=1 xidx1 . . . dxk.

Now let y1, . . . , yk be defined as follows:

yi = xi/
∑k
j=1 xj i = 1, . . . , k − 1

yk =
∑k
j=1 xj .

Then yi = xi/yk i = 1, . . . , k − 1,

so

xi = yiyk i = 1, . . . , k − 1

and

xk = yk −
k−1∑
j=1

xj = yk −
k−1∑
j=1

yjyk = yk(1−
k−1∑
j=1

yj).

Since the inverse function can be found, the transformation is one-to-one.

The Jacobian matrix of this transformation is (see section 5.9)

J =


∂x1

∂y1
. . . ∂x1

∂yk
...

∂xk
∂y1

∂xk
∂yk

 =


yk

y1
y2

. . .
...

yk yk−1

−yk . . . −yk 1−
∑k−1
j=1 yj


where all the entries not written are zero.

To find the determinant of J , recall that rows may be added to each other without
changing the value of the determinant (see Theorem 12 in section 5.7). In this case I add
each of the first n− 1 rows to the last row, to obtain

|| J ||=

∥∥∥∥∥∥∥
yk y1

. . . yk yk−1

0 . . . 0 1

∥∥∥∥∥∥∥ .
In each of the k! summands in the determinant, an element of the last row appears only
once. Each of the summands not including the (k, k) element is zero. Among those including
the (k, k) element, only the product down the diagonal avoids being zero.

Therefore

|| J ||= yk−1
k .
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Now we are in a position to apply the transformation to I∗.

I∗ =

∫ k−1∏
i=1

(yiyk)αi−1

1−
k−1∑
j=1

yj

 yk

αk−1

e−ykyk−1
k dy1 . . . dyk−1dyk

=

∫
Sk

k−1∏
i=1

yαi−1
i

1−
k−1∑
j=1

yj

αk−1

dy1 . . . dyk−1∫ ∞
0

y
∑k−1
i=1 (αi−1)+αk−1+(k−1)

k e−ykdyk

= I

∫ ∞
0

y
∑k−1
i=1 αi−(k−1)+αk−1+k−1

k e−ykdyk

= I

∫ ∞
0

y
∑k
i=1 αi−1

k e−ykdyk

= I Γ(

k∑
i=1

αi).

Therefore I = I∗/Γ(
∑k
i=1 αi) as was to be shown.

Thus the density

pα1−1
1 . . . p

αk−1−1
k−1 (1− p1 − p2 − . . .− pk−1)αk−1 ·

Γ(
∑k
i=1 αi)∏k

i=1 Γ(αi)
,

(p1 . . . pk−1) ∈ Sk

and 0 otherwise, is a probability distribution for all αi > 0. This is the Dirichlet distribution
with parameters (α1, . . . , αk).

As long as we’re not transforming an integral, we can define pk = 1−p1−p2− . . .−pk−1,
and write the Dirichlet more compactly (and symmetrically) as

k∏
i=1

pαi−1
i Γ

(
k∑
i=1

αi

)
/

k∏
i=1

Γ(αi), for (p1, . . . , pk−1) ∈ Sk (8.70)

and 0 otherwise.
The special case when k = 2 is called the Beta distribution.
Its density is usually written as{

pα−1(1− p)β−1 Γ(α+β)
Γ(α)Γ(β) 0 < p < 1

0 otherwise
. (8.71)

If X has a binomial distribution with parameters n and p, and p has a Beta distribution
with parameters α and β, then the joint distribution of X and p is(

n

j, n− j

)
pj(1− p)n−jpα−1(1− p)β−1 Γ(α+ β)

Γ(α)Γ(β)
.

Recognizing
(

n
j,n−j

)Γ(α)Γ(β)
Γ(α+β) as an irrelevant constant, the density is proportional to

pα+j−1(1− p)β+(n−j)−1
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which is recognized as a Beta distribution with parameters α+ j and β + (n− j).
The name “Beta Distribution,” incidentally, comes from the fact that Γ(α)Γ(β)

Γ(α+β) is called

the Beta Function, and is studied in the theory of special functions.

The relationship between the Dirichlet distribution and the multinomial distribution is
a straightforward generalization of the relationship between the Beta distribution and the
binomial. Their joint distribution is

(
n

n1, n2, . . . , nk

) k∏
j=1

p
nj
j ·

∏
p
αj−1
j Γ(

k∑
i=1

αi)/

k∏
i=1

Γ(αi).

Recognizing
(

n
n1,n2,...,nk

)
Γ(
∑k
i=1 αi)/

∏k
i=1 Γ(αi) as an irrelevant constant, we have the

joint density proportional to

k∏
j=1

p
nj
j

k∏
j=1

p
αj−1
j =

k∏
j=1

p
αj+nj−1
j (8.72)

which is recognized as a Dirichlet distribution with parameters (α1+n1, α2+n2, . . . , αk+nk).

The moments of the Dirchlet distribution are found as follows:

E(p`i) =

∫
Sk

p`i

k∏
j=1

p
αj−1
j Γ(

k∑
j=1

αj)/

k∏
j=1

Γ(αj)

=

∫
Sk

k∏
j=1

p
α∗j−1

j Γ(

k∑
j=1

αj)/

k∏
j=1

Γ(αj),

where α∗j = αj for j 6= i

and α∗i = αi + `.

Then

E(p`i) =
Γ(
∑k
j=1 αj)∏k

j=1 Γ(αj)
·
∏k
j=1 Γ(α∗j )

Γ(
∑k
j=1 α

∗
j )

=
Γ(α∗i )

Γ(αi)

Γ(
∑k
j=1 αj)

Γ(
∑k
j=1 α

∗
j )

=
(αi + `− 1)(αi + `− 2) . . . (αi)

(
∑
αj + `− 1) . . . (

∑
αj)

.

In particular,

E(pi) =
αi∑k
j=1 αj

and

E(p2
i ) =

(αi + 1)(αi)

(
∑k
j=1 αj + 1)(

∑k
j=1 αi)

.
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Therefore

Var(pi) = E(p2
i )− (E(pi))

2

=
(αi + 1)(αi)

(
∑k
j=1 αj + 1)

(∑k
j=1 αi

) −( αi∑k
j=1 αj

)2

=

(
αi∑k
j=1 αj

)[
αi + 1∑k
j=1 αj + 1

− αi∑k
j=1 αj

]

=

(
αi∑k
j=1 αj

)[
(αi + 1)(

∑k
j=1 αj)− αi(

∑k
j=1 αj + 1)

(
∑k
j=1 αj)(

∑k
j=1 αj + 1)

]

=

(
αi∑k
j=1 αj

)[ ∑k
j=1 αj − αi

(
∑k
j=1 αj)(

∑k
j=1 α1 + 1)

]

=
(αi)(

∑k
j 6=i αj)

(
∑k
j=1 αj)

2(
∑k
j=1 αj + 1)

.

In particular, for the Beta distribution

E(p) = α/(α+ β)

and

Var(p) =
αβ

(α+ β)2(α+ β + 1)
.

8.9.1 Summary

The Dirichlet distribution is conjugate to the multinomial distribution; its special case
when k = 2, the Beta distribution, is conjugate to the k = 2 special case of the multinomial
distribution, namely the binomial distribution.

8.9.2 Exercises

1. Write down the omitted constant in (8.72).

2. Suppose (p1, . . . , pk) have a Dirchlet distribution with parameters (α1, . . . , αk). Find the
covariance between pi and pj .

8.10 The exponential family

We have now seen many examples of conjugate pairs of distributions, and there’s a sense
in which they all are similar. The purpose of this section is to display that similarity.

A distribution is a member of a k-dimensional conjugate family if it can be represented
as a density as follows:

f(x | θ) ∝ exp


k∑
j=1

Aj(θ)Bj(x) +D(θ)

 . (8.73)

Suppose the prior on θ can be represented by

f(θ | a1, . . . , ak, d) ∝ exp


k∑
j=1

ajAj(θ) + dD(θ)

 . (8.74)
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Then the posterior on θ is proportional to

f(θ | a1 +B1(x), a2 +B2(x), . . . , ak +Bk(x), d+ 1).

Consider first the example of section 8.1, the univariate normal distribution with preci-
sion known with certainty but with uncertain mean µ having a normal prior distribution.
Then the density of the observations is

f(x, µ) ∝ e−Q1(µ)/2

where Q1(µ) = τ0
∑n
i=1(Xi − µ)2 = τ0[nµ2 − 2τ0µnX + τ0

∑n
i=1Xi], so we may take

A1(µ) = −µ2

2 , A2(µ) = −µ/2, B1(x) = τ0n, and B2(x) = −2τ0nX.
The prior is then proportional to

e−Q2(µ)/2

where Q2(µ) = τ1(µ− µ1)2 = µ2τ1 − 2µτ1µ1 + τ1µ
2
1, so a1 = τ1 and a2 = −2τ1µ1.

Then the posterior is proportional to

e−(Q1(µ)+Q2(µ))/2 = e−Q(µ)/2

where Q(µ) = µ2(τ0n+ τ1) + µ(−2τ0nX − 2τ1µ).
The rest of example 1 consists in reformulating this quadratic in terms of the normal

distribution.
Each of the other examples examined so far in this chapter can be viewed as members of

an exponential family of distributions, with an associated conjugate family of prior distri-
butions. However, although the exponential family covers many cases, it does not exhaust
the examples of conjugate prior distributions. Consider, for example, data that is uniform
on (0, θ) where θ is uncertain. Then

f(x | θ) =
1

θ
0 < x < θ,

and 0 otherwise.
If a sample of size n is observed, we have

f(x | θ) =

{
1
θn θ > maxi=1,...n xi

0 otherwise
.

The conjugate family for this distribution is the Pareto distribution with parameters α
and x0:

f(θ) =

{
αxα0
θα+1 θ ≥ x0

0 otherwise
.

Then the posterior on θ is

f(x, θ) =
1

θn
· αx

α
0

θα+1
θ ≥ x0, θ ≥ max

i=1,...n
xi

∝ 1

θn+α+1
θ ≥ max

i=0,...,n
xi

which is recognized as a Pareto distribution with parameters α′ = n + α and x′0 =
maxi=0,...,n xi.

This distribution is not a member of the exponential family.
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8.10.1 Summary

Most examples of conjugate families of likelihoods are members of exponential families.
However the uniform distribution on (0, θ) is an example to show that not all conjugate
families are exponential.

8.10.2 Exercises

1. For each of the following, display the likelihood in the form of (8.73) and the conjugate
prior in the form of (8.74):

(a) the multivariate normal case with known precision (section 8.2).

(b) the normal linear model (section 8.3) with known precision.

(c) the univariate normal with known mean and unknown precision (section 8.4).

(d) the univariate normal with both mean and precision uncertain (section 8.5).

(e) the normal linear model with uncertain scale (section 8.6).

(f) the multivariate normal distribution with uncertain precision and certain mean (sec-
tion 8.7.6).

(g) the multivariate normal distribution with both mean and precision matrix uncertain
(section 8.8).

(h) the multinomial distribution (section 8.9) – hint: you might want to start with the
binomial distribution.

8.10.3 Utility

In an interesting paper, Lindley (1976) explores the possibility of using conjugate forms
for utility as well. These have the advantage of making the calculation of expected utility
simpler, just as using a conjugate prior makes the calculation of the posterior distribution
simpler.

8.11 Large sample theory for Bayesians

While Bayesian analysis usually occurs for a fixed sample size n, it may be useful to see what
happens as the sample size gets large. We’ll concentrate on the conditionally independent
and identically distributed case. The arguments here are only heuristic, intended to give a
flavor of the results. To make them rigorous would require controlling the order of the error
terms.

The posterior after n observations from a likelihood g(x | θ) and prior π(θ) can be
written

fn(θ | x) ∝ π(θ)

n∏
i=1

g(xi | θ)

= π(θ)e
n
[∑n

i=1
log g(Xi|θ)

n

]
.

Now
∑n
i=1 log g(xi|θ)

n is the average of a function of n independent random variables, which,
by the law of large numbers, approaches its expectation. However, we must discuss the
nature of this expectation. The Bayesian believes there is some “true” θ0, but doesn’t know
what it is (if θ0 were known it would not be necessary to compute the posterior). With
respect to this true but unknown θ0, the distribution of observations x, in the opinion of
this Bayesian, is g(X | θ0). Therefore the Bayesian believes that∑n

i=1 log g(Xi | θ)
n

→
∫

[log g(x | θ)] g(x | θ0)dx.
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Provided π(θ0) > 0, we then have, for large n

fn(θ | x) ∝ π(θ0)en
∫

[log g(x|θ)]g(x|θ0)dx.

8.11.1 A supplement on convex functions and Jensen’s Inequality

A function h(x) is strictly convex on an interval I = [a, b] if

h(tx+ (1− t)y) < th(x) + (1− t)h(y)

for all x, yεI and for all t, 0 < t < 1.
By induction, this implies

h

(
n∑
i=1

pixi

)
<

n∑
i=1

pih(Xi)

provided pi > 0 and
∑n
i=1 pi = 1. Consequently, if h is strictly convex

h(E(X)) < Eh(X)

provided X is non-trivial. This is known as Jensen’s Inequality.

Lemma 8.11.1. If h′′ exists and is positive, then h is strictly convex.

Proof. Let x and y be given, x, yεI. Without loss of generality, we may suppose x < y. Let
0 < t < 1 be given. Then x < tx+ (1− t)y < y.

Now h′′ > 0 implies that h′ is an increasing function. Thus if ξε(x, tx + (1 − t)y) and
ηε(tx+ (1− t)y, y), then h′(ξ) < h′(η) because ξ < η. Then∫ tx+(1−t)y

x
h′(ξ)dξ

tx+ (1− t)y − x
<

∫ y
tx+(1−t)y h

′(η)dη

y − tx+ (1− t)y
,

so
h(tx+ (1− t)y)− h(x)

(1− t)(y − x)
<
h(y)− h(tx+ (1− t)y)

t(y − x)
.

But this implies

t[h(tx+ (1− t)y)− h(x)] < (1− t)[h(y)− h(tx+ (1− t)y)]

or
h[tx+ (1− t)y] < th(x) + (1− t)h(y)

so h is strictly convex.

8.11.2 Resuming the main argument

We now observe that the function h(x) = x log x is convex, because h′(x) = log x + 1, and
h′′(x) = 1

x > 0 for x > 0.

Now consider applying Jensen’s Inequality to the random variable Y = g(X|θ)
g(X|θ0) with

respect to the probability distribution g(X | θ0) and the convex function h(x) = x log x.
Then

EY =

∫
g(x | θ)
g(x | θ0)

g(x | θ0)dx =

∫
g(x | θ)dx = 1.

Thus h(E(Y )) = 1(log 1) = 0.
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Hence we have ∫
g(x | θ)
g(x | θ0)

log

(
g(x | θ)
g(x | θ0)

)
· g(x | θ0)dx < 0

or
∫
g(x | θ) log g(x | θ)dx <

∫
g(x | θ) log g(x | θ0) with equality only when

g(x | θ) = g(x | θ0) for all x.

If there is only one value of θ0 satisfying this equation, then this argument shows that the
probability will all pile up at that point as n gets large. Thus, for large n,

fn(θ | x) ∝ π(θ0)en
∫

log[g(x|θ0)]g(x|θ0)dx

which means that the Bayesian believes that, as the sample size gets large, all the probability
will pile up at θ0.

Now suppose there is more than one value of θ for which g(x | θ) = g(x | θ0). This
is the case of non-identification. Then no amount of data will distinguish θ from θ0, and
so, no matter how large n may be, the relative weight given to such θ and θ0 will depend
on the prior alone. This is a feature, but not a fault, of Bayesian analysis, since it gives a
straight-forward consequence of the assumptions made (i.e., beliefs of the Bayesian).

We now extend the argument to examine the posterior distribution around the maximum
posterior point; assuming that to be unique:

We already know that
fn(θ | X) ∝ eLn(θ)

where Ln(θ) = log π(θ) +
∑n
i=1 log g(Xi | θ).

Expand Ln(θ) in a Taylor series around its maximum, θ̂.

Ln(θ) = Ln(θ̂) + (θ − θ̂)L′n(θ̂) +
(θ − θ̂)2

2
L′′n(θ̂) +HOT.

Now L′n(θ̂) = 0 because θ̂ is chosen to maximize Ln(θ̂). Also eLn(θ̂) is a constant, that can
be absorbed by the constant of proportionality. Therefore

fn(θ | X) ∝ e
(θ−θ̂)2

2 L′′n(θ̂)+HOT .

Remembering that L′′n(θ̂) < 0 because θ̂ maximizes Ln(θ̂), we have that the posterior of θ

is approximately normal, with mean θ̂ and precision −L′′n(θ̂).
When θθθ is a vector, the Taylor expansion looks slightly different:

Ln(θθθ) = Ln(θ̂θθ) + (θθθ − θ̂θθ)′δL∗n(θ̂θθ) + (1/2)(θθθ − θ̂θθ)′δ2Ln(θ̂θθ)(θθθ − θ̂θθ) +HOT

where δL∗n(θ̂θθ) =
(
dL(θ̂)
δθ1

, dL(θ̂)
δθ2

, . . . dL(θ̂)
δθk

)
and δ2Ln(θ̂θθ) is a k× k matrix whose i, jth element

is δ2Ln(θ̂θθ)
δθiδθj

.

Using the same argument, we now see that fn(θθθ | X) has an asymptotic k-dimensional

normal distribution with mean θ̂θθ, and precision matrix −δ2Ln(θ̂).
The same technique can be used to approximate moments of posterior distributions.

Suppose g(θ) is a positive function of θ. Then

Eg(θ) =

∫
g(θ)

∏n
i=1 f(xi | θ)π(θ)dθ∫ ∏n

i=1 f(xi | θ)π(θ)dθ

=

∫
enL

∗
n(θ)dθ∫

enLn(θ)
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where Ln(θ) =
log π(θ)+

∑n
i=1 log f(Xi|θ)
n and L∗n(θ) = Ln(θ) + logg(θ)

n .

Let θ̂ maximize Ln(θ) and θ̂∗ maximize L∗n(θ).
Then we have

Eg(θ) '
enL

∗
n(θ̂∗)

∫
e−

1
2 (θ−θ̂∗)2L′′n(θ̂∗)+HOT dθ

enLn(θ̂)
∫
e−

1
2 (θ−θ̂∗)2L′′n(θ̂)+HOT dθ

=
enL

∗
n(θ̂∗)L∗′′n (θ̂∗)1/2

enLn(θ̂)L′′n(θ̂)1/2
,

which is the univariate form of the Laplace Approximation. The multivariate version, not
surprisingly, is

E(g(θθθ)) =
enLn(θ̂θθ

∗
) | δ2L∗n(θ̂θθ

∗
) |1/2

enLn(θ̂θθ) | δ2Ln(θ̂θθ) |1/2
.

When g might be negative, one approach is to use the above approximation on the moment
generating function, and then to take the first derivative at t = 0.

8.11.3 Exercises

1. Vocabulary: What is the Laplace Approximation?

2. Consider the integral representation of n!, namely

n! = Γ(n+ 1) =

∫ ∞
0

xne−xdx =

∫ ∞
0

eL(x)dx,

where L(x) = −x+ n log x.

(a) Expand L(x) in a Taylor series, retaining the constant, linear and quadratic terms.

(b) Evaluate the Taylor series at the point x = x̂ that satisfies
L′(x̂) = 0.

(c) Derive Stirling’s Approximation,

n!
.
=
√

2π nn+1/2e−n.

8.11.4 References

For consistency and asymptotic normality, see Johnson (1967, 1970), Walker (1969), Heyde
and Johnstone (1979), Poskitt (1987), and Barron et al. (1999). For Laplace’s method, see
Tierney and Kadane (1986), Kass et al. (1988), Kass et al. (1989a), Tierney et al. (1989).
For Stirling’s Approximation, see Feller (1957). Laplace’s method is also known in applied
mathematics as a saddle-point approximation.

8.12 Some general perspective

Conjugate analysis is neat mathematically when it works. However, the slightest deviation
in the specification of the likelihood or prior would destroy the property of conjugacy.
Consequently, these results are interesting but far from a usable platform from which to do
analyses.

Similarly, large sample theory is nice, but gives little guidance on how large a sample
is required for large sample theory to yield good approximations. Since Bayesian analyses
can and do deal with small samples as well as large ones (indeed Bayesians can gracefully
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make decisions with no data at all, relying on their prior), large sample theory is also quite
limited in scope.

Because of these limitations, Bayesians now rely heavily on computational methods to
find posterior distributions, as outlined in Chapter 10.





Chapter 9

Hierarchical Structuring of a Model

9.1 Introduction

Bayesian analysis requires a joint distribution of all the uncertain quantities deemed relevant
to a problem, both data (before they are observed) and parameters. After the data are
observed, of course, the relevant distribution is that of the parameters conditioned on the
observed data. Hierarchical models have proven to be a particularly useful way of structuring
that joint distribution.

Suppose the parameters θθθ can be divided into sets, so that θθθ = (ααα,βββ,γγγ,δδδ, . . .), and
suppose x represents the data. Then the desired joint distribution can be written, without
loss of generality, as

f(x,θθθ) = f(x,ααα,βββ,γγγ,δδδ, . . .)

= f1(x | ααα,βββ,γγγ,δδδ, . . .)f2(ααα | βββ,γγγ,δδδ, . . .)
f3(βββ | γγγ,δδδ, . . .)f4(γγγ | δδδ, . . .) etc. (9.1)

In certain circumstances (and this is the special trick of a hierarchical model), the conditional
distributions in (9.1) can be simplified as follows.

f1(x | ααα,βββ,γγγ,δδδ, . . .) = g1(x | ααα)

f2(ααα | βββ,γγγ,δδδ, . . .) = g2(ααα | βββ)

f3(βββ | γγγ,δδδ, . . .) = g3(βββ | γγγ)

f4(γγγ | δδδ, . . .) = g4(γγγ | δδδ) etc. (9.2)

I think an example would be useful at this point. Suppose a standardized mathematics
test is given to children in school. The data, x, are the scores of each child. The parameters
α might be the “true” ability of the child. Thus we might expect x to be centered on α, with
some variance because performance on a test can vary from testing to testing for all sorts
of reasons. The children in a single class are taught by the same teacher using the same
materials, and thus the abilities, α, of children in the class might reasonably be thought
to be related. Thus each α relating to a student in a class might be regarded as coming
from a distribution of true abilities of children in that class, characterized by parameters β.
Similarly, classes in a school may be related to each other with a distribution characterized
by parameters γ, the school district by δ, the state, the nation, etc.

The hierarchical idea applies to this example with the thought that to predict how a
particular child will do on the exam, all you need is the parameter α of the ability of that
child. The α’s for the other children, and the β’s, γ’s and δ’s are irrelevant. Hence it is
reasonable to suppose that

f1(x | α, β, γ, δ, . . .) = g1(x | α) (9.3)

for some distribution g1. Similarly, if one wishes to understand the individual effects α, all

335
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that matters are the class parameters β. Thus we might write

f2(α | β, γ, δ, . . .) = g2(α | β) (9.4)

for some (possibly different) distribution g2. The same kind of argument applies to classes
in the school, schools in a district, etc.

The benefit of hierarchical structuring is that it permits the modeling of each level
in the hierarchy with a model suitable to that level. Additionally it correctly propagates
uncertainty at each level, so that the posterior distributions reflect those uncertainties.
Experience with hierarchical models suggests that this is a natural way of thinking about
many problems, and permits decomposing a complex issue into subproblems, each of which
can be understood and modeled.

This idea has old historical roots. Because these roots still play out in the current
literature, it is useful to retrace a bit of them. The received wisdom in the early 1960’s
(see for example Scheffe (1959, 1999)) was to draw a distinction in linear models between
“fixed effects” and “random effects.” “Mixed effect models” had both random effects and
fixed effects. And what was the difference between random effects and fixed effects? It had
to do with what you were interested in. If you were interested in the ability of each child,
you would treat the α’s as fixed-effect parameters. If you were interested in the classes,
but not the ability of each child, you would treat the α’s as random effects and the βs as
fixed effects in the example. There are several peculiarities in this from a Bayesian point of
view. First, “random effects” are parameters with priors. The classical analysis integrates
those parameters out of the likelihood. But classically parameters are not supposed to have
distributions, and integrating with respect to a parameter is supposedly an illegitimate
move. Second, the distinction between “random” and “fixed” is essentially about what one
wishes to estimate, and thus is a matter of the utility function. How can it be that the
utility function can affect what the likelihood is, particularly in a classical context in which
the likelihood is imagined to be the objective truth about how the data were generated?
Third, what if I care both about the children individually and about how classes of children
compare? I can’t treat the same parameter as both fixed and random in the same analysis!
I can remember confused social scientists wanting advice about which parameters to treat
as random and which as fixed, and being surprised at the response that all parameters are
random (i.e., are uncertain quantities that have distributions). From a Bayesian perspective
there is no distinction, and no issue. With a probability model for the data and all the
parameters, such as (9.1), the posterior distribution, conditioned on the data x, gives a
distribution for each child, each class, each school, etc. These distributions are correlated,
in general, but that correlation causes no essential difficulty.

Another variant is called “empirical Bayes.” The idea here is that at the highest level of
the hierarchy (say at the international level in the example of the standardized mathematics
test), no prior is imposed, but instead some classical estimation scheme, such as maximum
likelihood, is used. Conditioning on those estimates, the rest of the model is treated in a
Bayesian fashion. There is a systematic issue with this program, however. By treating the
estimates of the parameters at the highest level of the hierarchy as if they were known to
be the parameter value with no uncertainty, one is exaggerating the certainty with which
all the other parameters are known as well. This can be seen from the formula

V (X) = EV (X | Y ) + V E(X | Y ). (9.5)

(See section 2.12.5, exercise 3.) Here Y is the symbol for the highest level parameters,
and X represents some other parameter in the model. What is desired is the variance of
X. However, the empirical Bayes method sets the second term above to zero. Since it is
non-negative, use of only the first term leads to systematic under-estimation of V (X).

The solution to this difficulty, like the solution to the quandary of which parameters to
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treat as random and which as fixed, is instead to state a full hierarchical model in which all
parameters are treated as random quantities.

9.1.1 Summary

A hierarchical model divides the parameters into groups that permit the imposition of
assumptions of conditional independence. Historically they arose from discussions of random
effects and mixed models, and of empirical Bayes methods.

9.1.2 Exercises

1. Vocabulary. State in your own words the meaning of:

(a) fixed vs. random effects

(b) mixed effect model

(c) empirical Bayes

(d) fully hierarchical model

2. Think of your own example of a hierarchical structure to model some phenomenon of
interest to you.

9.1.3 More history and related literature

The impact of von Neumann and Morgenstern (1944)’s work on game theory was immense.
(We’ll study a bit of the details later, in Chapter 11.) Partly the influence was due to von
Neumann’s preeminence as a mathematician, and partly it had to do with the many ideas
put forward in their book. Among the most important of those ideas was the use of utility
functions. Another was the minimax approach to making decisions, which suggests choosing
that decision that makes as good as possible the worst outcome that might happen.

These ideas were imported into statistics by Wald (1950), who advocated limiting at-
tention to admissible procedures: those such that no other procedure does at least as well
for all values of the parameter space and strictly better for at least one such value. It turns
out that the admissible procedures are those supported by a proper prior distribution in
the parameter space, together with certain limits of them. The set of admissible procedures
is thus vast. For example, the estimate θ̂(x) = 3 for all possible data sets x, is admissible,
because it is supported by the opinionated prior that puts probability 1 on the event Θ = 3.
The reason why θ̂(x) = 3 is generally unacceptable as an estimate is that in most estima-
tion problems, we have more uncertainty about Θ [indeed, why estimate it if you already
know the answer?]. However, this subjective line of reasoning was unacceptable to Wald and
most of his contemporaries. Various ad hoc methods were then proposed to choose among
admissible estimators.

The next important result was due to Stein (1956, 1962) and James and Stein (1961).
Using squared error loss, and the model

xi ∼ N(θi, 1) i = 1, . . . , n, (independent) (9.6)

Stein showed that the maximum likelihood estimate θ̂i = xi is admissible if n = 1 or 2,
but not if n > 2. One does better drawing the θ̂’s toward an arbitrary origin. Lindley’s
discussion of Stein’s paper (1962) shows that this shrinkage toward an origin is a simple
consequence of a prior on the θ’s, for example, that the θ’s themselves are independently
drawn from a normal distribution. (Chapter 8 of this book shows details of the Bayesian
calculations.) Kempthorne (1971), commenting on Lindley (1971), gives references to earlier
work in animal genetics where shrinkage was used. Novick (1972) gives a reference to earlier
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work in educational testing that also uses shrinkage. Lindley and Smith (1972) give a general
theory for hierarchical models that have normal distributions at each stage.

Stein’s result and Lindley’s interpretation gave rise to many applied efforts. An exposi-
tory paper by Efron and Morris (1977) studies several data sets. Looking at batting averages
of baseball players half-way thorough a season, they show that the players with the highest
averages tend to bat less impressively in the second half of the season, while those with the
worst batting averages in the first half tend to do better. Thus, drawing in the batting aver-
ages toward a common mean seems to lead to better estimates. (While clever and plausible,
I was always a bit uncomfortable with this argument for batters with low batting averages,
because a manager might bench such a player.)

A second notable example is the paper of DuMouchel and Harris (1983). They use a
hierarchical model to study the carcinogenicity of various chemicals (diesel engine emissions,
cigarette smoke, coke oven emissions, etc.) on various species (i.e., humans and mice) using
various biological indicators. The goal, obviously, was to see to what extent experimental
results in animals could be extrapolated to humans. Although the thinking is hierarchical
Bayesian the computations are empirical Bayesian, as the parameters of the highest level
in the hierarchy were estimated using maximum likelihood methods, and these were then
conditioned upon. (At the time, Bayesian computing did not have available the algorithms
to be described in the next chapter.)

The idea of empirical Bayes methods was championed by Robbins (1956). Kass and Stef-
fey (1989) pointed out that it systematically underestimates variances, using (9.5). Deeley
and Lindley (1981) highlight the difference between empirical Bayes and the fully Bayesian
methods suggested in this volume.

A modern treatment of hierarchical models is in Gelman and Hill (2007).

9.2 Missing data

My intent is to interpret missing data very broadly. The name suggests items that might
have been observed but were not. The difficulty with this concept is that one can imagine
many different possible worlds in which various unobserved items might have been observed.
There seems to be no limit to what might have been observed but was not.

Consequently I take the view that missing data are simply parameters. This fits in with
the general view taken here that proper statistical modeling requires a joint distribution
of all the quantities of interest. When data becomes available, they are conditioned upon.
This avoids all consideration of hypothetical worlds in which some, but not all, sources of
uncertainty might have been revealed, but were not.

9.2.1 Examples

a. While there are many kinds of examples, a few will suffice to show the scope of missing
data. The first example is about a sample survey. To keep things as simple as possible,
we’ll suppose that there are N items, and a random (equally likely) sample of n is drawn.
If all n can be reached and their response obtained, standard sampling theory (i.e.,
Cochran (1977)) applies to find the uncertainty engendered by the fact that typically n
is much less than N . For more on how random sampling fits in with Bayesian ideas, see
Chapter 12, section 12.4.
In modern surveys, however, typically of the n sampled items, only m, many fewer
than n, actually respond. There are two standard responses to this development, both
extreme. One is to ignore the response rate, and treat the m items as if it were the
selected random sample. The other is to decline to analyze the results of such a survey,
on the grounds that the response rate is so low as to make the data meaningless. As a
pragmatic matter, the first response is not too bad if m is close to n, but the second
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seems either unimaginative or lazy. The methods developed here suggest a third way,
one that permits an analysis but that does not ignore the fact that desired data are
unavailable.
I was involved as an expert witness in a lawsuit alleging racial bias in the enforcement of
the traffic laws at the southern end of the New Jersey turnpike (see State of New Jersey
vs. Pedro Soto et al. (1996)).
Together with my colleagues John Lamberth and Norma Terrin, we found the following:

(a) In a stationary survey, with observers on a bridge over the turnpike, about 13.5% of
the cars observed on random days and times had an African-American occupant.

(b) In a rolling survey, with a car whose cruise-control was set for 60 miles per hour
(the speed limit was 55), a count was made of the number of cars passing this car,
the number he passed, and the race of the drivers. Of the cars encountered, over 98%
passed the test car, and about 15% had an African-American occupant.

(c) In a study of those stopped for traffic violations, on randomly selected days, 46.2%
were African Americans.

From (b) we could conclude that nearly everyone on the New Jersey turnpike was speed-
ing, and hence vulnerable to being stopped. Legally this meant that everyone on the
turnpike was “similarly situated.” However, the statistical issue was that 69.1% of the
race data on stops were missing, some because race data were omitted by the police offi-
cer, contrary to police regulations, and some because some data were destroyed pursuant
to a police documentation retention policy.
If you ignore the issue of missing data, a simple application of Bayes Theorem yields

θ =
P (stop—black)

P (stop—white)
=
P (black—stop)P (stop)/P (black)

P (white—stop)P (stop)/P (white)

=
.462/0.15

.538/0.85
= 4.86. (9.7)

Hence your odds θ of being stopped if you are black are nearly five times those of being
stopped if you are white.
To analyze the situation further, and take into account the possibility of race-biased
reporting, we considered the following notation (taken from Kadane and Terrin (1997).)
r1 = P(race reported | black and stopped)
r2 = P(race reported | white and stopped)
t = P(black | stopped)

1− t = P(white | stopped)
n1 = number of blacks reported as stopped
n2 = number of whites reported as stopped
n3 = number of people stopped whose race is not reported

Three events may occur with a stop: the person stopped is black and the race is reported,
the person stopped is white and the race is reported, or the person who is stopped does
not have their race reported. These events have respective probabilities r1t, r2(1 − t),
and (1− r1)t+ (1− r2)(1− t). Since, given these parameters, the stops are regarded as
independent and identically distributed, the likelihood function is trinomial:

(r1t)
n1{r2(1− t)}n2{(1− r1)t+ (1− r2)(1− t)}n3 . (9.8)

Treating the parameters as t, r1 and r2, the goal is a distribution for Θ, as in equa-
tion (9.7), which in this notation is

Θ =
t/0.15

(1− t)/0.85
=

0.85t

0.15(1− t)
. (9.9)
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Although there are three parameters about which information is sought, r1, r2 and t,
there are only two free parameters in the trinomial. Hence this system lacks identification,
which is not a problem for Bayesians (see section 8.3).
Using a variety of priors in (r1, r2, t) space, and in particular different assumptions on

r =
r1/(1− r1)

r2/(1− r2)
, (9.10)

the odds of having a stopped driver’s race reported if black to that of white, we show
that even if r = 3, the probability that θ > 1, which would mean that blacks are more
likely to be stopped than whites, is over 99%. (For more details, see Kadane and Terrin
(1997).) This case had important consequences for New Jersey.
In other surveys, there may be useful auxiliary information about the conduct of the
survey that may be brought to bear. In a study of Canadians’ attitudes toward smoking
in the workplace, sampled telephone numbers were called up to 12 times in an effort to
get answers to attitude questions. The different responses of those who answered late in
the survey compared to those who answered early were used to sharpen the prediction of
what persons who were not contacted would have said (see Mariano and Kadane (2001)).

b. In some circumstances, the fact that data are missing is somewhat informative about
what the data would have been had it been observed. For example, it is well known
that weak students tend not to be available to take high-stakes, especially multi-school,
examinations. This could stem from decisions made by the students themselves, or from
pressure from school authorities. Thus the very fact that a student did not take a par-
ticular exam is somewhat informative about the score a student would have gotten had
he or she taken the examination. A study that explicitly models this effect is Dunn et al.
(2003).

c. It is common that environmental and other physical data fall below the level that can
be reliably detected. In such circumstances, some analysts use a fixed number, such as
zero, the detection limit, or half the detection limit. To do so exaggerates the certainty
of the observation, and could even be regarded as fabricating data.
A sounder approach is to regard such missing observations as random variables having
support between zero and the detection limit. While it might seem that there is no
particular justification for taking one distribution over another for such missing data,
theory and/or the shape of the distribution above the detection limit may offer guidance.
If the conclusions drawn from the study depend importantly on what distribution is
assumed for the missing data, this is an important consideration to make available to
readers.

d. Lifetimes
In biostatistics, an important area, that goes under the title of survival analysis, has to
do with how long people with a particular disease will survive after various treatments,
perhaps as a function of covariates. Typically one does not want to wait until the last
patient dies to draw conclusions. Thus the unknown time of death of patients still alive
is a kind of missing data.
In engineering, studies consider how long a machine will last before it breaks, or before it
is unrepairable, perhaps as a function of the level of preventive maintenance it is given,
and the conditions under which it is used. Again it is usually inconvenient to wait until
the last machine wears out.
In actuarial and demographic studies, the question is the distribution of lifetimes of a
cohort of people in a population. Again it is not useful to wait until the last of them
dies to draw conclusions.
Statistically, these are very similar problems. In all three cases, imagining fixed, known,
times of death (or machine failure) exaggerates the information in the data. In all three
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cases, some reasonable distribution over the times of failure (or death) offers an appro-
priate tool to model the uncertainty inherent in the situation.

e. In biostatistics, there are situations in which verification of disease status is expensive
and/or dangerous. As a consequence, less intrusive tests are used as proxies. Estimates
of the sensitivity and specificity of such tests are influenced by the selection of patients
to have the “gold standard,” but highly intrusive diagnostic test. Here the issue is what
the result of such a test would have been, had it been administered to all patients. For an
example and references, see Kosinski and Barnhard (2003), and Buzoianu and Kadane
(2008).

f. Regime Switching
In many problems, it is useful to think of several possible underlying processes, and a
mechanism that switches between processes. Sometimes the most important parameters
are those that determine the current regime (i.e., is there now a denial-of-service attack
on a computer network, or not), sometimes it is the parameters within the regime that
are most important. In both cases, the regime is unobserved, and hence can be regarded
as missing data.

g. Measurement Error
When important discrepancies are believed between what was measured and what was
wished for, it is sound practice to model the discrepancy. This requires notation for the
“true, underlying” variable measured with error. These additional variables should be
thought of as parameters, and take their place in a hierarchical model. In a sense, they
can be thought of as missing data.

h. Selection Effects
A statistician should always be thinking about how the data before him or her came to
be there. There is an old story, which may have never happened, that illustrates this
point. According to the story, in World War II a statistician was asked by an Air Force
general to study where the bullet holes were on the fighter planes. The general explained
that he wanted to armor the planes, and wanted to do so where the planes were being
shot. The statistician’s response was, “I’ll do the study for you, but I would point out
that those are precisely the places not to armor.”
Why would the statistician make that recommendation? The planes available for study
were the planes that managed to return to the base despite being shot at. The desired
inference about armoring has to do with the planes that were shot down, and hence
unavailable for study. Hence the statistician is thinking, “if there are bullet holes in the
tail of the airplanes, but they returned to base, don’t worry about holes in the tail. But
if there are no holes in the fuel tank of the planes that returned, armor the fuel tank!”
It doesn’t really matter whether this actually happened; the point is to be wary about
the relationship between the available data and the desired inference.
There is another example which I can personally attest to. A study was done of the
quantitative and verbal scores of graduate students in statistics at Carnegie Mellon
University. The result showed that the strongest students were those with high verbal
scores; the quantitative scores were not very predictive. Shortly after that, I visited the
Kennedy School at Harvard, where a parallel study had been done. It showed that the
strongest students there had high quantitative scores, and that verbal scores were not
very predictive. Should we conclude from this that the Kennedy School’s program is
more quantitative than the program of the Statistics Department at Carnegie Mellon?
Not at all. What is happening is that no student with a weak quantitative background
would dream of applying to be a student in Statistics at Carnegie Mellon; conversely a
student with weak verbal skills would not apply nor be admitted to the Kennedy School.
Thus what distinguishes students in each case is the other skill. In both schools, the best
students are both quantitatively and verbally able.
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Selection effects are particularly important to think about in analyses of admission to
various programs of education and training. If the policy excludes a certain type of
student, data on students in the program will not be very informative about how students
excluded by policy would have fared if they had been admitted.

9.2.2 Bayesian analysis of missing data

Missing data fits in comfortably with the general scheme of hierarchical models. In missing
data problems, how an observation comes to be missing is important to model. The joint
distribution of the process that leads observations to be missing and the missing values
themselves have to be modeled, in one of the two obvious alternate factorizations. In either
case, there is no essentially new problem in computing posterior distributions for problems
with missing data. The advantage in doing so is that the resulting posterior distributions
correctly reflect the uncertainty due to the fact of missing data, and hence produce a more
realistic reflection of the consequences of the analyst’s beliefs.

9.2.3 Summary

Missing data are parameters. As such they are to be modeled jointly with all the pa-
rameters in a problem. The resulting posterior distributions of the structural parameters
appropriately reflect the uncertainty occasioned by the missing data. The resulting posterior
distribution of the missing data is itself important in some problems.

9.2.4 Remarks and further reading

The seminal work on missing data is due to Rubin (1976), see also Little and Rubin (2003).
While the initial emphasis was on the assumptions needed to justify sampling theory and
likelihood based methods, this work also led to the development of the “non-ignorable”
case, which today dominates the Bayesian literature.

9.2.5 Exercises

1. Vocabulary. Explain in your own words what missing data are.

2. Choose one of the examples in section 9.2.1. Choose a simple preliminary model for the
problem.

9.3 Meta-analysis

Another kind of application of hierarchical models is meta-analysis. The context here is
that there may be many studies of the same phenomenon, for example the comparative
efficacy of two or more treatments for the same disease. These studies may differ in many
details, for example the population studied, the way the treatments were administered,
the dosages if drugs were involved, etc. Often the amount of detail reported varies among
published studies, and not infrequently the original data are unavailable. Meta-analysis
seeks to put these disparate studies together to see what can fairly be concluded about the
fundamental question that each of the studies sought to address: the comparative efficacy
of the treatments. Often many judgments have to be made about how much weight to give
to the various studies. These are natural for Bayesians to make and declare, but somewhat
less natural for adherents of other schools of statistics.
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9.3.1 Summary

Meta-analysis is an example of a hierarchical model, easily understood in a Bayesian context.

9.4 Model uncertainty/model choice

Often it is not clear to statistical modelers what model to use. In one simple form the
question might be what explanatory variables to include in a regression. Alternatively the
models might be rather different views of the mechanism that produced the data.

Suppose there are K possible models for the data x, and that the likelihood for each
model involves its own parameters θk, k = 1, . . . ,K. With a prior πk(θk) on each parameter
space conditional on k, the probability of the data, conditional on k, can be written as

fk(x | θk)πk(θk). (9.11)

In order to specify the model completely, let κ be a random variable indexing model choice,
and let pk = P{κ = k} ≥ 0, with

∑
pk = 1. Then the joint distribution of the data and the

parameters can be written

I{κ = k}fk(x | θk)πk(θk). (9.12)

This is a hierarchical model with a discrete parameter specifying a model at the top,
and then parameters θk at the next level, and finally the data x.

The data then require the computation of the posterior distributions of all the parame-
ters, including the model choice parameter. Sometimes nearly all the posterior probability
concentrates on a single submodel, and in this case little harm is done in concentrating
attention on that single submodel. However, when more than one submodel retains sub-
stantial posterior probability, there is no reason to choose a single preferred submodel, and
substantial reason not to. The strategy of keeping several submodels in play, especially for
prediction, is called “model averaging” (Draper (1995)). For a review, see Hoeting et al.
(1999).

There are several details of this general picture worth noticing. The parameters in each
of the submodels may or may not be a priori conditionally independent of one-another.
Thus one cannot necessarily put together priors for each submodel and casually assume
independence.

The special case of the choice of explanatory variables in regressions is much discussed in
the literature. One way of thinking about it is to consider the (huge) model that incorporates
all of the contemplated variables. This move may feel uncomfortable, because it can involve
more variables than data. However, in principle, the material of Chapter 8 shows that
Bayesian analysis can be conducted when the number of variables exceeds the sample size,
so this is not an objection in principle. (Finding a prior to behave in such a high-dimensional
space can be a difficult matter of application, admittedly.)

One way suggested by some to deal with these issues is to impose a very simple prior,
for example a uniform distribution on all of the 2k possible subsets of k regressions, and
to impose (improper!) flat priors on each of the regressors in each of the submodels. The
result is called a “spike and slab” prior. Such a prior is highly discontinuous near the
origin, as it puts high probability on zero for each of the coefficients. But in many problems
there is no reason to single out zero as a special value deserving more credence than, for
example, values close to zero. Consequently, I regard such priors as attempts to avoid the
responsibility of stating and defending one’s true beliefs. I take the demand to justify to
readers one’s modeling choices to be the strength of the subjective Bayesian position.

Consider, for example, the simple normal linear regression model

yi = α+ βxi + γZi + εi εi ∼ N(0, σ2), ε’s independent. (9.13)
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Suppose the question of interest is whether this model can be simplified as follows:

yi = α+ βxi + εi εi ∼ N(0, σ2), ε’s independent. (9.14)

There are many ways to address this issue; here I’ll compare two Bayesian ways. One
method is to put priors on the parameters of each model, and create a hierarchy in which,
with some probability p, equation (9.13) pertains, and with probability 1−p, (9.14) pertains.
The priors on α, β and σ2 in (9.13) need not be the same as the priors on them in (9.14) and
indeed may not be independent. Together with a prior on p, this creates a full probability
model, from which posterior distributions for all the parameters can be calculated. The
posterior distribution on p then can be interpreted as offering the best current view of the
relative plausibility of the two models (9.13) and (9.14). This method essentially creates a
supermodel comprising the two submodels (9.13) and (9.14).

Another way to think about the issue is to take the more general model (9.13) as basic,
and then to ask whether the data support the conclusion γ = 0, which then specializes the
model to (9.14). In order for this question to be non-trivial, the prior put on γ must have
a discrete lump of probability on γ = 0. In my experience it is very unusual to have such a
belief, because it says that γ = 0 is special, very different from γ = 10−3 or γ = −10−3, for
example. Every continuous prior on γ has the consequence that P{γ = 0} = 0 (see equation
(4.4)). If any such continuous prior on γ represents your beliefs, then your posterior must
also have P{γ = 0} = 0, and, without needing any data or computations, you know that
p = 1, so you disbelieve (9.14). Again, your prior on (α, β, σ2 | γ) need not be continuous
at γ = 0, which corresponds to the remark above in the hierarchical setting that your prior
on (α, β, σ2) in (9.13) need not be the same as your prior on (α, β, σ2) in (9.14).

These two ways of thinking about the issue of γ = 0 are in fact equivalent, in that
any belief in one setting corresponds to a particular belief in the other. Understanding the
equivalence, however, leads one to question more deeply what is meant by the question of
whether γ = 0.

So far, the entire issue has been framed around the question of whether it is reasonable
to believe, in any given application, that γ takes exactly the value 0. As explained above,
in virtually every applied problem I have seen, the answer to that question is “no.” But
surely I want to be able to simplify models. I certainly do. How, then, can I explain my
wish to simplify models given that to do so apparently is contrary to my belief that the
larger model is nearly always closer to the truth?

My answer to this apparent conundrum is that I find it useful to simplify models. In
other words, the road to simplification of models, in my mind, has to do with the utility
function being used, and not with what is believed to be “true.” In its most elementary
form, one can imagine a trade-off between parsimony (the wish for fewer variables, as in
(9.14)) and accuracy (better predictive power, as in (9.13)). Being explicit about how one
views that trade-off can be a basis for explaining the choices made in model choice and
simplification.

There is literature offering such choices, notably AIC (Akaike (1973, 1974))

AIC = 2k − 2 ln (L) (9.15)

where k is the number of parameters and L is the maximized likelihood. A second measure
is BIC (Schwarz (1978))

BIC = k ln (n)− 2 ln (L) (9.16)

where n is the sample size. Yet another effort in this direction is the DIC (deviance infor-
mation criterion) of Spiegelhalter et al. (2002). The spirit of each of these is to propose
some automatic choice of the trade-off between parsimony and accuracy. Just as I question
the idea of canonical prior distributions to be used without explicit consideration of the
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overall no.children class school district state nation

Figure 9.1: Representing the relationship between variables in the standardized examination
example.

particular applied context, so too I question the use of these automatic utilities (or, equiv-
alently, losses). In both cases, they offer an apparently cheap way to avoid having to take
responsibility for choices being made, and, at the same time, destroy the meaning of the
quantities being computed.

In addressing a complicated model, sometimes one is asked how you know whether
the model fits. As a general question, this question has no answer. Practically, however, a
better question is “what aspect of this model do you find most questionable?” This focuses
attention on the (subjectively chosen) most sensitive matter. Of course, as explained above,
the larger model will always “fit” better; whether it fits usefully better involves, whether
explicitly or implicitly, utility considerations.

9.4.1 Summary

Choosing models and, as a special case, variables in a regression, is easily understood as
applications of Bayesian hierarchical modeling.

9.4.2 Further reading

Much of this section relies on the review of Kadane and Lazar (2004). The idea of keeping
all plausible models in play is also known as model averaging (Draper (1995), Hoeting et al.
(1999)). For another view, Box (1980) advocates using significance testing to choose among
models, and the Bayesian analysis of the resulting chosen model. Yet another view is given
in Gelman et al. (1995).

9.5 Graphical representations of hierarchical models

Return now to the example of section 9.1, of children taking a standardized examination.
One way to give a graphical picture of the hypothesized structure is given in Figure 9.1.

Figure 9.1 represents equations like (9.2), in that it expresses the idea that to explain
(or predict) the scores of children in a particular class, if you know the class parameters, it
would be irrelevant to know the school, district, etc., parameters. Similarly, to explain or
predict the class variables, only the school and the children in that class are relevant, not
the district, state, etc. Figures like 9.1 are a convenient and parsimonious way of displaying
conditional independence relationships such as (9.2).

Useful as a figure like Figure 9.1 is, it does not display all of the information implicit
in the structure of the hierarchical model for children’s performance in the standardized
examination. In particular, it does not express the idea that children’s performances in a
class are conditionally independent of one another, given the class parameters; that classes
are conditionally independent of one another given the school parameters, etc. Thus, we
might express these relationships with a graph like Figure 9.2.

Graphical representations like Figures 9.1 and 9.2 are called “directed acyclic graphs,”
or DAGs for short. They are “directed” because each arrow has a direction, and “acyclic”
because they do not have cycles, as exemplified by graphs that look like Figure 9.3.
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Figure 9.2: A more detailed representation of the relationship between variables in the
standardized examination example.

A

BC

Figure 9.3: A graph with a cycle.

The models represented by DAGs are also called “Bayesian networks” or “Bayes nets”
in some literature (a further example of the observation that there are many more names
than objects or facts).

DAGs can represent more complicated models than this example suggests. For example,
the extent of mathematics education of the teacher might be relevant. Then, (for simplicity
reverting to the style of Figure 9.1), we might have

class

training
teacher

schoolchildren etc.

Figure 9.4: Figure 9.1 with teacher training added.

The structure of Figure 9.4 implicitly changes what is meant by “class” to mean those
aspects of a class not differentiated by differences in teacher training.

To complicate matters further, it may be the policy of some school districts to make
greater efforts to attract especially well-trained mathematics teachers, which would lead to
a modified graph as follows:
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classchildren district etc.state

teacher
training

school

Figure 9.5: District policy influences the extent of teacher training.

In general, if there is an arrow from A to B, then A is a “parent” of B, and B is a
“child” of A. Thus, for example in Figure 9.5, “teacher training” is a child of the “district”
and a parent of “children.” For each variable Xi, we may define parents (Xi) to be the set
of variables Xj with arrows from Xj to Xi. Then we have

P (x1, . . . , xn) =

n∏
i=1

P (xi | parents (Xi)) (9.17)

where X1, . . . , Xn are the variables explained by the model.

9.5.1 Summary

Graphical representation, and specifically DAGs are a useful way to visualize a hierarchical
model.

9.5.2 Exercises

1. Vocabulary. State in your own words the meaning of:

(a) directed

(b) acyclic

(c) DAG

(d) Bayesian network

2. Choose one of the examples in section 9.2. Draw a DAG for it. Explain the assumptions
implicit in the DAG you drew.

9.5.3 Additional references

The standard work on graphical models is Lauritzen (1996). Heckerman (1999) is a nicely
written introduction.

9.6 Causation

Charlie goes out to his front porch every night at exactly 10 p.m., claps his hands three times,
and goes back into his house. His neighbor sees him doing this, and asks him why he does it.
“I’m keeping the elephants away,” says Charlie. “But Charlie, there are no elephants around
here,” responds his neighbor. “You see, it works,” says Charlie.

The issue of how to discern if x causes y has been the subject of discussion and debate
for many centuries, and that debate is not over. My goal here is to explain why causation
is a sensitive matter to statisticians, and to give an introduction to the currently active
positions about causation.
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First, many readers will recognize the slogan “correlation does not imply causation.”
For example, consider two jointly normal uncertain quantities with correlation ρ. If it were
the case that correlation implied causation, should we conclude that X causes Y or that Y
causes X?

But the real issue lies deeper. Imagine a study, conducted in London in 1900, of women
in London and whether they have tuberculosis. The finding is that women who wear fur
coats have less tuberculosis than women who do not wear fur coats. Should we conclude that
the wearing of fur prevents tuberculosis? From what we now understand about tuberculosis,
the answer is “no.” Women who wore fur coats were richer, had better diets, lived in better
heated houses, and had better access to medicine. All these would affect their tuberculosis
rates.

The general issue this raises is that it is very difficult to measure all of the covariates that
might be important in a study. And we saw in the discussion of section 2.3 on Simpson’s
Paradox that another covariate can reverse the recommendation of a study. It is no wonder
that the theme-song of statistics is “It ain’t necessarily so.”

Progress on the tuberculosis question might have been made by designing a clinical trial
among women who did not currently have tuberculosis and who did not have fur coats.
Randomly choose half to get fur coats, and see if the rates of tuberculosis are different in
the two groups. The results would be a disappointment to the fur industry. For more on
why a Bayesian might favor random selection, see section 11.5.

The past few decades have seen very lively discussions among statisticians and others
about causation. The observations I give here concerning this debate are intended to put
the discussion in the framework suggested in this volume, and to point interested readers
to the relevant literature.

One important idea in this discussion is that of “potential outcomes.” To introduce some
notation, suppose there is a population U of units u. For example, U might be the women
of London without fur coats and with no current tuberculosis. Suppose there is a function
Y on U of scientific interest. To continue the example, Y might equal 1 if the woman u has
tuberculosis a year later, and Y = 0 otherwise. Suppose also that there is a decision variable
D having two values: D(u) = t indicating that unit u is assigned treatment t, and D(u) = c
indicating that unit u is assigned control treatment c. For example, D(u) = t might mean
to give woman uεU a fur coat. The potential outcomes Yt(u) and Yc(u) are respectively the
value of Y (u) if D(u) = t or D(u) = c. Once D(u) has been determined, only one of Yt(u)
and Yc(u) will be observed. Thus in retrospect, one of Yt(u) and Yc(u) is counter-factual –
it didn’t happen. The causal effect of D(u) = t relative to D(u) = c can then be defined to
be

Yt(u)− Yc(u).

Much of the discussion about causal effects centers on the unobserved character of one of
the two terms, Yt(u) and Yc(u). Various models and assumptions are proposed to deal with
this, depending, for example, on whether one has a randomized experiment with complete
compliance, a randomized experiment with incomplete compliance, an observational study,
etc. Some of the discussion has to do with circumstances under which various assumptions
in such models are testable, and whether certain parameters in such models are identified.

An important additional part of the potential outcomes framework is a model for how
the treatment assignment was done, a point emphasized by Rubin (2004). The story of
the fighter planes in section 9.2.1 (h) makes it clear why this is a crucial consideration for
understanding the import of the data available for analysis.

From the perspective of this book, there is nothing wrong with defining and dealing with
potential outcomes. They are simply parameters, names for uncertain quantities that one
wishes to discuss. There is also nothing wrong with untested (or untestable) assumptions,
nor with lack of identification (see section 8.3). Every inference depends in principle on both,
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so there is nothing novel in causal inference that leads it to be different in kind in these
respects. As always, a thorough discussion of the assumptions (models and priors) should
accompany inferences, and the sensitivity of the conclusions to the assumptions should be
explored. The extent to which a reader will find the conclusions acceptable (whether causal
or not) will depend on the plausibility to that reader of the assumptions made. And this in
turn will depend on the quality of the arguments adduced to support those assumptions.

The potential outcomes framework goes back to Neyman (1923), Cornford (1965) and
Lewis (1973) and has been championed by Rubin (1974, 1978, 1980, 1986), Holland (1986),
Robins (1986, 1987) and Robins and Greenland (1989), among others. It has also been
criticized, especially by Dawid (2000).

There is a distinction drawn in this literature between discerning the effects of causes
on the one hand, and the causes of effects on the other. According to both Holland (1986)
and Dawid (2000), the former is simpler than the latter. The former is amenable to direct
experimentation (administer one of the treatments and see what happens); the latter would
require thinking about each of the possible causes to ascertain your probability of the effect
if you or someone or something else took each action regarded as a possible cause, and then
invoking Bayes Theorem. This kind of reasoning is exemplified by Sir Arthur Conan Doyle’s
Sherlock Holmes (Doyle, 1981, pp. 83, 84) in writing about synthetic reasoning:

“Most people, if you describe a train of events to them, will tell you what the
result would be. They can put those events together in their minds, and argue from
them that something will come to pass. There are few people, however, who, if you
told them a result, would be able to evolve from their own inner consciousness what
the steps were that led to that result. This power is what I mean when I talk of
reasoning backward, or analytically.”

Shafer (2000) criticizes the exercise of finding the causes of effects as follows: Suppose I
am required to bet $1 on the outcome of the flip of a coin. I bet on heads, and lose. He asks
whether my choice of heads “caused” me to lose $1. If I believe that the outcome of the flip
is independent of my choice, then the answer to this question is “yes.” However, if I assume
a different counter-factual world, in which the coin must land opposite to the way I bet,
then the answer would be “no.” This may sound peculiar, so I pause to give an example.
Suppose there is a statistician, we’ll call him “Persi,” who by dint of much practice, is able
to flip a coin and reliably make it come out “heads” or “tails” as he chooses. If Persi is
flipping the coin, and wants me to lose the dollar, then I’m going to lose. There is nothing
incoherent in believing that Persi can do this, nor that he would. I can think of this causally
as that Persi caused me to lose, as I would have lost no matter which way I bet. This is an
illuminating example, I think, because it highlights the importance of one’s prior beliefs in
the making of causal attributions.

Another important perspective on causation is that provided by Spirtes et al. (1993,
2000) and Pearl (2000, 2003). Pearl introduces a “do” operator, to distinguish the case in
which the random variable X happens to take the value x0 from the case in which the
decision variable X is set to the value x0. He accounts for the effect of this by modifying
equation (9.17) as follows:

P (x1, . . . , xn) =
∏

i|Xi /∈X

P (xi | parents (Xi)), X = xo. (9.18)

Lindley (2002) gives an interesting review of Pearl (2000). He remarks that it is coherent
to have different beliefs about p(y | see (x)) and p(y | do (x)). For example, if y is an
indicator function for the presence of tuberculosis and x is the presence of a fur coat, the
assumption that

p(y | see (x)) = p(y | do (x)) (9.19)
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is doubtful. However no doubt there are other situations in which (9.19) would be acceptable.
Rubin’s potential outcomes can be translated into a graphical causal model, and con-

versely a graphical causal model can be translated into a potential outcomes model. How-
ever, the potential outcomes model is restrictive, in that what is to be regarded as an out-
come is to be specified in advance. By contrast, Spirtes et al. (1993, 2000) stress “search”
(known here as model uncertainty, see section 9.4), which does not specify outcomes in
advance. Running through the discussions of these ways of speaking about causation are
various matters of style. Pearl (2003) and Lauritzen (2004) like causal diagrams, while
Rubin (2004) distrusts them. Rubin (2004) espouses potential outcomes as a framework;
Pearl (2003) finds the assumptions awkward to understand and Dawid (2000) and Lauritzen
(2004) distrust potential outcomes. I find myself in sympathy with the following remark by
Lauritzen (2004):

I have no difficulty accepting that potential responses, structural equations, and
graphical models coexist as languages expressing causal concepts each with their
virtues and vices. It is hardly possible to imagine a language that completely prevents
users from expressing stupid things.

The issue as I see it is that the proponents of each way of thinking give some examples
in which the method favored by that author is used, and then implicitly make the claim
that theirs is the only, or best, way to understand causation in general.

It is also useful to recognize limitations of each of the approaches. In the potential
outcomes literature there is doubt that one can speak of discrimination “caused by” age,
race or sex, since these are not conditions that can be changed in an individual. However,
as Fienberg and Haviland (2003) point out, the perceptions of age, race and sex have been
altered experimentally, and these experiments do shed light on the issue of discrimination.

Similarly, I would like to be able to say that I believe that the eruption of Mt. St. Helens
caused a large mud-slide. No-one can “do” such an eruption, and I trust people would not
do so if they could. Nonetheless such a sentence makes sense to me. Thus, while I find the
current literature on causation to be helpful and insightful, I believe there is still more to
understand about causation.



Chapter 10

Bayesian Computation: Markov Chain Monte
Carlo

10.1 Introduction

Chapter 8 showed many of the most common conjugate analyses used in Bayesian computa-
tion, and also introduced Laplace’s Method and large sample theory. While those methods
are useful, they are limited. Conjugate analysis applies only for particular forms of likeli-
hood and prior; large sample theory applies only when the sample size is “large,” and there
is little guidance about just how large that is. Consequently, attention is drawn to numerical
methods, which are the subject of this chapter.

10.2 Simulation

Generally Bayesian computations are aimed at an integral of some kind, for example

I =

∫
[0,1]

f(x)dx. (10.1)

One natural way to approximate such an integral is to evaluate the function f on a grid of
points { in , i = 0, 1, . . . , n}, and approximate I by

Î =

n∑
i=0

f(i/n)/(n+ 1) (10.2)

which is called the trapezoid rule. In a sense, the trapezoid rule is closely related to the
theory of Riemann integration (see Chapter 4).

An alternative method is to choose n + 1 points {x0, . . . , xn} independently from a
uniform distribution on [0, 1], and approximate I with

ˆ̂
I =

n∑
i=0

f(xi)/(n+ 1), (10.3)

which is called a Monte Carlo approximation. Since a different draw of uniformly in-
dependent points would lead to a different approximation (10.3), the Monte Carlo approx-
imation is stochastic. However, because the xi’s are independent, the strong law of large
numbers applies, provided ∫ 1

0

| f(x) | dx <∞, (10.4)

and the central limit theorem applies provided in addition∫ 1

0

f2(x)dx <∞. (10.5)

351
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The central limit theorem shows that the rate of convergence of
ˆ̂
I to I is a constant times

n−1/2.
While both methods work satisfactorily for a one-dimensional integral such as (10.1),

the situation is different for a multi-dimensional integral. Suppose for example that (10.1)
is replaced by

I∗ =

∫
[0,1]k

f(y1, y2, . . . , yk)dy1dy2 . . . dyk. (10.6)

The trapezoid rule would now require a k-dimensional grid, and (n+ 1)k evaluations of the
function f . It is easy to imagine that this could be computationally expensive if k is large
and f is complicated.

However, the Monte Carlo method scales more gracefully. Let W1 = f(U1, . . . , Uk),W2 =
f(Uk+1, . . . , U2k) etc., where U1, U2, . . . are independent draws from a uniform distribution
on [0, 1]. Then I∗ can be approximated by

ˆ̂
I∗ =

n∑
i=1

Wi/n. (10.7)

Again, because the W ’s are independent and identically distributed, both the strong law of
large numbers and the central limit theorem apply, and again the rate of convergence is the
standard deviation times n−1/2.

Computerized methods for generating samples from uniform distributions generally rely
on pseudo-random number generators, which are deterministic algorithms designed to mimic
independent draws from a uniform distribution on [0, 1]. Because the algorithms are deter-
ministic, in principle their use could lead to false conclusions about stochastic phenomena.
In practice they work quite well.

The Monte Carlo method can be extended to more general integrals, for example of the
type ∫

Rk
g(x)f(x)dx =

∫
Rk

g(x1, . . . , xk)f(x1, . . . , xk)dx1, . . . , dxk. (10.8)

When f(·) is a probability density, this integral can be expressed as E(g(X)), where X has
density f(x1, . . . , xk).

Again, for a strong law of large numbers to apply, it is necessary to assure

E(| g(X) |) <∞,

and for a central limit theorem, E(g2(X)) <∞.
There are special tricks to simulate draws from various standard distributions, starting

from a pseudo-random number generator producing uniform (0, 1) random variables (and
fudging independence). One general method relies on knowing the cumulative distribution
function F of a continuous random variable X. Let

F−1(t) = inf
x
{F (x) > t}. (10.9)

If U has a uniform distribution on [0, 1], then F−1(U) has the same distribution as X, since

P{F−1(U) ≤ x} = P{U ≤ F (x)} = F (x). (10.10)

A second general method is called rejection sampling, or accept-reject sampling. Suppose
we wish to generate samples from a continuous target density π(x) = f(x)/K, where f(x) is
known but the constant K is not necessarily known (but it might be). Let h(x) be a density
that is easy to simulate from, and suppose there is a constant c such that f(x) ≤ ch(x) for
all x. Then the following algorithm generates independent samples from π:
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1. Generate W from h(x) and independently u from a uniform (0, 1).

2.
If u ≤ f(W )/ch(W )

return W [acceptance]
Else return to 1. [rejection]

The smaller c, the fewer rejections there will be. The smallest c can be and still satisfy the
constraint that f(x) ≤ ch(x) for all x is to choose

c = inf
x

f(x)

h(x)
.

However, larger c’s can be used if they are more convenient, at some loss of algorithmic
efficiency.

Why does rejection sampling work?

Theorem 10.2.1. W generated by the above algorithm has the density π.

Proof. Let α(x) = f(x)/h(x)c and let N be the index of the first acceptance. Also let
U1, U2, . . . be the sequence of generated uniform random variables and W1,W2, . . . be the
sequence of generated W ’s. Then the probability of acceptance at the first step is

p1 = P{U1 ≤ α(W1)} =

∫
P{U1 ≤ α(w)}PW1(dw)

=

∫
α(w)h(w)dw =

∫
f(w)/c dw =

1

c

∫
Kπ(x)dx = K/c.

Since the steps are independent, this shows that N has a geometric distribution (see sec-
tion 3.7) with parameter K/c. Then if A is a set for which P{WεA} is defined,

P{WεA} =
∑
n≥1 P{N = n,XεA}

=
∑
n≥1 P{∩k≤n−1[Uk > α(Wn)] ∩ [Un ≤ α(Wn)] ∩ [WnεA]}

=
∑
n≥1(1− p1)n−1P{[U1 ≤ α(W1)] ∩ [W1εA]}

= 1
p1
P{[U1 ≤ α(W1)] ∩ [W1εA]}

= 1
p1
P{U1 ≤ α(w1) | w1εA}P{w1εA}

= 1
p1

∫
A
P{U1 ≤ α(w1)}PW1

(dw1)

= 1
p1

∫
A
α(w1)h(w1)dw1

= Kc
∫
A
f(w)/c dw = K

∫
A
π(w)/Kdw

=
∫
A
π(w)dw.

Thus W has the density π, as required.

Because the central limit theorem shows that the convergence of (10.3) to (10.10), or
more generally of (10.7) to (10.6), occurs at the rate σ/

√
n, techniques have been developed

to reduce the variance σ2. Some of the most important are:

1. Importance Sampling.
The idea of importance sampling is to reduce the variability of the integrand by choice
of the density with respect to which the integral is taken. It is convenient to divide the
range of the integral into two parts: those where g is positive and where it is negative.
This is accomplished using the following decomposition.
Let g+(x) = max{g(x), 0} and g−(x) = min{g(x), 0}. Then g(x) = g+(x) + g−(x), so∫

g(x)f(x)dx =

∫
g+(x)f(x)dx−

∫
(−g−(x))f(x)dx. (10.11)
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Both g+(x) and −g−(x) are non-negative. Thus without loss of generality, we may
consider integrals of non-negative function g. Now

Eg(X) =

∫
g(x)f(x)dx =

∫
g(x)f(x)

f̃(x)
f̃(x)dx (10.12)

where f̃(x) is a positive density (needed to avoid dividing by 0 in (10.12)). If f̃(x) can
be chosen to be roughly proportional to g(x)f(x) and to be easily simulated from, the
resulting Monte Carlo estimate, from Y (x) = g(x)f(x)/f̃(x) with respect to a random
variable with density f̃(x), will have small variance. The name “importance sampling”
comes from the fact that the method will lead to more heavily sampling points where
the original integrand g(x)f(x) is large, thus at the points where that contributes most
to the integral (10.12).

2. Control Variate
Here the idea is to find a function h(x) whose expectation is easy to compute and such
that the estimate of E(f(x) − h(x)) has smaller variance than the estimate of E(x).
Since

Ef(x) = E(f(x)− h(x)) + Eh(x), (10.13)

this results in a simulation with a smaller variance.

3. Antithetic Variables
In some integration problems, there are transformations that have negative correlations
that can be exploited. Consider again the integral in (10.1). Since the transformation
x→ 1− x leaves dx invariant, (10.1) can be rewritten

I =
1

2

∫ 1

0

(f(x) + f(1− x))dx, (10.14)

so I can be approximated by

1

n

1

2

[
f(U1) + f(1− U1)] + . . .+

1

2
[f(Un) + f(1− Un)

]
. (10.15)

When f(U) and f(1−U) have negative correlation, the result is a simulation with smaller
variance.

4. Stratification
This is a method borrowed from the classical theory of sample surveys. There are simula-
tions in which it is known that in some parts of the domain the function being integrated
is much more variable than in other parts of the domain and it is also known which parts
of the domain those are. (We have already seen such an example in section 4.9.) Strati-
fication can exploit such knowledge to concentrate sampling in the more variable parts,
thus reducing the resulting uncertainty.
In particular, suppose the goal is to approximate

I = E(g(X)) =

∫
D

g(x)f(x)dx, (10.16)

where X has the density f(x).
Then

I =

m∑
i=1

E(I[XεDi]g(X)) (10.17)

where D1, . . . , Dm are disjoint sets whose union is D (in the language introduced in
Chapter 1, {D1, . . . , Dm} is a partition of D). Let σ2

i = V (I[XεDi]g(X)), and suppose
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ni observations are devoted to sampling from Di. The resulting variance of the Monte
Carlo approximation is

∑m
i=1 σ

2
i /ni. Minimizing this subject to

∑m
i=1 ni = n, yields the

optimal ni = nσi/
∑m
i=1 σi. (OK, these may not be integers, but you can use the nearest

integer.) The resulting minimized variance is
∑m
i=1 σ

2
i /n. Fortunately even rough guesses

of the σ2
i ’s can lead to gains (reductions in variance), as is the case in stratification in

survey sampling.

5. Conditional Means
Suppose one wishes to approximate

Eg(X,Y ) =

∫
g(x, y)f(x, y)dx dy. (10.18)

There are such integrals in which one of the variables (say Y ) can be integrated analyt-
ically, conditional on the others, X.
Since

Eg(X,Y ) = E{Eg(X,Y ) | X} (10.19)

(see section 2.8), it is possible to reduce the dimension of the integral. Furthermore,
using the conditional variance formula (see section 2.12.5, exercise 3),

V (g(X,Y )) = V {Eg(X,Y | X)}+ E{ Var g(X,Y ) | X}, (10.20)

the first term is zero, leading to a reduction in variance by doing so. The general prin-
ciple is to reduce an integration problem analytically as much as possible, resorting to
simulation only when analytic methods are intractable.

10.2.1 Summary

Simulation methods are a useful supplement to analytic methods in that they permit the
approximation of integrals, particularly multivariate integrals, that are unavailable by ana-
lytic methods. Because they are based on independent and identically distributed random
draws, they support both a law of large numbers and a central limit theorem. A variety of
variance reduction techniques can help make such simulations more efficient.

10.2.2 Exercises

1. State in your own words a definition of

(a) trapezoid rule

(b) simulation

(c) Monte Carlo method

(d) pseudo-random number generator

(e) rejection sampling

(f) importance sampling

(g) control variate

(h) antithetic variate

(i) stratification

(j) conditional means

2. Consider
∫ 1

0
x2dx

(a) Compute it analytically.

(b) Using evaluation at 10 points, approximate it using the trapezoid rule, in R.
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(c) Using evaluation at 10 points, approximate it using Monte Carlo simulation, in R.

(d) Do both b and c again with 100 points.

(e) Compare the four approximations computed in b, c and d with the analytic result
in a. Which turned out to be most accurate? Why?

3. Suppose that the stratification variance
∑m
i=1 σ

2
i /ni is to be minimized subject to the

constraint
∑m
i=1 ni = n.

(a) Let the minimization be taken over all real positive numbers ni, not just the integers.
Show that the optimal ni’s satisfy ni = nσi/

∑m
i=1 σi , i = 1, . . . ,m. [Hint: Use a

Lagrange multiplier, see section 7.6.1.]

(b) Show that the resulting minimum value of the variance is
∑m
i=1 σ

2
i /n.

(c) Let σ2
1 = 4, σ2

2 = 9, σ2
3 = 25, and n = 50. Find the optimal sample sizes n1, n2 and

n3. What is the resulting variance?

(d) Continuing (c), suppose that by mistake a person used σ2
1 = 4, σ2

2 = 16 and σ2
3 = 16

instead. How would such a person allocate the sample of size 50? If those allocations
were used instead of the optimal ones calculated in c, how much higher would the
resulting variance be?

10.2.3 References

For more on (pseudo) random number generators, see L’Ecuyer (2002); for stratification in
its sampling context, see Cochran (1977); for methods of generating samples from various
distributions other than uniform, see Devroye (1985). A good discussion of acceptance sam-
pling and its extensions can be found in Casella and Robert (2004, pp. 47–62). For variance
reduction generally, see Dagpunar (2007, Chapter 5) and Rubinstein and Kroese (2008,
Chapter 5). A good review of importance sampling in this context is given by Liesenfeld
and Richard (2001).

10.3 Markov Chain Monte Carlo and the Metropolis-Hastings algorithm

While sampling independent random variables can be effective in particular cases, many sta-
tistical models, especially hierarchical models such as those discussed in Chapter 9, require
a general method not dependent on special cases. A natural generalization of independent
samples are Markov Chain samplers, in which the next random variable sampled depends
only on the most recent value, and not on the history of the sampled values before the most
recent one.

A stochastic process is a set of uncertain quantities, which is to say, of random
variables. A discrete-time stochastic process is a stochastic process indexed by the
non-negative integers, in notation, (X0, X1, X2, . . .). A Markov Chain is a discrete-time
stochastic process satisfying the following Markov condition:

P{XnεA | X0 = x0, X1 = x1, . . . , Xn−1 = xn−1}
= P{XnεA | Xn−1 = xn−1} (10.21)

for all n ≥ 1 and all sets A for which it is defined. Thus the Markov condition says that the
probability distribution of where the chain goes next (XnεA) depends only on where it is
now (Xn−1 = xn−1) and not on the history of how it came to be at xn−1.

A Markov Chain is therefore characterized by the probability distribution of its starting
state X0, and by its transition probabilities P{XnεA | Xn−1 = xn−1}. When the transition
probabilities do not depend on n, the Markov Chain is called time-homogeneous. Our
attention will focus on time-homogeneous Markov Chains, or HMC’s.
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Markov Chains are also distinguished by their domain E. The three leading cases are
when E is finite, when E is countable and when E is Rk or a subset of Rk.

While there are many examples of Markov Chains, one is already familiar to readers of
this book. Recall the gambler’s ruin problem, discussed in section 2.7. Gambler A starts
with $i, and gambler B with $(m− i). (For convenience there is a change in notation. What
in section 2.7 is denoted “n” is here “m.”) At each play, Gambler A wins $1 with probability
p and loses $1 with probability q = 1 − p. Let Xn be gambler A’s fortune after n plays of
this game, and consider discrete-time the stochastic process {X0, X1, . . . , }, This process is
a Markov Chain, because

P{Xn = xn | X0 = x0, . . . , Xn−1 = xn−1}

=


p if xn − xn−1 = 1 and xn−1 6= 0,m

q if xn − xn−1 = −1 and xn−1 6= 0,m

1 if xn−1 = xn = 0 or m.

Thus the player’s next fortune depends only on his current fortune xn−1 and not his
path to that fortune, which is the Markov condition. Finally, this Markov Chain is time-
homogeneous, because the same transition probabilities obtain regardless of the value of n.
Of course in this example, E is finite, since E = {0, 1, . . . ,m}.

Up to now in this book, Roman letters have been used for data and Greek letters for
parameters. In this chapter we’re going to change that convention. The posterior distribution
we would like to simulate from is proportional to the likelihood times the prior, which
ordinarily would be written as `(θ | x)p(θ). The algorithms to be discussed move in the
parameter space of θ; x is the data, which stays fixed. Nonetheless, it is convenient to write
the elements of E, the domain of the Markov Chain, with lower case Roman letters, x, y,
etc. Thus `(θ | x)p(θ) will be written in this chapter as a constant times π(x).

Thus let π(x) be the likelihood times prior, divided by its integral so that it is a pdf.
In what follows below, expectations are written with an integral sign. However, if S

is discrete, the same quantities can be interpreted as sums, taking the probability density
function to be a probability mass function. In fact, in the mixed case, part discrete and part
continuous, the integrals may be understood in the McShane-Stieltjes sense (see section 4.8).
For a given set A, the notation | A | means the volume of A in the continuous case, the
number of elements of A in the discrete case, and the sum of these in the mixed case.

At each time point n ≥ 0, the Markov Chain either stays where it is or makes a jump.
Thus conditional on X0 = x0, X1 = x1, . . . , Xn = x, where xiεE, i = 1, . . . , n− 1, xεE, the
next state Xn+1 is either

(a) equal to Xn, so Xn+1 = x with some probability r(x), 0 ≤ r(x) < 1 or

(b) moves to some new state y according to some density p(x, y), where
∫
E
p(x, y)dy =

1− r(x).

The quantity p(x, y) is then non-negative, but integrates to a number less than or equal
to one. Such a quantity is called a subprobability. To avoid indeterminacy in the discrete
case, we limit p(x, y) so that p(x, x) = 0, as otherwise the constraint r(x) < 1 would not
have meaning.

The motion of the Markov Chain is then governed by its transition probabilities. The
probability that a Markov Chain at Xn = x moves to some set A ⊂ E is then

P (x,A) = P{Xn+1εA | Xn = x}

=

∫
A

p(x, y)dy + r(x)δx(A), (10.22)

where δx(A) = 1 if xεA and 0 otherwise.
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Then if Xn has the density function λ(x), one can write

P{XnεA) =

∫
A

λ(x)dx, (10.23)

then the next state Xn+1 has density function as follows:

P{Xn+1εA} =

∫
E

λ(x)P (x,A)

=

∫
E

λ(x)

[∫
A

p(x, y)dy + r(x)δx(A)

]
dx.

(10.24)

Now ∫
E

λ(x)

∫
A

p(x, y)dy dx =

∫
A

∫
E

λ(x)p(x, y)dx dy

and ∫
E

λ(x)r(x)δx(A)dx =

∫
A

λ(x)r(x)dx =

∫
A

λ(y)r(y)dy.

Therefore

P{XnεA} =

∫
A

[∫
E

λ(x)p(x, y)dx+ λ(y)r(y)

]
dy, (10.25)

so the density of Xn is ∫
E

λ(x)p(x, y)dx+ λ(y)r(y), (10.26)

which is written as λP (y).
Thus P maps λ to λP , and the nth iterate can be defined recursively as

λPn = (λPn−1)P, (10.27)

where, by convention, λP 0 = λ.
A key role in Markov Chain theory is played by an invariant probability density π. A

probability density π is called invariant (or stationary) if πP = π. This means that if Xn

has density π, so does Xn+1. This is equivalent to∫
π(x)p(x, y)dx = (1− r(y))π(y). (10.28)

There is a huge and growing literature on Markov Chains. One of the concerns of that
literature is whether a stationary distribution exists. The nature of the application of Markov
Chains discussed here allows us to sidestep this question: it turns out that without any
further assumptions the chains generated have a stationary distribution, as will be shown.

Another very important concept for Markov Chains is a reversible chain (also known
as satisfying detailed balance). A chain is reversible if there is a pdf λ such that

λ(x)p(x, y) = λ(y)p(y, x). (10.29)

Lemma 10.3.1. A reversible chain has an invariant pdf.

Proof. ∫
λ(x)p(x, y)dx =

∫
λ(y)p(y, x)dx = λ(y)

∫
p(y, x)dx

= λ(y)(1− r(y)).

Therefore λ is an invariant pdf.
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Indeed, to go further, we know (up to a very important, but unknown constant), what
we would like the stationary distribution to be, namely the posterior distribution. Then
unlike much of the probability literature, we start with the intended stationary distribution
and construct a Markov Chain having the intended stationary distribution, rather than
exploring the properties of a given chain.

The particular algorithm considered here is the Metropolis-Hastings algorithm, and
works as follows: imagine that the chain has arrived at the state xεE at some stage n.
A proposal is made, according to some distribution q(x, y) to move to yεE. With some
probability α(x, y) this proposal is accepted. If the proposal is not accepted, the chain stays
at x. Thus we have

Xn+1 =

{
y with probability α(x, y)

x with probability 1− α(x, y)
.

The particular form of α(x, y) that is used in the algorithm is

α(x, y) =

{
min[π(y)q(y,x)

π(x)q(x,y) , 1] if π(x)q(x, y) > 0

1 otherwise
(10.30)

where π is the posterior distribution, up to an unknown constant. Because the form of
α involves the ratio π(y)/π(x) the algorithm does not require knowledge of the unknown
constant. This is quite important, since one of the purposes of using this technique is to
deal with ignorance of that constant.

It is useful to give some intuition behind (10.30). The function α(x, y), the acceptance
probability for a move from x to y, is larger when y is a priori relatively more likely than x,
(π(y)/π(x) large), and when a proposal of a move from y to x is more likely than a proposal
of a move from x to y (q(y, x)/q(x, y) large).

I now show that, due to the construction of the Metropolis-Hastings algorithm, it is
reversible.

Lemma 10.3.2. The Metropolis-Hastings algorithm is reversible with respect to the den-
sity π.

Proof. We need to show that π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x). Suppose π(y)q(y, x) ≥
π(x)q(x, y). If π(y)q(y, x) = 0 then π(x)q(x, y) = 0 and reversibility holds. Assume,
then, that π(y)q(y, x) > 0. Then α(x, y) = 1 and α(y, x) = π(x)q(x, y)/π(y)q(y, x) us-
ing the assumption that π(y)q(y, x) > 0. In this case, π(y)q(y, x) α(y, x) = π(y)q(y, x)π(x)
q(x, y)/π(y)q(y, x) = π(x)q(x, y) = π(x)q(x, y)α(x, y). If π(y)q(y, x) ≤ π(x)q(x, y) reverse
the roles of x and y above.

By virtue of Lemmas 10.3.1 and 10.3.2, we know that π(x) is an invariant distribution
for the Metropolis-Hastings algorithm, for all proposal densities q. Thus the Metropolis-
Hastings algorithm satisfies its design criterion: it has the posterior distribution as an in-
variant distribution.

Let S = {xεE | π(x) > 0}. The next lemma shows that without loss of generality, the
space on which the Metropolis-Hastings algorithm operates can be taken to be S ⊆ E.

Lemma 10.3.3. For a Metropolis-Hastings chain, if xεS, P (x, S) = 1.

Proof. Suppose xεS. Then π(x) > 0. The first step of a Metropolis-Hastings algorithm may
do one of two things. It may reject a proposal, in which case xεS is the value for X1. Or it
may propose and accept a new point y 6= x. If the candidate y is proposed, then q(x, y) > 0.
Hence π(x)q(x, y) > 0. Then the candidate y is accepted with probability

α(x, y) = min

{
π(y)q(y, x)

π(x)q(x, y)
, 1

}
.
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Now for α(x, y) > 0, we must have π(y)q(y, x) > 0, and hence π(y) > 0, so yεS. Thus we
have P (x, S) = 1. A simple induction then shows Xn ∈ S for all n.

In view of Lemma 10.3.3, the Metropolis-Hastings algorithm may be conceived of as
moving on the space S. Hence all integrals (sums) below in which the range of integration
is unspecified is to be taken over the space S.

The next goals are to show that π is the only invariant distribution for a Metropolis-
Hastings chain, and then to show that the chain is ergodic, which means that averages of
a function of sample paths almost surely approach the expectation of the function with
respect to π.

Thus far, no restrictions have been imposed on the proposals q(x, y). It will next be
shown that some such conditions must be imposed. To start, consider a Markov Chain with
four states, so E = {1, 2, 3, 4}. Let the transitions between these states governed by the
matrix

P =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

 .

If the chain starts in states 1 or 2, it stays in states 1 or 2. Similarly, if the chain starts in 3 or
4, it stays in states 3 or 4. Can such a chain be the result of a Metropolis-Hastings algorithm?
Yes, it can, if the proposal distribution satisfies q(1, 2) = q(2, 1) = q(3, 4) = q(4, 3) = 1

π(1) = π(2), and π(3) = π(4). It is easy to see that both


1/2
1/2
0
0

 and


0
0

1/2
1/2

 are stationary

distributions for this chain, so uniqueness will not hold. Furthermore, the long-run averages
of a function f will be either (f(1) + f(2))/2 or (f(3) + f(4))/2, depending on whether
the chain starts in states S1 = {1, 2} or states S2 = {3, 4}. So it is necessary to have an
assumption to prevent this kind of behavior.

More generally, this simple example illustrates the issue that the original Markov Chain
decomposes into two subchains that operate on the disjoint sets S1 and S2, and it is im-
possible to go from S1 to S2 or S2 to S1. A Markov Chain that can be decomposed in this
way is called “reducible”; we seek an assumption that guarantees irreducibility of the chain
resulting from a Metropolis-Hastings algorithm.

The assumption that we will make is as follows:
Hypothesis: There is a subset I ⊆ S satisfying

(i) For each initial state xεS, there is an integer n(x) ≥ 1 such that

Pn(x)(x, I) = P{Xn(x)εI | X0 = x} > 0.

(ii) There exists a subset J ⊂ S such that | J |> 0 and a constant β > 0 such that

p(y, z) ≥ β for all yεI, zεJ.

(A subset I satisfying (ii) is called “small.”)

Assumptions (i) and (ii) “tug” in opposite directions in the following sense. If a set I
satisfies (i), then any set I ′ ⊇ I also does. However, if a set I satisfies (ii), then any set
I ′ ⊆ I also does. The force of the hypothesis is that there is a set I that is simultaneously
small enough to satisfy (ii) and large enough to satisfy (i).

To see how this hypothesis works in practice, reconsider the example of the chain intro-
duced above, and suppose that π(1) = π(2) > 0 and π(3) = π(4) > 0. Then S = {1, 2, 3, 4}.
What shall we choose for I? If I ⊆ S1 or I ⊆ S2, condition (i) fails, since it is not possible
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to move from one state to the other. Thus these choices for I are too small. On the other
hand, if I contains elements of both S1 and S2, then condition (ii) fails because there are
no choices of J that satisfy the condition.

Now suppose instead that π(1) = π(2) = 0 (the case π(3) = π(4) = 0 is the same,
reversing S1 and S2). Then S = {3, 4}, and the choices I = {3} and J = {4} satisfy the
hypothesis.

Now consider an alternating chain, characterized by the transition matrix

P =

(
0 1
1 0

)
.

With this transition matrix, the state is sure to change with every transition. Again, can
such a Markov Chain be the result of a Metropolis-Hastings algorithm? Again, yes it can, if
the proposal distribution q satisfies q(1, 2) = q(2, 1) = 1, and π(1) = π(2) = 1/2. Then it is
easy to see that a move will always be proposed and accepted. (A chain of this type is called
“periodic,” here with period 2.) How does this chain fare with the hypothesis? Clearly we
have S = {1, 2}. Suppose we take I = {1} and J = {2}. Then (ii) is satisfied, with β = 1.
Also (i) is satisfied, since n(2) = 2 and n(1) = 1 suffices. Thus this periodic chain satisfies
the hypothesis.

The assumptions of the hypothesis say, in order, that: (i) that it is possible, in n(x)
steps, to go from any arbitrary starting point xεS to the set I, and (ii) having gotten to the
set I, there is some other set J such that the probability (density) is at least β for all moves
from points yεI to points zεJ . In the discrete case, I can be taken to be a single point y.
Then (i) guarantees that the chain can eventually go from x to y, and, by reversibility, back
to x, thus preventing the frozen chain behavior. Finally (ii) is automatically satisfied.

In the continuous case, it is sufficient to assume that there are points y and z in S such
that p(y, z) > 0, p(·, ·) is continuous at (y, z), and the Metropolis-Hastings algorithm visits
arbitrarily small neighborhoods of y with positive probability, eventually, from an arbitrary
initial state xεS.

A consequence of (i) is that λ(I) > 0, for every invariant λ. Because λ is invariant, we
have λ = λP = λP 2 = . . ..

Then

λ(I) =

∫
S

λ(x)

∞∑
n=1

2−nPn(x, I) > 0 (10.31)

from (i). Because π has a density and is invariant, it also follows that | I |> 0.

Another consequence of these assumptions is that, for xεI,

1−
∫
S

p(x, y)dy ≥
∫
J

p(x, y)dy ≥ β | J | . (10.32)

The heart of the construction to follow is the idea of regeneration or recurrence. Consider
a discrete chain that starts at y, wanders around S, and then comes back to y and then does
it again, etc. Each tour that starts and ends at y is independent of each other tour, and is
identically distributed. For regeneration to be useful it must be shown that the chain will
return infinitely often, and in finite expected but stochastically-varying time. Since the law
of large numbers then applies to each tour, this opens the way for a law of large numbers
to be proved for Markov Chains, specifically, in the cases considered here, to the output
of the Metropolis-Hastings algorithm. The same idea applies in the continuous case, but is
slightly more delicate since the return is to the set I rather than to a single point y.

In the analysis that follows, assumption (ii) is used immediately and heavily. Assumption
(i) also comes up, but in only two (crucial) places in the development and then only through
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(10.31). Starting with assumption (ii), let v be a uniform distribution on the set J :

v(z) =

{
| J |−1 for zεJ

0 elsewhere
. (10.33)

Also define s(y) as follows:

s(y) =

{
β | J | for yεI

0 elsewhere
. (10.34)

Then

s(y)v(z) =

{
β if y ∈ I, z ∈ J
0 otherwise

. (10.35)

From the definition of a small set, we have

p(y, z) ≥ s(y)v(z) (10.36)

for all y, zεS. This is called a minorization condition in the literature.
Let

Q(y,A) = P (y,A)− s(y)

∫
A

v(z)dz. (10.37)

If y ∈ I and A ⊆ S,

Q(y,A) = P (y,A)− β | J | | A ∩ J |
| J |

= P (y,A)− β | A ∩ J |≥ 0 (10.38)

in view of (10.36).
If y 6∈ I, and A ⊆ S,

Q(y,A) = P (y,A) ≥ 0. (10.39)

Q can be regarded as an operator mapping a subprobability λ to the following subprob-
ability:

λQ(z) = λP (z)−
(∫

λ(y)s(y)dy

)
ν(z), (10.40)

for z ∈ S.
Next, define a bivariate Markov Chain (Un, Yn) as follows. Let U0, U1, . . . be a sequence

of S-valued random variables, and let Y0, Y1, . . . be a sequence of {0, 1}-valued random
variables. The transition probabilities for this chain are as follows:

P{Un ∈ A, Yn = 1 | Un−1 = y;Yn−1} = s(y)

∫
A

ν(z)dz (10.41)

P{Un ∈ A, Yn = 0 | Un−1 = y, Yn−1} = Q(y,A) (10.42)

for all n ≥ 1, A ⊆ S, independently of Yn−1.
The law of motion of the random variables U is the same as those of the random variables

X, since

P{Un ∈ A | U0, . . . , Un−2, Un−1 = y} =

P{Un ∈ A, Yn = 0 | Un−1 = y}+ P{Un ∈ A;Yn = 1 | Un−1 = y} (10.43)

= Q(y,A) + s(y)

∫
A

ν(z)dz = P (y,A),
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for n ≥ 1.

One way to think about Un and Xn is to imagine them as realizations, that is, to imagine
starting the process X at X0 according to some distribution, and then developing according
to P . One could also imagine the process (U, Y ) realized according to (10.41) and (10.42).
Then there is no reason to think that the realized X and U will be equal. However, our
purpose is to study the probability distributions of X and U , which by (10.43) are identical
if their starting distributions are identical. Consequently it is not an abuse of notation to
use the letter X for U , which we will do.

Also

P{Yn = 1 | Xn−1 = y, Yn−1} = s(y), so (10.44)

P{Yn = 0 | Xn−1 = y, Yn−1} = 1− s(y). (10.45)

Thus when the bivariate chain reaches (Xn−1 = y, Yn−1), at the next stage, Yn = 1 with
probability s(y) and Yn = 0 otherwise.

The reason the bivariate chain (X,Y ) is a powerful tool analytically is then when Yn =
1, Xn has the same distribution each time, namely ν. This is shown as follows:

P{Xn ∈ A | Xn−1 = y, Yn−1, Yn = 1} =

(P{Yn = 1 | Xn−1 = y, Yn−1})−1P{Xn ∈ A, Yn = 1 | Xn−1 = y, Yn−1}

= (s(y))−1s(y)

∫
A

ν(z)dz =

∫
A

ν(z)dz. (10.46)

In this case, the bivariate chain (X,Y ) is said to regenerate at the (random) epochs at
which Yn = 1.

From the time-homogeneous Markov Property of the (X,Y ) chain,

P{Xn ∈ A0, Xn+1 ∈ A1, . . . ;Yn+1 = y1, Yn+2 = y2 |
X0, X1, . . . , Xn−1, Y0, . . . , Yn−1, Yn = 1}

= P{X0 ∈ A0, X1 ∈ A1, . . . ;Y1 = y2, Y2 = w2, . . . | Y0 = 1} (10.47)

= Pν{X0 ∈ A0, X1 ∈ A1, . . . ;Y1 = y1, Y2 = y2, . . .}

where the subscript ν indicates that X0 has the initial distribution ν.

The next concept to introduce is a random variable T taking values in N ∪ {∞}. In
particular, T is the first regeneration epoch time, so

T = min{n > 0 : Yn = 1}. (10.48)

More generally, let 1 ≤ T1 ≤ T2 ≤ T3 . . . denote the successive regeneration epochs, where

T1 = T

and

Ti = min{n > Ti−1 : Yn = 1} for i = 2, 3, . . . (10.49)

The hard work in the proof to come is showing that the random variables Ti are finite,
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and have finite expectations. To begin the analysis of T, we have

P{Xn ∈ A, T > n | Xn−1 = y, T > n− 1}
= P{Xn ∈ A, Yo = 0, . . . , Yn = 0 | Xn−1 = y, Y1 = 0, . . . , Yn−1 = 0}

(by definition of T)

= P{Xn ∈ A, Yn=0 | Xn−1 = y, Y1 = 0, . . . , Yn−1 = 0}
(P{CD | CF} = P{D | CF}
for all events c, D and F).

= P{Xn ∈ A, Yn = 0 | Xn−1 = y, Yn−1 − 0}
((X,Y )is a Markov Chain)

= Q(y,A)

(see (10.42)). (10.50)

Now we can state an important result that will help to control the distribution of T :

Lemma 10.3.4. Suppose X0 has the arbitrary initial distribution λ. Then

Pλ{Xn ∈ A, T > n} =

∫
A

λQn(x)dx.

Proof. By induction on n. At n = 0, the lemma is just the definition of λ. Suppose then,
the lemma is true at n− 1 for n = 1, 2, . . .. Then

Pλ{Xn ∈ A, T > n}

=

∫
S

P{Xn ∈ A, Yn = 0 | Xn−1 = x, T > n− 1}λQn−1(x)dx

(uses inductive hypothesis)

=

∫
S

λQn−1(x)Q(x,A)dx

=

∫
A

λQn(x)dx (10.51)

by definition of the nth iterate of the kernel Q.

Using Lemma 10.3.4,

Pλ{T ≥ n} = Pλ{T > n− 1} = Pλ{Xn ∈ S, T > n− 1}

=

∫
λQn−1(x)dx.

(10.52)

Also
P{T = n} = P{Xn−1 ∈ S, T > n− 1, Yn = 1}

=

∫
P{Yn = 1 | Xn−1 = x, T > n− 1}λQn−1(x)dx

=

∫
s(x)λQn−1(x)dx.

(10.53)

Let

µ(x) =

∞∑
n=0

νQn(x). (10.54)
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The function µ(x) is called the potential function. If the starting distribution is ν, the
expected number of visits to the set A before T is given by the integral of potential function
over A:

Eν

T−1∑
n=0

δXn(A) =

∞∑
n=0

Pν{Xn ∈ A, T > n}

=

∞∑
n=0

∫
A

νQn(x)dx

=

∫
A

µ(x)dx. (10.55)

In particular, if A = S, the expected regeneration time is

M = Eν(T ) =

∫
µ(x)dx. (10.56)

The key to further progress is examining when M < ∞. If f(x) is any non-negative mea-
surable function f(x), x ∈ S,

Eν

T−1∑
n=0

f(Xn) =

∫
µ(x)f(x)dx. (10.57)

Also, setting λ = ν and summing (10.53) over n, we have

Pν(T <∞) =

∫
µ(x)s(x)dx. (10.58)

For each n ≥ 1, let Ln be the time elapsed since the last regeneration before n. Then

{T ≤ n} = ∪n−1
k=0{Ln = k} (10.59)

where Ln = min{0 ≤ k ≤ n− 1 : Yn−k = 1}.

Let λ be an arbitrary starting density. Then for all n ≥ 1 and A ⊆ S,

P{Xn ∈ A} = P{Xn ∈ A, T > n}+

n−1∑
k=0

P{Ln = k,Xn ∈ A}. (10.60)
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Now

n−1∑
k=0

P{Ln = k,Xn ∈ A}

=

n−1∑
k=0

P{Yn−k = 1, Yn−k+1 = 0, . . . , Yn = 0;Xn ∈ A} (10.61)

(uses definition of L)

=

n−1∑
k=0

P{Yn−k = 1}P{Yn−k+1 = 0, . . . , Yn = 0, Xn ∈ A | Yn−k = 1} (10.62)

(conditional probability)

=

n−1∑
k=0

P{Yn−k = 1}P{Y1 = 0, . . . , Yk = 0, Xk ∈ A | Y0 = 1} (10.63)

(time homogeneity)

=

n−1∑
k=0

P{Yn−k = 1}Pν{Y1 = 0, . . . , Yk = 0, Xk ∈ A} (10.64)

(uses (10.47))

=

n−1∑
k=0

∫
λPn−k−1(y)s(y)dy

∫
A

νQk(x)dx.

(uses Lemma 10.3.4 and (10.44)) (10.65)

We now suppose that λ is invariant. (We know that at least one invariant distribution
exists, namely π. We are getting ready to prove, but have not yet proved, that under
our assumptions, π is the only invariant distribution.) With this assumption, we have two
results:

P{Xn ∈ A} =

∫
A

λ(y)dy (10.66)

and ∫
λPn−k−1(y)s(y)dy =

∫
λ(y)s(y)dy. (10.67)

Substituting these results into (10.60) and (10.65), we have∫
A

λ(y)dy = Pλ{Xn ∈ A, T > n}+

∫
λ(y)s(y)dy

n−1∑
k=0

∫
A

νQk(x)dx. (10.68)

Now let A = S, to obtain

1 =

∫
λ(y)dy = Pλ(T > n) +

∫
λ(y)s(y)dy

n−1∑
k=0

∫
νQk(x)dx. (10.69)

Letting n→∞ yields

1 = Pλ{T =∞}+M

∫
λ(y)s(y)dy. (10.70)
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Now ∫
λ(y)s(y)dy = β | J | λ(I) > 0 (10.71)

using (10.31).

Therefore M <∞. Since M = EνT , we also have

Pν(T <∞) =

∫
µ(x)s(x)dx = 1. (10.72)

These results are important, because they say that if the chain started with Y0 = 1, the
expected time T until the next time some Yn = 1 is finite. This in turn allows us to return
to the random variables Ti, defined at (10.49). Using (10.47),

P{XTi ∈ A0, XTi+1 ∈ A1, . . . , XTi+m−1 ∈ Am−1;Ti+1 − Ti = m |
X0, X1, . . . , XTi−1;T1, . . . , Ti−1;Ti = n}

= P{X0 ∈ A0, X1 ∈ A1, . . . , Xm−1 ∈ Am−1;T = m | Y0 = 1}
= Pν{X0 ∈ A0, . . . , Xn−1 ∈ Am−1;T = m}.

(10.73)

This has the following implication: Consider the random blocks

ξ0 = (X0, . . . , XT−1;T )

ξi = (XTi , . . . , XTi+1−1;Ti+1 − Ti) for 1 = 1, 2, . . .

These blocks are independent. Also the blocks ξi, i ≥ 1 have the same distribution, and
have the same distribution as the block ξ0 under the initial distribution ν.

Hence

P{Ti+1 − Ti = m | X0, X1, . . . , Xn−1;T1, . . . , Ti−1, Ti = n} = Pν(T = m). (10.74)

Furthermore, for a given function f(x), x ∈ S, we can define the random sums over the
blocks ξi as follows

ξ0(f) =

T−1∑
m=0

f(Xm)

ξi(f) =

Ti+1−1∑
m=Ti

f(Xm) i ≥ 1. (10.75)

These sums are independent. The random variables ξi(f)(i ≥ 1) are identically distributed,
and have the same distribution as the random variable ξ0(f) under the initial pdf ν.

Lemma 10.3.5.

P{Ti <∞ | X0 = x} = P{T <∞ | X0 = x}

for all x ∈ S and i ≥ 1.

Proof. By induction on i. When i = 1, T1 = T so there is nothing to prove. Suppose then,
the lemma is true for i.
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Then

P{Ti+1 <∞ | X0 = x} =

∞∑
n=1

∞∑
m=1

P{Ti+1 − Ti = m,Ti = n | X0 = x}

=

∞∑
n=1

∞∑
m=1

P{Ti+1 − Ti = m | Ti = n,X0 = x}P{Ti = n | X0 = x}

=

∞∑
n=1

∞∑
m=1

Pν{T = m}P{Ti = n | X0 = x}

=

∞∑
m=1

Pν{T = m}
∞∑
n=1

P{Ti = n | X0 = x}.

But
∑∞
m=1 Pν{T = m} = Pν{T <∞} = 1 using (10.72) and

∞∑
n=1

P{Ti = n | X0 = x} = P{Ti <∞ | X0 = x}.

Hence P{Ti+1 < ∞ | X0 = x} = P{Ti < ∞ | X0 = x} = P{T < ∞ | X0 = x}
completing the inductive step.

We can now address the uniqueness of the invariant distribution. To begin, observe that
µ is invariant, as follows:

µ(y) = ν(y) +

∞∑
n=1

νQn(y) (uses (10.54))

= ν(y) +

∞∑
n=0

(νQn)Q(y) (just algebra)

=

(∫
µ(x)s(x)dx

)
ν(y) + µQ(y) (uses (10.72) and (10.54))

= µP (y). (uses (10.40))

(10.76)

Now let n→∞ in (10.68), yielding∫
A

λ(y)dy ≥
(∫

λ(y)s(y)dy

)∫
A

µ(y)dy (10.77)

for all A, and every invariant distribution λ.
Now consider the function

β(y) = λ(y)−
(∫

λ(x)s(x)dx

)
µ(y). (10.78)

Because both λ and µ are invariant, so is β. By (10.77), β ≥ 0. I claim now that∫
β(y)dy = 0. Suppose the contrary. Then the function β∗(y) = β(y)/

∫
β(y)dy would be

an invariant pdf, and would satisfy∫
β∗(y)s(y)dy

=
1∫

β(y)dy

[∫
λ(y)s(y)dy −

(∫
λ(y)s(y)dy

)∫
s(x)µ(x)dx

]
= 0 (10.79)
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using (10.72).

But this contradicts (10.31). Therefore
∫
β(y)dy = 0, and β(y) = 0 almost everywhere.

Integrating (10.78) then yields

1 =

(∫
λ(x)s(x)dx

)∫
µ(y)dy (10.80)

=

(∫
λ(x)s(x)dx

)
M (using (10.56))

so

λ(y) =

(∫
λ(x)s(x)dx

)
µ(y) = µ(y)/M. (10.81)

and is therefore unique. Since we already know that π is invariant (see Lemmas 10.3.1 and
10.3.2) it is therefore the only invariant pdf, so we have

π(y) = µ(y)/M. (10.82)

Now that the invariant distribution has been shown to be unique, the next goal is to
show that the regeneration times are finite no matter what starting point is used. Thus we
seek to prove

Lemma 10.3.6.

P{Ti <∞ | X0 = x} = 1

for all i = 1, 2, . . . and all x ∈ S.

Proof. In view of Lemma 10.3.5, it is sufficient to show

P{T <∞ | X0 = x} = 1. (10.83)

Using (10.70) and (10.80), we have

1 = Pπ{T =∞}+MM−1. (10.84)

Thus

1 = Pπ{T <∞} =

∫
P{T <∞ | X0 = x}π(x)dx (10.85)

which implies

P{T <∞ | X0 = x} = 1 (10.86)

for all x ∈ S except possibly a set of measure 0. We now prove that (10.86) holds for all
x ∈ S.

Let h∞(x) = P{T =∞ | U0 = x} = limn→∞ P{T > n | X0 = x}.
Using Lemma 10.3.4, we have

h∞(x) = lim
n→∞

Qn(x, S). (10.87)

Because P{T > n | X0 = x} is monotone non-increasing in n and hence dominated (see
Theorem 4.7.11), we may exchange integrals and limits in the following calculation:
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h∞(x) = lim
n→∞

Qn(x, S)

= lim
n→∞

∫
Qn(x, dz)

=

∫
lim
n→∞

Qn(x, dz)

=

∫
lim
n→∞

∫
Q(x, dy)Qn−1(y, dz)

=

∫
Q(x, dy) lim

n→∞

∫
Qn−1(y, dz)

=

∫
Q(x, dy) lim

n→∞
Qn−1(y, S)

=

∫
Q(x, dy)h∞(y) for all x ∈ S. (10.88)

Now (10.72) implies that ∫
h∞(y)ν(y)dy = 0, (10.89)

so it follows that ∫
P (x, dy)h∞(y) = h∞(x) for all x ∈ S (10.90)

from (10.37). In view of (10.22) this is equivalent to∫
p(x, y)h∞(y) = (1− r(x))h∞(x). (10.91)

Now suppose, contrary to hypothesis, that there is some x0 ∈ S such that h∞(x0) > 0.
Since r(x) < 1 for all x ∈ S (see (a) above (10.22)), we would then have∫

p(x0, y)h∞(y)dy > 0. (10.92)

But this implies ∫
h∞(y)dy > 0 (10.93)

contradicting (10.86). Therefore h∞(x) = 0 for all x ∈ S, which proves the lemma.

The property proved in Lemma 10.3.6 is known in the literature as Harris recurrence.
We now turn to the statement and proof of the Strong Law of Large Numbers for the

Metropolis-Hastings algorithm.

Theorem 10.3.7. Let f(x), x ∈ S be a π-integrable function, so f(·) satisfies∫
S

| f(x) | π(x)dx <∞. (10.94)

Let X0 = x ∈ S be an arbitrary starting point for the Metropolis-Hastings algorithm. Let

Sn =

n∑
i=0

f(xi). (10.95)

Then, with probability 1,

lim
n→∞

Sn/n =

∫
S

f(x)π(x)dx. (10.96)
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Proof. Since the random variables ξ0(f), . . . , ξ1(f), . . . defined in (10.75) are independent
and ξ1(f), ξ2(f) . . . are identically distributed (with the same distribution as X0 under the
initial pdf ν), the Strong Law of Large Numbers for independent random variables (see
section 4.11) and from P{T <∞ | X0 = x} = 1 it follows that

lim
i=∞

i−1
i∑

j=0

ξj(f) =Eξ1(f) = Eνξ0(f) =

∫
f(x)µ(x)dx (10.97)

=M

∫
S

f(x)π(x)dx (10.98)

with probability 1 (using (10.57) and (10.82)).

Also

lim
i→∞

i−1Ti = E(T2 − T1) = EνT = M (10.99)

with probability 1, since M <∞.

It remains to account for the part of Sn that is after the last regeneration time. To that
end, let N(n), n = 1, 2, . . . be the (random) number of regeneration epochs Ti up to time n.
Then

TN(n) ≤ n < TN(n)+1. (10.100)

Since N(n)→∞ with probability 1 (from Lemma 10.3.6),

lim
n→∞

n−1N(n) = lim
n→∞

(TN(n))
−1N(n) = M−1 (10.101)

with probability 1. Now

Sn =

n−1∑
m=0

f(Xm) =

N(n)−1∑
j=0

ξj(f) + ξ′N(n) (10.102)

where

ξ′N(n) =

{∑n−1
m=TN(n)

f(Xm) if TN(n) ≤ n− 1

0 if TN(n) = n
.

Now | ξ′N(n) | is bounded as follows:

| ξ′N(n) |≤
Tm(n)+1−1∑
m=TN(n)

| f(Xm) | . (10.103)

The random variable on the right-hand side has the same distribution (with probability

1) as that of
∑T−1
m=0 | f(Xm) | (under the initial distribution ν), it follows that

lim
n→∞

n−1ξ′N(n) = 0 with probability 1. (10.104)
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Then

lim
n→∞

n−1Sn = lim
n→∞

n−1

N(n)−1∑
j=0

ξj(f) + ξ′N(n)

 (uses (10.102))

= lim
n→∞

n−1

N(n)−1∑
j=0

ξj(f) (uses (10.104))

= lim
n→∞

(
N(n)

n

)
lim
n→∞

(

N(n)−1∑
j=0

ξj


= M−1

(
M

∫
S

f(x)π(x)dx

)
(uses (10.94) and (10.101))

=

∫
S

f(x)π(x)dx.

10.3.1 Literature

This treatment relies very heavily on Nummelin (2002). There is a vast literature on Markov
Chain theory generally. The classic works are Nummelin (1984) and Meyn et al. (2009).
Additional results, with additional assumptions, give a central limit theorem and a geometric
rate of convergence. An important paper linking the general theory with Markov Chain
Monte Carlo is Tierney (1994).

10.3.2 Summary

A very general strong law holds for the output of the Metropolis-Hastings algorithm.

10.3.3 Exercises

1. State in your own words the meaning of

(a) stochastic process

(b) Markov Chain

(c) time homogeneous Markov Chain

(d) stationary distribution

(e) reversible chain

(f) Metropolis-Hastings algorithm

(g) minorization condition

(h) potential function

2. Suppose you have data X1, . . . , Xn which you believe come from a normal distribution
with mean θ and variance 1. Suppose also that you are uncertain about θ, in fact, for
you, θ has the following Cauchy distribution:

f(θ) =
1

π(1 + θ2)
,−∞ < θ <∞.

(a) Show that f is a pdf, by showing that it integrates to 1.

(b) Can you find the posterior distribution of θ analytically? Why or why not.
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(c) If not, write a Metropolis-Hastings algorithm whose limiting distribution is that
posterior distribution.

3. Consider the transition matrix

P =

(
1 0
0 1

)
.

(a) What proposal distribution q(x, y) for a Metropolis-Hastings algorithm leads to this
transition matrix?

(b) Does this specification satisfy the hypothesis after Lemma 10.3.3? Why or why not?

(c) Show that both π1 =
(

1
0

)
and π2 =

(
0
1

)
are stationary probability vectors for this

transition matrix.

(d) What other assumption of the theorem does this transition matrix fail to satisfy?

10.4 Extensions and special cases

This section considers several extensions and special cases of the Metropolis-Hastings algo-
rithm. The first issue has to do with what happens when several such algorithms are used
in succession. To be precise, suppose that P1, . . . , Pk are Metropolis-Hastings algorithms.
Each Pi is assumed to obey the following:

(i) There is a distribution π (not depending on i) with respect to which each Pi is invariant,
that is,

Piπ = π i = 1, . . . , k.

(ii) Each Pi satisfies ri(x) < 1 for all x ∈ S = {x | π(x) > 0}.
We now consider the algorithm

P = PkPk−1 . . . P1

which consists of applying P1 to X0 = x0, then P2, etc. Although each of the Pi’s may not
satisfy the hypothesis of the almost-sure convergence result, P may well. In this case the
theorem applies to P . (Although each Pi is reversible, the product need not be.) Also note
that P has π as an invariant distribution, because

Pπ = PkPk−1 . . . P1π = PkPk−1 . . . P2π = . . . = π. (10.105)

The fact that one can use several Metropolis-Hastings algorithms in succession opens
the way for block updates, in which a part, but not all of the parameter space is moved
by one of the Pi’s. In particular, suppose x = (x1, . . . , xp) is the parameter space. Let xK
be a subset of the components of x, and x/∈K denote the components not in xK . Then,
rearranging the order of the components if necessary, we may write

x = (xK ,x/∈K).

Now a Metropolis-Hastings algorithm could propose to update only the components
of xK , leaving the components of x/∈K unchanged. Such a sampler cannot by itself sat-
isfy the hypothesis, since it leaves the elements of x/∈K unchanged, but several such
Metropolis-Hastings algorithms in succession could. Block updating is very useful in de-
signing Metropolis-Hastings samplers. For example, it is natural to use block updating in
problems that involve missing data, and more generally in hierarchical models (see Chap-
ter 9). While updating each parameter individually is a valid special case of block updating,
it is often more advantageous to update several parameters together, especially if they have
a linear regression structure (see Chapter 8).
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In certain problems it is possible to derive analytically the conditional posterior distri-
bution of a block of parameters given the others, by deriving π(xK | x/∈K). In this case, one
choice of proposal function for a block-sampler sampling xK is

q(xK | x/∈K) = π(xK | x/∈K).

Thus the proposal is to move from the point x = (xK ,x/∈K) to a new point y = (yK ,x/∈K).
Under the choice of proposal function above,

π(x)

q(x,y)
=

π(xK ,x/∈K)

π(xK | x/∈K)
= π(x/∈K) =

π(yK ,x/∈K)

π(yK | x/∈K)
=

π(y)

q(y,x)
. (10.106)

Consequently, under this choice, every such proposal is accepted. This is called a Gibbs Step;
a Metropolis-Hastings algorithm consisting only of Gibbs Steps is called a Gibbs Sampler.

Some other special cases of note are:

(a) If q is symmetric, so q(x, y) = q(y, x),

α(x, y) = min

{
π(x)

π(y)
, 1

}
. (10.107)

This is the original Metropolis version (Metropolis et al. (1953)).

(b) A random walk
y = x + εεε (10.108)

where εεε is independent of x. Often εεε is chosen to be symmetric around 0, in which case
(a) applies.

(c) Independence, where q(x, y) = s(x) for some density s(x). Then

α(x, y) = min

{
π(x)s(y)

π(y)s(x)
, 1

}
. (10.109)

A joint chain can also be composed of a mixture of chains P1 . . . , Pk, i.e.,

P =

k∑
i=1

αiPi (10.110)

where αi > 0 and
∑k
i=1 αi = 1. If each Pi satisfies conditions (i) and (ii) of the hypothesis

of section 10.3, then so will P . Furthermore, unlike the case of using the Pi’s in succession, a
mixture of Metropolis-Hastings chains is reversible. Algorithms of this type are often called
“random scans.”

10.4.1 Summary

You are introduced to several of the most important special cases of the Metropolis-Hastings
algorithm, including especially the Gibbs Sampler.

10.4.2 Exercises

1. State in your own words the meaning of

(a) Gibbs Step

(b) Gibbs Sampler

(c) random walk sampler
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(d) independence sampler

(e) blocks of parameters

2. Make a sampler in pseudo-code exemplifying each of the three special cases mentioned
in problem 1. Give examples of when it would be useful and efficient to use each, and
explain why.

10.5 Practical considerations

The practice of the Metropolis-Hastings algorithm is shadowed by two related considera-
tions. The first is the dependent nature of the resulting chain. A chain that is less dependent
will have more information, for a given sample size, about the target posterior distribution.
The second important consideration is the sample size. Almost sure convergence is nice, but
it is an asymptotic property. How large must the sample size be for the resulting averages
to be a good approximation? Since every computer run is of finite duration, this issue is
unavoidable.

To overcome these problems, the Metropolis-Hastings algorithm offers great design flex-
ibility in deciding what blocks of parameters to use in each step, what proposal distribution
to use and how much of the initial part of the sample to ignore as “burn in.” The purpose
of this section is to give some practical guidance on how to make these choices wisely.

To emphasize why these considerations are important, imagine a two-state chain whose
transition probabilities are given by

P =

(
1− ε ε
ε 1− ε

)
.

For every ε, 0 < ε ≤ 1, such a chain can result from a Metropolis-Hastings algorithm, where
π(1) = π(2) = 1/2, r(x) = 1 − ε for x = 1, 2, and p(1, 2) = p(2, 1) = 1. This algorithm
proposes to move with probability ε, and always accepts the proposed move. Again, for
every ε, 0 < ε ≤ 1, this algorithm satisfies the hypotheses of the almost-sure-convergence
theorem. The sample paths of this algorithm will have identical observations for chunks
whose length is governed by a geometric distribution with parameter ε and expectation 1/ε,
followed by another such chunk of the other parameter value of length governed by the
same distribution. For small ε > 0, the chain mixes arbitrarily poorly, and would require
arbitrarily large samples for almost sure convergence to set in. However, at ε = 1/2, the
sample path is that of independent observations. Of course at ε = 0, the chain is reducible,
and violates the assumptions of the almost-sure-convergence result.

This example illustrates an important point, namely that trouble, in the sense of poor
mixing and large required sample sizes, can result from being too close to the bound-
ary of algorithms that satisfy the required conditions for convergence. Another example is
proximity to violations of the assumption that the posterior distribution is proper, that
is, that it integrates to 1. When the posterior is not proper, the chain resulting from the
Metropolis-Hastings algorithm can be run, but the consequence will be at best recurrence
that is expected to be infinitely far off in the future (see Bremaud (1999, Theorem 2.3,
p. 103)). Such a posterior distribution can be the result of the use of an improper prior
distribution used to express ignorance (see discussion in section 1.1.2 about why I think
this is misguided as a matter of principle). I have seen such improper posterior distribu-
tions come up in practice, in particular in the imposition of improper “ignorance” priors on
variances high in a hierarchical model. Some of the default priors in the popular Winbugs
program (Spiegelhalter et al. (2003)) are proper but only barely so. These also present the
danger that if the likelihood is not sufficiently informative, the posterior density may be
so spread out as to be effectively improper. The paper of Natarajan and McCulloch (1998)
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gives a detailed study of diffuse proper prior distributions in the setting of a normal probit
hierarchical model, and shows the damage that can result.

How should blocks be chosen? When the model structure is hierarchical, often it is useful
to consider the parameters at a given level of the hierarchy (or a subset of them) as a block.
This permits use of the conditional independence conditions frequently found in such models.
Another important consideration is that parameters that are highly correlated (positively or
negatively) should be considered together. To take an unrealistic extreme example, suppose
a model includes two parameters γ and β (together with possibly other parameters as well).
Suppose that the posterior distribution requires that γ = β (realistically in this case, one
of the two would be substituted for the other so there would be one fewer parameter in the
model). If γ and β were in different blocks, the constraint would not permit either to be
moved, leading to no mixing at all. Now suppose instead that γ and β are highly correlated.
Then only very small moves in either would be permitted, leading to very slow mixing.

The second design issue is the choice of a proposal distribution q for a block. If the
Gibbs Sampler is available, which requires that the required conditional distributions can
be found analytically, that is an obvious choice. When the Gibbs Sampler is not available,
a key indicator for q is the average acceptance probability α. If α is low, this suggests that
q is proposing steps that are too big. Conversely, if α is high, then this suggests that q’s
proposed steps are too small, leading to poor mixing. How should “too high” and “too low”
be judged? Some work by Roberts et al. (1997) suggests that α in the range of .25 to .5 is
good for a random walk chain, and this seems to be good advice more generally. Another
consideration is that it is wise to have a proposal distribution that has heavier tails than
the posterior distribution being approximated. There are reasons other than ensuring good
approximation to the posterior why this is good advice, a matter we’ll return to later.

It is not possible to know in advance what the average acceptance rate α will be. Con-
sequently common practice is to run a chain with an initial choice of q, examine the results
to see which blocks are not mixing well, and then adjust those proposal distributions ac-
cordingly. There are proposals to automate this process, leading to adaptive Markov Chain
Monte Carlo (MCMC). However, if the proposal distribution depends on the past draws of
the chain, the chain may no longer be Markovian. How to design adaptive chains with good
properties is a subject of current research.

There has been some debate about whether to start a chain with different starting
values (to see if they converge to the same area of the parameter space) (see Gelman and
Rubin (1992)) or to run one longer chain (see Geyer (1992) and Tierney (1992)), on the
argument that once two separate chains reach the same value, their distributions from then
on are identical. Both of these arguments have some force; the choice seems more pressing
if computational resources are scarce given the complexity of the model and algorithm.

Often there is a desire to check the sensitivity of the model to various aspects of it. If
the motivation for this is personal uncertainty on the part of the person doing the analysis,
this can suggest that the model does not yet fully reflect the uncertainty of that person.
On the other hand, sensitivity analysis can also be used as a way to communicate to others
that variations of a certain size in some aspect of the model may or may not change the
posterior conclusions in important ways. The output of a Markov Chain Monte Carlo may
be used for such a sensitivity analysis by reweighting the output. Thus if π(x) is the posterior
distribution the MCMC was run with, and π∗(x) is the newly desired posterior, the trivial
calculation ∫

f(x)π∗(x)dx =

∫
f(x)π(x)

(
π∗(x)

π(x)

)
dx (10.111)

suggests that reweighting the output with weights (π∗(x)/π(x)) will yield the needed ap-
proximation. (This amounts to importance sampling applied to MCMC output.) It requires
that π(x) not be zero (or very small, relative to π∗(x)). The availability of this technique
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suggests that a prior distribution might be chosen to mix easily in the whole parameter
space. Then the prior representing the honest belief of the analyst could be a factor in the
π∗(x) used in reweighting.

The reweighting idea can be used in the unfortunate situation of two rather disparate
high density areas. Suppose for example that the posterior distribution is a weighted average
of two densities, say one is N(−10, 1) and the other N(10, 1), where the weight on each is
unknown. A chain might take a long time to move from one area of high posterior to the
other, so information about the relative weights would be slow in coming. By using a prior
that upweights (artificially) the interval (−9, 9), the chain can easily move back and forth,
giving information about how much weight belongs in each component. Reweighting will
then downweight the (−9, 9) interval appropriately. Reweighting is known in the literature
as “Sampling Importance Resampling,” or SIR (Rubin (1988)).

There are many techniques that have been proposed for checking how much of the sample
output from an MCMC should be disregarded as “burn-in,” and whether equilibrium has
been achieved. Of course none of these methods is definitive, but each is useful. The package
BOA (Bayesian Output Analysis) (Smith (2005)) is standardly used for such checking.

Algorithms, called perfect sampling, have been developed in some special cases that
sample from the posterior distribution directly, without relying on asymptotics (Propp and
Wilson (1996)). It remains to be seen whether these methods can be developed into a
practical tool.

10.5.1 Summary

This section gives practical hints for dealing with burn-in, convergence and reweighting.

10.5.2 Exercises

1. State in your own words the meaning of

(a) mixing of a Markov Chain

(b) burn-in

(c) equilibrium

(d) adaptive algorithms

(e) importance sampling reweighting of chains

2. Reconsider the algorithm you wrote to answer question 2(i) in algorithm on a computer.
How much burn-in do you allow for, and why? How do you decide whether the output
of your algorithm has converged?

10.6 Variable dimensions: Reversible jumps

As discussed so far, the Metropolis-Hastings algorithm is constrained to moves of the same
dimension; typically S is a subset of Rd for some d. However, this can be overly constraining.
For example, when there is uncertainty about how many independent variables to include
in a regression (see section 9.4), it is natural to want a chain that explores regressions with
several such choices.

Fortunately an extension of the Metropolis-Hastings algorithm provides a solution. For
this purpose, suppose the parameter space is augmented with a variable indicating its
dimension. Thus let x = (m, θm) where θm is a parameter of dimension m. It is proposed
to move to the value y = (n, θn). The question is how to make such a move consonant with
the Metropolis-Hastings algorithm.

One idea that doesn’t work is to update θm to θn directly, since θm has an interpretation
only under the model indexed by m. Thus all of x has to be updated to y in a single move.
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If m < n, the idea of a reversible jump is to simulate n−m random variables u from some
density g(u), and to consider the proposed move from (m, θm, u) to (n, θn). To implement
this, a one-to-one (i.e., invertible) differentiable function T maps (m, θm, u) to (n, θn). This
move has acceptance probability

α(x,y) = min

{
1,

π(x)

π(y)p(u)
· J
}

(10.112)

where J is the absolute value of the determinant of the Jacobian matrix of the transfor-
mation T . The Jacobian is the local ratio between the densities of π(x) and π(y), which
is why it appears. Moving from y to x is the same in reverse. Thus what the reversible
jump technique does is (artificially) make the dimensions of the two spaces equal, and is
therefore a special case (or extension, depending on how you want to think about it) of the
Metropolis-Hastings algorithm.

A special warning is needed about the ratio π(x)/π(y). While constant multipliers need
not be accounted for explicitly, those that depend on the dimension of the space cannot be
ignored. (This is comparable to the issue of which constants can and cannot be ignored in
deriving conjugate distributions, for which see Chapter 8.)

10.6.1 Summary

This section introduces the important reversible jump algorithm.

10.6.2 Exercises

1. State in your own words the meaning of

(a) reversible jump algorithm

(b) variable dimensions in the parameter space

2. Give some examples of when variable dimensions would be important.

3. Explain why the Jacobian appears in the reversible jump algorithm.



Chapter 11

Multiparty Problems

Shlomo the fool was known far and wide for his strange behavior: offered a choice between two
coins, he would always choose the less valuable one. People who did not believe this would seek
him out and offer him two coins, and he always chose the less valuable.

One day his best friend said to him: “Shlomo, I know you can tell which coin is more valuable,
because you always choose the other one. Why do you do this?” “I think,” said Shlomo, “that
if I chose the more valuable coin, people would stop offering me coins.”

11.1 More than one decision maker

The decision theory presented so far in this book, particularly in Chapter 7, is limited
to a single person, who maximizes his or her expected utility. The distribution used to
compute the expectation reflects that person’s beliefs at the time of the decision, and the
utility function reflects the desires and values of that person. Thus the decision theory of
Chapter 7 focuses on an individual decision maker.

It must be acknowledged, however, that many important decisions involve many deci-
sion makers. This chapter explores various facets of multi-party decision making, viewed
Bayesianly. To give structure to such problems, specifications must be made about how the
various parties relate to the decision process. There are two leading cases: (a) sequential
decision-making, in which first one party makes a decision, and then another, and (b) si-
multaneous decision-making, in which the parties make decisions without knowledge of the
others’ decisions. Simultaneous decision-making is often called game theory, although many
classic games, such as chess, bridge, backgammon and poker, involve sequential decision-
making, not simultaneous decision-making.

There isn’t a satisfactory over-all theory of optimal decision-making involving many
parties. If there were, the social sciences, particularly economics and political science, would
be much simpler and better developed than they are. As a result, this chapter should be
regarded as exploratory, discussing interesting special cases.

11.2 A simple three-stage game

The case of sequential decision-making is ostensibly less complicated, since the decision
maker knows what his or her predecessor has decided. For this reason, we begin with such
a case. There are several important themes that emerge from this simple example. One is
the usefulness of doing the analysis backward in time. A second is that, even in a case in
which everything is known to both parties, there is uncertainty about the action that will
be taken by the other party.

This is a game between two parties. They take turns moving an object on the line. Jane
moves the object at the first and third stage, and Dick moves the object in the second stage.

379
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Jane’s target for the final location of the object is x, while Dick’s is y. Each is penalized by
an amount proportional to the squared distance of the final location from the target, plus
the square of the distance the player moves the object.

To establish notation, suppose the object starts at s0. At the first stage, Jane moves
the object a distance u (positive or negative). The result of this move is that after the first
stage, the object is in location s1 = s0 + u. At the second stage, Dick moves the object by
distance v, so that, after the second stage, the object is in location s2 = s1 + v. Finally, at
the third stage, Jane moves the object distance w, and after the third stage the object is in
location s3 = s2 + w.

Figure 11.1 displays the structure of the moves in the game.

y s s s s x2 0 1 3

u

w

v

Figure 11.1: Moves in the three-stage sequential game.

Now we suppose that players are charged for playing this game, by the following amounts:
for Jane, her charge is

LJ = q(s3 − x)2 + u2 + w2 = q(s0 + u+ v + w − x)2 + u2 + w2 (11.1)

and for Dick,
LD = r(s3 − y)2 + v2 = r(s0 + u+ v + w − y)2 + v2, (11.2)

where q and r are positive. Thus each player is charged quadratically for the distance he
chooses to move the object, and proportionately to the squared distance of the object’s final
location (s3) to that player’s target. How might the players play such a game?

It turns out that the principles of this game are better appreciated with a more general
loss structure. Thus we can imagine loss functions LJ(u, v, w) and LD(u, v, w) for Jane and
Dick, respectively.

So far, nothing has been specified about the knowledge and beliefs of the players,
nor about their willingness and ability to respond to the incentives given them in equa-
tions (11.1) and (11.2). Each such specification represents a special case of the game, of
greater or lesser plausibility in a particular applied setting. (Yes, of course, the whole set-
ting is quite contrived, and it is hard to imagine an applied setting for it; however, its very
simplicity allows us to discuss some important principles.)

For this section, suppose that x, y, q, r and s0 are known (with certainty) to both players.
In section 11.3, we consider a more general scenario in which Jane’s target, x, is not known
with certainty by Dick, and similarly Dick’s target, y, is not known with certainty by Jane.
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It is important to keep track of what is known to a given player at a particular stage.
For example, s2 is known to Jane at stage 3, but is not known to Dick at the beginning
of stage 2 before Dick decides on v, because s2 involves v, Dick’s move at stage 2. For this
reason it is convenient to consider the moves backwards in time. Therefore, let’s consider
first the problem faced by Jane at stage 3. We suppose that she knows at this stage the
current location of the object, s2 = s0 + u + v, because the choices u and v have already
been made.

Suppose Jane wishes to choose w to minimize LJ(u, v, w), and suppose this minimum
occurs at w∗(s2). If LJ motivates Jane, and if she can calculate w∗ and execute it, then this
is what Jane should do. When LJ takes the form (11.1), the resulting w∗(s2) satisfies

w∗(s2) = q(x− s2)/(q + 1). (11.3)

Now let’s consider Dick’s problem in choosing v. In order to choose wisely, Dick must
predict Jane’s behavior. In doing so, Dick may rationally hold whatever belief he may have
about Jane’s choice of w. Specifically, he is not obligated to believe, with probability 1, that
Jane will choose w∗. Dick is also not excluded, by Bayesian principles, from believing that
Jane is likely to, or sure to, behave in accordance with w∗. Hence the assumption that w∗

characterizes Jane’s behavior at stage 3 is a special case among many possibilities for Dick’s
beliefs. Dick does well in this game not by casually adopting an idealized version of Jane,
but rather by accurately forecasting the behavior of Jane at stage 3.

With all of that as background, how should Dick choose v? At this point in the game,
Dick knows s1, the location of the object after stage 1. Hence, if LD motivates Dick, the
optimal choice minimizes, over choices of v,∫

LD(u, v, w)PD(w | u, do(v))dw, (11.4)

where PD is Dick’s probability density for Jane’s choice w, given Jane chooses u, and Dick
chooses v.

In the special case in which Dick is sure that Jane will choose w∗, (11.3) specializes to

LD(u, v, w) = LD(u, v, w∗(s2)) = LD(u, v, w∗(s1 + v)). (11.5)

Again, if Dick is motivated by LD, and can calculate the optimal v, namely v∗, and execute
it, then this is what Dick should do. If Dick is sure that Jane will choose according to (11.3),
and if LD takes the form (11.2), then the resulting optimal v takes the form

v∗(s1) = (1− k)(m− s1) (11.6)

where k = (q + 1)2/[r + (q + 1)2] and m = (q + 1)y − qx.
Finally, we consider Jane’s first stage move. Jane will minimize over choice of u,∫

LJ(u, v(s0 + u), w(s0 + u+ v))PJ(v | do(u))dv, (11.7)

where PJ(v | do(u)) is Jane’s probability density for Dick’s choice of v at the second stage,
if Jane chooses u at this stage. Again, we can consider the special case in which Jane is
sure that Dick will play according to v∗. In this case, (11.7) simplifies to the choice of u to
minimize

LJ(u, v∗(s0 + u), w(s0 + u+ v∗)). (11.8)

In the special case that LJ takes the form of (11.1) the optimal u, u∗ takes the form

u∗ = qk(x− (1− k)m− ks0)/(qk2 + q + 1). (11.9)
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Thus w∗, v∗ and u∗ are the optimal moves, under the assumptions made, for the players.
In a non-cooperative game, such as this one, players are assumed to be motivated only by

their own respective loss functions LJ and LD. Specifically, they are assumed not to have
available to them the possibility of making enforceable agreements (contracts) between
them. Such a contract, if available, would have the effect of changing the player’s losses by
including a term for penalties if the contract were violated.

Might such a contract be desirable to the parties if it were available? There are at least
two situations in which such contracts would be desirable: consider situation 1, in which
y < s0 < x. If there are values of r and q for which u∗ > x − s0, then Jane is paying to
move the object beyond x (her target), to her apparent detriment and the detriment of
Dick. Figure 11.2 displays this situation:

y xs

*u

0

Figure 11.2: Situation 1. Jane’s first move, u∗, moves the object further than x, imposing
costs on both herself and Dick.

A contract in this case might specify that Jane agrees to restrict the choices of u available
at stage 1 to u ≤ x− s0 in return for suitable compensation from Dick. The contract would
be enforceable if there is an outside party able to fine violations of the contract sufficiently
heavily to deter violations. More generally, they might choose to minimize LJ + LD, with
such side-payments as might be needed to make this acceptable to both.

Another case in which an enforceable contract between the players would be desirable
is situation 2, in which s0 < x < y, and u∗ < 0. This situation is displayed in Figure 11.3.

*u

x ys
0

Figure 11.3: Situation 2. Jane’s first move, u∗, moves the object further away from both x
and y, to both players’ detriment.

Specifically, we pose two questions:

(i) If y < s0 < x, are there values of r and q under which the optimal u∗ > x− s0?

(ii) If s0 < x < y, are there values of r and q under which the optimal u∗ < 0?

To address these questions, revert to loss functions LJ and LD as specifed in (11.1) and
(11.2), and re-express (11.9) in a more convenient form:
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Let C = qk/(qk2 + q + 1). Then

u∗ =C(x− (1− k)m− ks0)

=C(x− (1− k)[(q + 1)y − qx]− ks0)

=C(k(x− s0) + (1− k)(q + 1)(x− y)). (11.10)

In addressing question (i), I use the notation “iff” to mean “if and only if.” Then

u∗ > x− s0

iff C(k(x− s0) + (1− k)(q + 1)(x− y)) > x− s0

iff C(1− k)(q + 1)(x− y) > (1− Ck)(x− s0)

iff
C(1− k)(q + 1)

1− Ck
>
x− s0

x− y
. (11.11)

Now

C(1− k)(q + 1)

1− Ck
=

(
qk

qk2 + q + 1

)
(1− k)(q + 1)

1− qk2

qk2+q+1

=
(qk)(1− k)(q + 1)

(q + 1)

=qk(1− k). (11.12)

Therefore, in answer to question (i), if y < s0 < x, u∗ > x−s0 if and only if x−s0x−y > qk(1−k).

Similarly, to address question (ii),

u∗ > 0

iff k(x− s0) + (1− k)(q + 1)(x− y) > 0

iff k(x− s0) > (1− k)(q + 1)(y − x)

iff
x− s0

y − x
>

(1− k)(q + 1)

k
. (11.13)

But

1− k
k

=

1− (q + 1)2

/
[r + (q + 1)2]

(q + 1)2

/
[r + (q + 1)2]

=
r

(q + 1)2
. (11.14)

Hence
(1− k)(q + 1)

k
=
r(q + 1)

(q + 1)2
= r/(q + 1). (11.15)

Therefore, we find, in answer to question (ii), that if s0 < x < y, then u∗ < 0 if and only
if x−s0

y−x < r
1+q . Hence in these circumstances it would be in the interests of both parties to

make an enforceable contract. The solutions u∗, v∗ and w∗ are inherently non-cooperative.
Now we examine what would happen if Jane’s penalty for missing her target, x, is much

higher than her cost of moving the object. This can be expressed mathematically by letting
q →∞. Applying this limit to (11.3), we find

lim
q→∞

w∗(q) = x− s2,

which yields the unsurprising insight that no matter where the object is after stage 2, s2,
Jane will move it by the amount x − s2 so that it finally gets to x, and she avoids an
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arbitrarily large penalty. Next we look at (11.6). As q → ∞, k → 1 so v∗ → 0. This
means that Dick makes no move in this limiting case. Finally, examining (11.9) we find

u∗ → (x− s0)/2. Hence s2 = s0 + u = s0 + (x−s0)
2 , so

w∗ = x− s2 = x−
(
s0 +

(
(x− s0)

2

))
=
x

2
− s0

2
.

Thus Jane has a simple strategy: her first move, u∗, moves the object half of the distance
from s0 to x; her second move, w∗, moves it the rest of the way. This strategy has cost

2(x−s02 )2 = (x−s0)2

2 , half the cost of making the move from s0 to x in a single leap, which
would cost (x− s0)2.

What would Dick think if Jane chose u = x − s0 as her first move? This is obviously
suboptimal (Dick knows (11.9), and all of the constants in (11.9)). Why would Jane make
such a move? Possibly by being aggressive and making an initially costly move, Jane is
signaling that she is irrational. If Dick moves the object, perhaps Jane will move it back
to her target x. If Dick believes this, his best strategy is not to move. Perhaps Jane wants
to establish with Dick (or with an audience) her willingness to accept seemingly irrational
costs to establish her dominance.

Reputations are part of our everyday life. People, corporations and governments go
to extraordinary lengths to establish and maintain reputations. Brand management and
advertising can be understood in terms of reputation. In the context of the three-stage game
here, perhaps Jane is trying to establish a reputation for irrationality, which can sometimes
be useful (see Schelling (1960), p. 17). One can model the phenomenon of reputation as
embedding the initial game in a larger one, perhaps by repetition. Shlomo the fool has
embedded his choice of coins in a larger game in which his reputation for choosing the less
valuable coin has utility to him in bringing him a steady flow of coins.

This line of thinking suggests that, when we are confronted with behavior that appears
not to coincide with notions of rationality we have imposed on it, perhaps the reason for
the behavior is that we do not understand the situation in the same way that the players
do. If we ignore this possibility, we may find ourselves in the position of those who offer
Shlomo his choice of coins.

With those comments as background, I now address the issue of the extent to which
the behavior described in (11.3), (11.6) and (11.9) comports with the personal or subjective
Bayesian philosophy. With respect to Jane’s last move, if LJ given in (11.1) represents her
losses, then w∗ and only w∗ is the optimal move. The situation is more complicated for Dick
at stage 2. In the derivation of v∗, we assumed not only that LD in (11.2) represents Dick’s
losses at stage 2, but also that Dick is certain that Jane will use w∗ at stage 3. Is there some
law of nature requiring Dick to have such a belief about Jane? I would argue that the answer
to this question is “no.” Indeed, I would argue that Dick is entitled to whatever belief he
may have concerning Jane’s choice at stage 3. Surely it is interesting and useful to Dick to
know that w∗ minimizes (11.1), but this knowledge does not, in my view, render Dick a
sure loser if he does not put full credence into w∗. What serves Dick best is as accurate a
descriptive theory of Jane’s likely behavior at stage 3 as Dick can devise, which is a matter
of opinion for him. Assuming that (11.2) represents Dick’s losses, Bayesian principles would
argue that the best strategy is to minimize the expectation of (11.2), where the random
variable with respect to which the expectation is taken reflects Dick’s uncertainty about
Jane’s choice of w. Thus the assumption that Jane will choose in accordance with w∗ is a
special case of the possible beliefs of Dick. And it is that special case of belief that supports
the choice of v∗.

Finally, we examine Jane’s choice of u at stage 1. The derivation of u∗ assumed not
only the relevance of the loss function (11.1), but also that w∗ and v∗, given respectively
by (11.3) and (11.6), are accurate predictors of behavior. With respect to w∗, Jane is in



A SIMPLE THREE-STAGE GAME 385

a knowledgeable position to predict her own future behavior. There may be some circum-
stances under which it is useful to model Jane as being uncertain about her own future
behavior, essentially treating the future Jane as a new Janelle. But for the moment let us
leave this consideration aside, and concentrate on the assumptions embedded in Jane’s use
of v∗ as a prediction of Dick’s choice of v. Here Jane is led to consider what she believes
about Dick’s beliefs about how Jane will choose w at stage 3, as well as the question about
how Dick will choose v even if he is sure that Jane will choose w∗. Again the principles of
subjective Bayesianism permit Jane a wide range of beliefs about Dick’s choice of v. Given
whatever that belief may be, Bayesian considerations then recommend minimizing expected
loss LJ , with respect to the uncertainty about v reflected in the beliefs of Jane, as given in
(11.7).

11.2.1 Summary

This is an example in which all the parameters are known with certainty, and yet uncertainty
remains about the strategy of the other player. Consequently it is coherent for the players to
depart from the strategies given by v∗ and u∗. Jane will optimally depart from her strategy
w∗ only if LJ in (11.3) does not appropriately reflect all of her losses or gains.

11.2.2 References and notes

The reasoning used in section 11.2 is called backward induction, because time is considered
in the reverse direction, from the latest decision, to the next latest, etc. Backward induction
is often used in problems of this kind.

The game considered here is from DeGroot and Kadane (1983), and has precursors in
Cyert and DeGroot (1970, 1977).

A related sequence of papers examines the (somewhat) practical situation of the use
of the peremptory challenges in the selection of jurors in US law. See Roth et al. (1977),
DeGroot and Kadane (1980), DeGroot (1987) and Kadane et al. (1999).

11.2.3 Exercises

1. Explain backward induction.

2. Try to find optimal strategies by considering first Jane’s first move, then Dick’s move, and
finally Jane’s second move, the third move in the game. Is this simpler or more difficult?
Why? You may assume that the loss functions LJ and LD represent the players’ losses,
that they are both optimizers, and that Jane knows that Dick knows this.

3. Suppose x = 1, y = −1, s0 = 0, r = 2 and q = 3. Find the optimal strategies, again
under the assumptions specified in problem 2.

4. Investigate the behavior of u∗, v∗ and w∗ as r →∞.

5. Prove (11.3).

6. Prove (11.6).

7. Prove (11.9).

8. Choose what you consider to be a reasonable choice for PD(w | u, do(v)) other than the
choice of w∗ with probability 1, and minimize (11.4) with respect to your choice.

9. Construct a contract that is better for both parties than they can do for themselves by
playing the game. Make whatever assumptions you need, for example losses (11.1) and
(11.2), and special values of q and r. Is a side-payment necessary to make your proposed
contract better for both? If so, what size of side-payment is needed, and which player
pays it to the other?
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11.3 Private information

A scorpion asks a frog to take him across the Jordan River. “That would be a
foolish thing for me to do,” says the frog. “We’d get out to the middle, and you would
probably sting me and I would die.”

“That would be foolish of me,” responds the scorpion, “since I would drown and
die if I did sting you.”

“You have a good point,” says the frog. “OK, climb aboard.”
So the scorpion gets on the frog’s back, and the frog starts to swim across the

river. When they get to the middle of the river, the scorpion stings the frog. As
paralysis starts to set in, the frog says “Why did you do that?” As the scorpion is
about to sink beneath the water, he says, “Well, that’s life for you.”

We now suppose that each player knows his own target, but is uncertain about the other
player’s target. Thus Jane knows x, but not y, and Dick knows y, but not x. Both players
are assumed to know q, r and s0, as they did in section 11.2. The important point here is
that each player may learn about the other’s target by observing the moves of the other
player.

Private information, that is, information that one person has and another does not, is
ubiquitous in our society. The enormous resources devoted to education, the media, scientific
publication, libraries of all sorts, etc. are all evidence of how important the distinction is
between private and public information. There are governmental, commerical and personal
secrets as well.

Again, we proceed by backwards induction. At stage 3, Jane knows her own target x,
the location of the object s2, and her value of q. Her uncertainty about the value of Dick’s
target, y, is irrelevant to her choice. Hence she continues to minimize LJ , and chooses
w∗(s2). In the special case of loss LJ satisfying (11.1) her choice is (11.3) as before.

Next, we examine Dick’s choice of v. Here Dick’s uncertainty about Jane’s target, x,
matters to him. In general, he minimizes∫

LD(u, v, w)PD(w, x | u, do(v))dw dx (11.16)

where PD(w, x | u, do(v)) is Dick’s joint uncertainty about what Jane will do at stage 3, w,
and about her target, x, given Jane’s first move u and Dick’s decision v. The special case
in which Dick is sure that Jane will use w∗ simplifies (11.16) to be∫

LD(u, v, w∗)PD(x | u, do(v))dx. (11.17)

However, even this assumption does not help all that much, because w∗ is a function of the
(unknown to Dick) target x for Jane, even when (11.1) is taken as Jane’s loss, as is shown
by (11.3). Suppose, then, that (11.1) is Jane’s loss and Dick knows this, and is certain that
she will implement w∗ in (11.3) at stage 3. Also suppose Dick’s loss is (11.2). Then

v∗ = (1− k)[M(u)− s1] (11.18)

where M(u) = ED(m|u) = ED[(q + 1)y − qx|u] = (q + 1)y − qED(x|u).
Dick at stage 2 has a cognitively difficult task, to evaluate M(u), or, equivalently,

ED(x|u), his expectation of Jane’s target, after seeing her first move u. As in the mate-
rial studied in Chapters 1 to 10 of this book, there is nothing inherent in the structure
of the problem requiring a decision-maker to have a particular likelihood function or prior
distribution. So too, here, there is nothing in the structure of the problem requiring Dick to
have a particular value of ED(x | u), We can proceed, however, by imagining him to have
some specific choice of ED(x | u).
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Recall that in the situation of section 11.2, with x and y known to both parties, Jane’s
choice, u∗, is given by (11.9) [under the assumptions made about how Dick will act at
stage 2, which in turn makes an assumption about how Jane will act at stage 3]. The
advantage of (11.9) is that it gives an explicit relationship between x and u∗, as follows:

u∗ = qk(x− (1− k)m− ks0)/(qk2 + q + 1).

Let f = (qk2 + q + 1)/qk. Then

fu∗ =x− (1− k)m− ks0

=x− (1− k)[(q + 1)y − qx]− ks0

=x[1 + q(1− k)]− (1− k)(q + 1)y − ks0.

Solving for x yields

x = (fu∗ + (1− k)(q + 1)y + ks0)/(1 + q(1− k)). (11.19)

This relationship might be used by Dick to choose

E2(x | u) = (fu+ (1− k)(q + 1)y + ks0)/(1 + q(1− k)). (11.20)

Dick can implement this choice, as he knows u, y and s0, even though he knows that Jane
cannot implement (11.9) since she does not know y.

We now move back in time again, and consider Jane’s choice of u at stage 1. Since under
the scenario of this section, Jane is uncertain about Dick’s goal y, (11.7) must be modified
to reflect this uncertainty. Thus Jane chooses u to minimize.∫ ∫

LJ(u, v(s0 + w)), w(s0 + u+ v))PJ(y, v | do(u))dvdy, (11.21)

where PJ(y, v | do(u)) reflects Jane’s uncertainty both about Dick’s goal, y, and his action,
v, at stage 2.

This minimization is sufficiently complicated that I move immediately to the assump-
tions that losses are given by (11.1) and (11.2), that (11.3) is Jane’s choice at stage 3, and
that (11.18) is Dick’s choice at stage 2 implemented by (11.20), and that Jane knows this.

We have, from (11.18),

v = (1− k)[M(u)− s1] = (1− k)[M(u)− s0 − u]. (11.22)

Then

x− s0 − u− v =x− s0 − u− (1− k)[M(u)− s0 − u]

=x− ks0 − ku− (1− k)M(u)

=K(u), (11.23)

where K(u) = x− k(s0 + u)− (1− k)M(u).

Now using (11.3) and (11.23),

w =(q/(q + 1))(x− s2) = (q/(q + 1))(x− s0 − u− v)

=(q/(q + 1))K(u). (11.24)
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Now

LJ =q(s0 + u+ v + w − x)2 + u2 + w2

=q(−K(u) + (q/(q + 1))K(u))2 + u2 + (q/(q + 1))2K2(u)

=qK2(u)(1− q/(q + 1))2 + u2 + (q2/(q + 1)2)K2(u)

=u2 +K2(u)

[
q

(q + 1)2
+

q2

(q + 1)2

]
=u2 +K2(u)(q/(q + 1)). (11.25)

Then Jane’s expected loss is E1LJ , and, differentiating under the integral sign, the optimal
u∗ satisfies the implicit equation

0 =
∂E1LJ
∂u

= 2u+ (q/(q + 1))
d

du
E1[K2(u)]. (11.26)

With the choice of (11.20) a value for M(u) follows:

M(u) =(q + 1)y − qE2(x | u)

=(q + 1)y − q[fu+ (1− k)(q + 1)y + ks0]/(1 + q(1− k))

=(q + 1)y[1− q(1− k)/(1 + q(1− k))]

− (qfu+ qks0)/(1 + q(1− k))

=(q + 1)y/(1 + q(1− k))− (qfu+ qks0)/(1 + q(1− k))

=[(q + 1)y − qfu− qks0]/(1 + q(1− k)). (11.27)

Substituting (11.27) into (11.18) yields a value for v∗, as follows:

M(u)− s1 = [(q + 1)y − qfu− qks0]/[1 + q(1− k)]− s0 − u

=
1

1 + q(1− k)
[(q + 1)y − qfu− qks0 − (1 + q(1− k))(s0 + u)]

=
1

1 + q(1− k)
{(q + 1)y − u[qf + 1 + q(1− k)]

−s0[qk + (1 + q(1− k))]} . (11.28)

Now
qk + 1 + q(1− k) = qk + 1 + q − qk = 1 + q. (11.29)

Substituting for f ,

qf + 1 + q(1− k) =(qk2 + q + 1)/k + 1 + q(1− k)

=
1

k

{
qk2 + q + 1 + k + kq − qk2

}
=

1

k
{(q + 1) + k(q + 1)}

=
1

k
(q + 1)(k + 1). (11.30)

Hence

M(u)− s1 =

(
q + 1

1 + q(1− k)

)
{y − s0 − [(k + 1)/k]u}. (11.31)

Then

v∗ =(1− k)[M(u)− s1]

=

[
(1− k)(q + 1)

1 + q(1− k)

]
{y − s0 − [(k + 1)/k]u}. (11.32)
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How might Jane think about d
duE1[K2(u)], where

K(u) =x− k(s0 + u)− (1− k)M(u)

=x− k(s0 + u)− (1− k)[(q + 1)y − qE2(x | u)]

=x− ks0 − ku− (1− k)(q + 1)y + (1− k)qE2(x | u)?

Jane knows k, q, x and s0. Additionally u is her decision variable. The quantities uncertain to
Jane are y, Dick’s target, and ED(x | u), Dick’s expectation of x, Jane’s target, after seeing
u. Because of the (convenient) squared-error nature of LJ , Jane needs to specify, in principle,
five quantities, EJ(y), EJ(y2), EJED(x | u), EJ{ED(x | u)}2 and EJ{yED(x | u)}. The first
two reflect simply Jane’s uncertainty about Dick’s target. The last three terms are more
interesting, as they are moments of Jane’s beliefs about what Dick may conclude about
Jane’s target x, after seeing her first move, u. [It is typical of n-stage games that they
require elicitations n− 1 steps back. Here n = 3, so we have 2-step elicitations, what Jane
thinks Dick will conclude after seeing his first move u. As n increases, these elicitations
become dizzyingly difficult to think about.]

One way to make a tractable special case is to suppose that Jane will believe that Dick
will use (11.20) as a guide to E2(x | u). While this helps with Jane’s elicitations, it does
not resolve everything, as (11.20) involves y, which Jane does not know. However, it does
permit simplification, as follows:

K(u)− x =[(1− k)(q + 1)y + ks0]

[
(1− k)q

1 + q(1− k)
− 1

]
+u

[
(1− k)gf

1 + q(1− k)
− k
]
. (11.33)

Now
(1− k)q

1 + q(1− k)
− 1 =

(1− k)q − 1− q(1− k)

1 + q(1− k)
=

−1

1 + q(1− k)
.

Also

(1− k)qf

1 + q(1− k)
− k =

(1− k)qf − k − kq(1− k)

1 + q(1− k)

=
(1− k)q(f − k)− k

1 + q(1− k)
.

Recalling f = (qk2 + q + 1)/qk,

f − k =
qk2 + q + 1

qk
− k =

qk2 + q + 1− qk2

qk
=
q + 1

qk
.

Then
(1− k)qf

1 + q(1− k)
− k =

(1− k)( q+1
k )

1 + q(1− k)
− k =

(1− k)(q + 1)− k2

k[1 + q(1− k)]
.

Summarizing,

K(u)− x = u

[
(1− k)(q + 1)− k2

k[1 + q(1− k)]

]
− 1

1 + q(1− k)
[(1− k)(q + 1)y + ks0]. (11.34)

For the next calculation, we may rewrite the result as follows:

K(u) = x+ au+ by + cs0 (11.35)
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where a = (1−k)(q+1)−k2
k[1+q(1−k)] , b = − (1−k)(q+1)

1+q(1−k) and c = −k
1+q(1−k) . Both x and s0 are known to

Jane, y is uncertain and u is to be decided. For this reason, we may treat x+ cs0 = d as a
single known unit. Thus

K(u) = d+ au+ by,

so
K2(u) = d2 + a2u2 + b2y2 + adu+ bdy + abuy

and
EJK

2(u) = d2 + a2u2 + b2EJ(y2) + adu+ bdEJ(y) + abuEJ(y). (11.36)

Therefore
d

du
EJK

2(u) = 2a2u+ ad+ abEJ(y). (11.37)

Hence the only additional elicitation that must be done is EJ(y), which is Jane’s expectation
of Dick’s target y, at stage 1. A not unreasonable choice for EJ(y) is x, Jane’s target.

Substituting this result into (11.26) yields

0 =2u+ (q/q + 1)[2a2u+ ad+ abx]

=2(q + 1)u+ q[2a2u+ ad+ abx]

=2u[(q + 1) + qa2] + qa[d+ bx]

or u∗ =
−qa[d+ bx]

2[q + 1 + qa2]
. (11.38)

The point of this example is to illustrate the kind of reasoning required to implement
the optimal strategies found in this very special game. As noted above, as n, the number
of stages, grows, the elicitations become increasingly difficult to contemplate. Nonetheless,
I believe there is value in having a method that poses the relevant questions, even if they
are difficult.

11.3.1 Other views

The issue of what constraints Bayesian rationality implies in situations involving more than
one decision maker has been a subject of discussion and debate for some time. Some of
the contributors to this literature include Luce and Raiffa (1957), Nash (1951), Bernheim
(1984) and Pearce (1984).

An important contribution is that of Aumann (1987). He proposes a model in which
each player i has a probability measure pi on S, the set of all possible states, ω, of the
world. He emphasizes the generality he intends for the set S as follows:

The term ‘state of the world’ implies a definite specification for all parameters
that may be the object of uncertainty on the part of any player... In particular, each
ω includes a specification of which action is chosen by each player at that state ω.
(p. 6)

Applied to the game under discussion, Aumann’s assumption would require each player
to have a probability distribution on an Ω that would include a specification of {x, y,M(u),
K(u), u, v, and w}. This strikes me as peculiar, because it requires each player to have a
probability distribution with respect to his own behavior. Distinguishing decision variables,
under the current control of the agent, from quantities uncertain to the agent at the time
of the decision, seems essential to me to an understanding of optimal decision-making.
Furthermore, to bet with someone about that person’s current actions seems to me to be
a recipe for immediate sure loss if the stakes are high enough. (In other contexts, such an
offer might be construed as a bribe.) Making bets with an agent with respect to his future
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choices does not seem as problematic, because the agent cannot now make that choice.
Furthermore, making bets with an agent about his past actions might make sense, as he
might have forgotten what he did.

Aumann defends this feature of his model (pp. 8, 9) by proposing that it is a model
of the beliefs of an outside observer, not one of the players. Of course, it is legitimate for
an outsider to be uncertain about what each of the players may do. But it raises another
question: why should player i accept this outside observer’s opinions as his own?

There is a second issue raised by Aumann’s article, namely his assumption that the
players share a common prior distribution. This assumption is especially restrictive when
added to the previous expansive interpretation of Ω. After conceding that his model could
be adapted to incorporate subjective priors, he rejects that route. He justifies the common
prior assumptions on two grounds: first, a pragmatic argument that economists want to
concentrate on differences among people in their “information,” and allowing subjective
priors interferes with this program. To some extent this argument is purely linguistic, in that
one could extend the notion of “information” to include differences among priors. Aumann’s
second argument is that incorporating subjective priors “yields results that are far less sharp
than those obtained with common priors” (p. 14). I find this argument unappealing. One
can get very sharp results by assuming that everybody agrees on what strategies they will
play. But the unaddressed question is whether such an assumption has anything to do with
the real world in which people face uncertainty in situations involving other decision makers.
Sharp results are nice when the assumptions made to get them are plausible in practice,
but only then.

The effect of these assumptions together is that each player is assumed to be as uncertain
about his own behavior as he is about his opponents’. It is hard for me to imagine situations
in which that is a reasonable assumption.

11.3.2 References and notes

The stochastic version of the three-move game is from DeGroot and Kadane (1983). Com-
mentary on the Aumann paper is also found in Kadane and Seidenfeld (1992).

11.3.3 Summary

The stochastic version of the three-move game shows that Jane’s last move w is the same
as it is in the non-stochastic version. If Dick assumes that Jane will use that strategy in his
last move, he still has an inference problem about how to interpret Player 1’s first move u.
Under our simplified quadratic loss, the conditional expectation M(u) is all that is required.
Finally Player 1, in choosing u, has to assess K(u), which means thinking about what he
believes Dick will infer about his target y from each move u he might make.

Aumann proposes a way through this thicket, but it has some drawbacks, which are
discussed.

11.3.4 Exercises

1. Suppose someone offers to buy from you or sell to you for 40 cents a ticket that pays $1
if you snap your fingers in the next minute. Describe two ways in which you could make
that person a sure loser.

2. Examine the behavior of the strategies (11.32), (11.38) and (11.43) as k →∞.

3. Prove (11.18).
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11.4 Design for another’s analysis

Chapter 7 discusses experimental design as a sequential problem in which the same person
both decides what design to use, and then, after the data are available, analyzes the results.
This section discusses the case in which those functions are performed by different individ-
uals. Thus the results of this section are a generalization of those in Chapter 7. Why is the
general case of interest?

In many practical settings, an experiment is conducted to inform many persons beyond
the person designing the experiment. When a pharmaceutical company does an experiment
to show the efficacy of a new drug, the audience is not just the company, but also the
Food and Drug Administration, and, more generally, the medical community and potential
customers. While the company may be convinced that the drug is wonderful (otherwise it
would not invest the resources needed to test the drug), the FDA is likely to take a more
skeptical attitude. Thus the company needs to design the trial not to convince itself, but to
convince the FDA and others.

Similarly in the setting of a criminal investigation, it is generally conceded that the
investigator may use his beliefs and hunches in deciding what evidence to collect. He does
that collection with the knowledge that the results of the investigation must convince pros-
ecutors, judges and juries likely not to share his beliefs.

Designed experiments are often expensive, and frequently are social undertakings, often
publicly funded. The experimenter hopes to use the results to persuade a profession that
includes persons with varying levels of prior agreement with the experimenter. For these
reasons, I believe that the framework for experimental design explored in this section is far
more commonly applicable than is the special case in which the designers’ and analysts’
priors, likelihoods and utility functions are taken to be identical.

To give a flavor of the kind of analysis that results, I report here on a very simplified
special case. Suppose that Dan is the designer and Edward is the estimator, and that they
are both uncertain about the parameter θ. Dan’s prior density on θ is πd(θ) and Edward’s
is πe(θ). We’ll suppose that Dan knows Edward’s prior. This is a special case of the more
general case in which Dan has a probability distribution on Edward’s prior. Also Dan and
Edward will be imagined to share a likelihood function. Their posterior distributions are
denoted by πd(θ | x) and πe(θ | x), respectively, where x represents the experimental result
of a sample of size n. The goal of this experiment is to find an estimate a of θ. Then
Edward chooses the estimator a to minimize Eπe(θ|x)Le(θ, a), where Le(θ, a) = (θ − a)2

is Edward’s loss function. Now Dan has some joint distribution for the data x and the
parameter θ, πe(θ,x). Dan chooses a sample size n to minimize Eπe(θ,x)Ld(θ, a,x), where
a is chosen by Edward, Ld(θ, a,x) = (θ − a)2 + cn, and c is a cost per observation. To be
specific, we assume that the likelihood for each of n independent and identically distributed
observations is the same for both players, and is normal with mean θ and precision 1. Dan’s
prior is assumed to be normal with mean µd and precision τd; similarly Edward’s prior is
assumed to be normal with mean µe and precision τe. These choices of likelihood and prior
permit the use of conjugate analysis, as explained in Chapter 8.

Then Edward’s posterior distribution on θ after seeing the data x is normal with mean
n

n+τe
Xn + τe

n+τe
µe, and precision n+ τe, when Xn is the mean of the observations x. Under

Edward’s squared error loss function, he chooses as his action a, his posterior mean,

a =
n

n+ τe
Xn +

τe
n+ τe

µe.

Now what should Dan do?

Let f = n/(n + τe) and b = τeµe/(n + τe). Then Edward’s choice is a = fX + b. Dan



DESIGN FOR ANOTHER’S ANALYSIS 393

chooses n to minimize his expectation of

cn+Ed(a− θ)2 =

cn+Ed(fXn + b− θ)2 (11.39)

where the expectation is over Xn and θ, both unknown to Edward at the time he chooses
the sample size. Taking the expectation of the second term in (11.39) with respect to Xn

first, where Xn | θ ∼ N(θ, 1/n),

Ed{(fX + b− θ)2 | θ, n}
=Ed{[f(X − θ) + b+ (f − 1)θ]2 | θ, n}
=f2/n+ [b+ (f − 1)θ]2. (11.40)

Now the expectation of the second term in (11.40) with respect to θ, where θ ∼
N(µd, 1/τd), is

Ed{[b+ (f − 1)θ]2} =Ed[(f − 1)(θ − µd) + b+ (f − 1)µd]
2

=(f − 1)2/τd + (b+ (f − 1)µd)
2.

Then Dan’s loss, as a function of n, is

R(n) =cn+ f2/n+ (f − 1)2/τd + (b+ (f − 1)µd)
2

=cn+

(
n

n+ τe

)2

· 1

n
+

τ2
e

(n+ τe)2
· 1

τd
+

(
τeµe
n+ τe

− τeµd
n+ τe

)2

=cn+
n

(n+ τe)2
+

τ2
e

(n+ τe)2

[
1

τd
+ (µe − µd)2

]
=cn+

n+ τe − τe
(n+ τe)2

+
τ2
e

(n+ τe)2

[
1

τd
+ (µe − µd)2

]
=cn+

1

n+ τe
+

1

(n+ τe)2

{
τ2
e

[
1

τd
− 1

τe
+ (µe − µd)2

]}
Let r = τ2

e

[
1
τd
− 1

τe
+ (µe − µd)2

]
.

Then

R(n) = cn+
1

n+ τe
+

r

(n+ τe)2
.

This is a particularly convenient expression because the optimal choice of n, the one that
minimizes R, is a function only of r, τe and c. Dan wishes to minimize R over all choices of
n ≥ 0. Although only integer values of n make sense, we consider the minimum of R(n) over
all non-negative numbers n. The integer minimum is then one of the two integers nearest
to the optimal real number found.

Let y =
√
c(n+ τe). Then

R = −
√
cτe +

√
c

{
y +

1

y
+

√
cr

y2

}
.

Instead of minimizing R(n) over the space n ≥ 0, we may equivalently minimize

g(y) = y +
1

y
+

r̃

y2

over the space y ≥ τ̃e, where r̃ =
√
cr and τ̃e =

√
cτe.
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Thus only r̃ and τ̃e matter for finding the optimal y, and hence, the optimal sample size.
Consider the first derivative of g:

g′(y) = 1− 1

y2
− 2r̃

y3
.

Set equal to zero, this is equivalent to

y3 − y − 2r̃ = 0.

Over the range −∞ < y <∞, the cubic equation has the limits as follows:

lim
y→∞

[y3 − y − 2r̃] =∞

and
lim

y→−∞
[y3 − y − 2r̃] = −∞.

Since y3 − y − 2r̃ is continuous there exists at least one real solution to the equation

y3 − y − 2r̃ = 0.

Let y(r̃) be the largest root of this equation.
Then we can characterize the optimal choice of sample size as follows:

Theorem 11.4.1. If

(a) r̃ > −1/(3
√

3) and

(b) −r̃/y2(r̃) < τ̃e < y(r̃)

then y(r̃) minimizes g(y) and the optimal sample size is (y(r̃) − τ̃e)/
√
c. Otherwise the

minimum is at y = τ̃e, and the optimal sample size is zero.

Proof. The function y3−y = y(y−1)(y+1) has roots at 1, 0 and -1. On the positive axis its
minimum occurs at the solution to 3y2 = 1, which implies y = 1/

√
3 and its value there is

y3− y = (1/
√

3)3− (1/
√

3) = (1/
√

3)( 1
3 − 1) = −2/(3

√
3). Therefore if r̃ ≤ −1/(3

√
3), g(y)

increases for y > 0, and hence the minimum on the set y ≥ τ̃e occurs at y = τ̃e. Second, we
consider r̃ ≥ 0. The second derivative of g(y) is g′′(y) = 2

y3 + 6r̃
y4 > 0. Then y3 − y − 2r̃ has

only one positive root. The optimal y is then y(r̃) − τ̃e if y(r̃) − τe > 0 and τ̃e otherwise.
The conditions r̃ ≥ 0 and y(r̃) > τe together imply condition (b) of the theorem.

Finally, we consider the case −1/(3
√

3) < r̃ < 0. In this case there are two positive
roots, of which the larger is a local minimum and the smaller a local maximum. Thus the
minimum of the function g over the domain y ≥ τ̃e occurs either at y(r̃) or at τ̃e. There is
a critical value t∗ for τ̃e such that if τ̃e ≤ t∗, the minimum of g occurs at y = τe, and the
optimal sample size is zero. However, if τ̃e > t∗, then the minimum of g occurs at y(r̃).

The value of t∗ is characterized by the equation g(τ̃e) = g(y(r̃)), together with the fact
that g(y(r̃)) is a relative minimum of g(y).

To simplify the notation for this calculation, let y(r̃) = y and τ̃e = x. Then g(y(r̃)) =
g(τe) implies

y +
1

y
+

r̃

y2
= x+

1

x
+

r̃

x2
. (11.41)

Additionally y satisfies g′(y) = 0, so

1− 1

y2
− 2r̃

y3
= 0, hence

y3 − y − 2r̃ = 0, and so

y = y3 − 2r̃. (11.42)
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Now (11.41) is equivalent to

x2(y3 + y + r̃) = y2(x3 + x+ r̃).

So

0 =x2y3 − y2x3 + x2y − y2x+ x2r̃ − y2r̃

=x2y2(y − x) + xy(x− y) + r̃(x− y)(x+ y)

=(y − x)[x2y2 − xy − r̃(x+ y)].

Now substitute (11.42) for y in the middle term:

0 =(y − x)[x2y2 − x(y3 − 2r̃)− r̃(x+ y)]

=(y − x)[x2y2 − xy3 + 2r̃x− r̃x− r̃y]

=(y − x)[xy2(x− y) + r̃(x− y)]

=− (y − x)2[xy2 + r̃].

Solving for x, we have x = −r̃/y2. Thus the critical value for τ̃e is t∗ = −r̃/y2. If
τ̃e > −r̃/y2 then ỹ(r̃) is the minimum of g(y) over the space y ≥ τ̃e. Otherwise the minimum
occurs at τ̃e, and the optimal sample size is zero. This concludes the proof of the theorem.

11.4.1 Notes and references

This setup and theorem are from Etzioni and Kadane (1993), who also consider a multivari-
ate case and another loss function. Lindley and Singpurwalla (1991) consider an acceptance
sampling problem from a similar viewpoint. Lodh (1993) analyzes a problem in which the
variance is also uncertain.

The work of Tsai and Chaloner (Not dated) and Tsai (1999) tackles multiparty designs
with a utility that focuses on Edward’s utility rather than Dan’s.

11.4.2 Summary

Dan and Edward agree on a normal likelihood with known precision (here taken to be 1).
They each have conjugate normal priors on the mean θ, but have possibly different means
and precisions for their priors. Edward chooses an estimator, after seeing the data, to
minimize his expected squared error loss. Dan chooses a design, before seeing the data, to
minimize his expected squared error loss of the decision Edward makes, plus a cost per
observation, c.

The theorem gives Dan’s optimal sample size.

11.4.3 Exercises

1. Suppose it happens that Dan and Edward have the same distribution, and in particular
µd = µe and τd = τe.

(a) What is r? What is r̃?

(b) What is g(y)?

(c) What is y(r̃), the largest root of g(y) = 0?

(d) Apply the theorem. What is the optimal sample size?

(e) Give an intuitive explanation of your answer.
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2. Consider the case n = 0.

(a) What will Edward’s estimate be?

(b) What will Dan’s expected loss be? Find this by evaluating R(0).

(c) Explain your answer to (b).

3. Consider the case in which τe → 0.

(a) What is r?

(b) How does the analysis compare to that found in exercise 1 above?

11.4.4 Research problem

Explain why
√
cr and

√
cτe are the only functions of c, µd, µe, τd and τe that matter. I

suspect that the reason has something to do with invariance.

11.4.5 Career problem

Recreate the theory of experimental design from a Bayesian perspective. Under what sorts of
prior distributions is each of the popular designs optimal? For which designs is a two-party
perspective necessary or useful? See DuMouchel and Jones (1994) for a start.

11.5 Optimal Bayesian randomization in a multiparty context

In section 7.10, we showed that a Bayesian designing an experiment for his own use would
never find it strictly optimal to randomize. In this section we return to this topic in the
context of several parties, and display a scenario in which randomization is a strictly optimal
design strategy.

The scenario we study is phrased in terms of a clinical trial, although the conclusions are
more general, as discussed in the end of this section. In addition to Dan (the designer) and
Edward (the estimator), we have a third character, Phyllis (the physician), who implements
Dan’s design.

The purpose of this imaginary trial is to compare the efficacy of two treatments, 1 and
2. We’ll suppose that the outcome of a treatment assigned to a patient is either a success
or a failure. Suppose n1 patients are assigned to treatment 1, and n2 to treatment 2. Also
let Xi = 1 if the ith patient’s treatment is a success, and zero otherwise. Finally, let ti = 1
if patient i is assigned to treatment 1 and ti = 2 otherwise.

Edward, unaware of any patient covariates, views the data from the trial as two inde-
pendent binomial samples. So Edward’s sufficient statistics are

p̂1 =

( ∑
i:ti=1

Xi

)/
n1

and

p̂2 =

( ∑
i:t1=2

Xi

)/
n2.

As nj →∞, p̂j → P{X = 1 | t = j} for j = 1 and 2, where the P is Edward’s probability.
We consider the case in which n1 and n2 are large, so Edward’s prior is irrelevant.

Phyllis, the physician, assigns the patients to a treatment subject to whatever design
Dan chooses. She also has information about a covariate Edward does not know about. Let
hi = 1 if the ith patient is healthy and hi = 0 otherwise. Neither Dan nor Edward has data
on the health of patients. The health of the patient may affect the probability of success
of a treatment. Let pjk be Dan’s probability that a patient is a success under treatment j
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with health h = k, assumed to be the same for all patients with treatment j and health k. If
Dan’s design permits her to, Phyllis may use the health of the patient in assigning patients
to treatments. It does not matter, for the analysis to follow, whether this is a conscious or
subconscious choice on her part.

Dan specifies the design; that is, Dan gives rules to Phyllis for how patients are to
be assigned to treatments. Dan knows that Phyllis will make allocations of patients to
treatments within the context of the design he specifies, and that Edward will analyze
the data. Dan is concerned about which treatment will be used after the trial is over, and
therefore wants Edward’s estimates to be as accurate as possible. The covariate h is assumed
not to be known about future patients. The population of patients in the trial is believed
to be the same as the population of future patients. Therefore he judges the effectiveness
of each treatment by its effectiveness for the population as a whole. He is aware that there
may be a covariate like h, but does not have data on h for individual patients. Let w be the
proportion of healthy patients in the population. Dan wants Edward’s estimates to converge
to his view of the correct population quantities

p∗1 =wp11 + (1− w)p10 and

p∗2 =wp21 + (1− w)p20,

respectively. These are the probabilities that a random member of the population would
have a successful outcome if assigned to treatment 1 or 2, respectively, in Dan’s opinion. If
Edward were to have measurements on hi for each patient, his estimates could possibly be
made more accurate by including that information, but Dan knows that Edward will not
have that information.

The result of whatever design Dan chooses, and, given that choice, whatever Phyllis
does in assigning patients to treatments, can be characterized by λ1, Dan’s probability that
a healthy patient is assigned to treatment 1, and λ0, Dan’s probability that an unhealthy
patient is assigned to treatment 1.

Then

P{Xi = 1 | ti = 1} =P{Xi = 1 | ti = 1, hi = 1}P{hi = 1 | ti = 1}
+P{Xi = 1 | ti = 1, hi = 0}P{hi = 0 | ti = 1}.

The term P{hi = 1 | ti = 1} can be expressed in the notation above as

P{hi = 1 | ti = 1}

=
P{ti = 1 | hi = 1}P{hi = 1}

P{ti = 1 | hi = 1}P{hi = 1}+ P{ti = 1 | hi = 0}P{hi = 0}

=
wλ1

wλ1 + (1− w)λ0
.

Therefore

P{Xi = 1 | ti = 1} =
p11wλ1

wλ1 + (1− w)λ0
+

p10(1− w)λ0

wλ1 + (1− w)λ0
.
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So Dan is concerned about

p∗1−P{Xi = 1 | ti = 1}

=wp11 + (1− w)p10 −
p11wλ1

wλ1 + (1− w)λ0
− p10(1− w)λ0

wλ1 + (1− w)λ0

=wp11

[
1− λ1

wλ1 + (1− w)λ0

]
+ (1− w)p10

[
1− λ0

wλ1 + (1− w)λ0

]
=wp11

[(1− w)(λ0 − λ1)]

wλ1 + (1− w)λ0
+

(1− w)p10w(λ1 − λ0)

wλ1 + (1− w)λ0

=
w(1− w)(p11 − p10)(λ0 − λ1)

wλ1 + (1− w)λ0
.

Similarly

p∗2 − P{Xi = 1 | ti = 2} =
w(1− w)(p21 − p20)(λ0 − λ1)

wλ1 + (1− w)λ0
.

Hence for p̂1 to approach p∗1 and p̂2 to approach p∗2, there are three cases to consider:

(a) w(1− w) = 0

(b) w(1− w) 6= 0 and p11 = p10 and p21 = p20

(c) w(1− w) 6= 0, p11 6= p10, p21 6= p20 and λ0 = λ1.

In case (a), there is no health covariate. Either all the patients are healthy or they all are
unhealthy. In case (b), there is a health covariate, but it doesn’t matter. Dan’s probability of
success with each treatment does not depend on the covariate. So when there is a covariate
that matters, for Dan’s design to succeed he must have λ0 = λ1. How can Dan arrange
things so that λ1, his probability of a patient being assigned to treatment 1 if the patient
is healthy, is the same as λ0, his probability of the patient being assigned to treatment
1 if the patient is unhealthy? If Dan’s design instructs Phyllis to flip a (possibly biased)
coin to decide on the treatment of each patient, independently of the other assignments
of treatments to patients, then λ0 = λ1, and Dan succeeds in designing so that Edward’s
estimates will approach p∗1 and p∗2, respectively. Not having individual data on the health
of patients, any other design leaves Dan vulnerable to λ0 6= λ1. Thus in this circumstance,
Dan’s best design is randomization.

Suppose Dan’s design were to allow each patient to choose a treatment. If healthy
patients have a different probability of choosing treatment 1 than do unhealthy patients,
then λ1 6= λ0, and the design is suboptimal from Dan’s perspective.

Suppose instead that Dan’s design were to allow Phyllis to choose a treatment for each
patient. Suppose that Phyllis believes treatment 1 to be better for healthy patients and
treatment 2 for unhealthy patients. Also suppose that Phyllis wishes to maximize the prob-
ability of success for each patient in the trial. Then she will choose so that λ1 = 1 and
λ0 = 0, a suboptimal design from Dan’s perspective.

Now suppose that Phyllis wants treatment 1 to look better than treatment 2 for whatever
reason, financial or ideological. Knowing that healthy patients are more likely to succeed
in treatment than are unhealthy ones, she assigns the healthy patients to treatment 1 and
the unhealthy patients to treatment 2. Again we have λ1 = 1 and λ0 = 0. Thus Phyllis’s
motives are not at issue here.

Even when Phyllis is not explicitly measuring the health of the patients, and believes
she is assigning treatments to patients in a manner unrelated to covariates, she may not
be. Thus only explicit randomization guarantees λ0 = λ1, and the success of the trial, from
Dan’s perspective.

While the discussion above uses the scenario and language of a clinical trial, the same
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considerations occur in other contexts. In a sample survey, the role of Phyllis is played by
an interviewer who chooses whom to interview. In an agricultural experiment, the role of
Phyllis is played by the gardener, who chooses which plot of land to plant with each kind
of seed.

11.5.1 Notes and references

This section is based on Berry and Kadane (1997). Previous literature on Bayesian views of
randomization include Stone (1969), Lindley and Novick (1981) and Kadane and Seidenfeld
(1990).

11.5.2 Summary

In contrast to the findings of section 7.10 concerning a single Bayesian decision maker, in
the context of a multi-party Bayesian model randomization can be optimal.

11.5.3 Exercises

1. Prove

p∗2 − P{Xi = 1 | ti = 2} =
w(1− w)(p21 − p20)(λ0 − λ1)

wλ1 + (1− w)λ0
.

2. Suppose that Phyllis measures the covariate hi and reports it to Dan before assigning a
treatment. Edward, however, still does not know the covariate hi. What is the optimal
design under these circumstances?

11.6 Simultaneous moves

“I knew one [school-boy] about eight years of age, whose success at guessing in
the game of ‘even and odd’ attracted universal admiration. This game is simple,
and is played with marbles. One player holds in his hand a number of these toys
and demands of another whether that number is even or odd. If the guess is right,
the guesser wins one; if wrong, he loses one. The boy to whom I allude won all the
marbles of the school. Of course he had some principle of guessing; and this lay in mere
observation and admeasurement of the astuteness of his opponents. For example, an
arrant simpleton is his opponent, and, holding up his closed hand, asks, ‘Are they
even or odd?’ Our school-boy replies, ‘Odd,’ and loses; but upon the second trial he
wins, for he then says to himself: “The simpleton had them even upon the first trial,
and his amount of cunning is just sufficient to make him have them odd upon the
second; I will therefore guess odd’; – he guesses odd, and wins. Now, with a simpleton
a degree above the first, he would have reasoned thus: ‘This fellow finds that in the
first instance I guessed odd, and, in the second, he will propose to himself, upon the
first impulse, a simple variation from even to odd, as did the first simpleton; but then
a second thought will suggest that this is too simple a variation, and finally he will
decide upon putting it even as before. I will therefore guess even’; – he guesses even,
and wins. Now this mode of reasoning in the school-boy, whom his fellows termed
‘lucky,’ – what, in its last analysis, is it?

‘It is merely,’ I said, ‘an identification of the reasoner’s intellect with that of his
opponent.’ ” Edgar Allan Poe, The Purloined Letter (pp. 165, 166)

We now consider a different structure for the interaction of the decision-makers (we’ll call
them players in this section). In particular, we’ll suppose that their moves are simultaneous,
and thus without knowledge of what the other player (or players) do. This is the assumption
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of traditional game theory, although most games that people actually play more typically
allow for sequential, rather than simultaneous, play.

Game theorists can claim that sequential games are a special case of simultaneous games,
by the trick of having a player specify – in principle – what move they would choose in every
possible situation resulting from the play up to that point. The difficulty is that in games
such as chess, bridge, poker, etc., the number of possible situations is so large as to make
this approach impractical.

There is a huge literature on this subject, only a small portion of which is relevant for
this book. To understand how game theory and Bayesian decision-making intersect, I first
rehearse a few of the most important results from game theory. Later I address the nature
of the assumptions made.

11.6.1 Minimax theory for two person constant-sum games

Suppose there are two players, P1 and P2. Suppose P1 has a set of available actions
{a1, . . . , am}, and P2 has a set {b1, . . . , bn}. The outcome of a choice by P1 and P2 si-
multaneously is a pair (ai, bj). This has utility uij for P1, and utility −uij for P2. It is
because their utilities sum to zero, for each pair of choices that they might make, that these
are called “zero-sum” games.

There is a more general class of games to which the results below apply. If P1 has utility
u1
ij if P1 chooses ai and P2 chooses bj , and if P2 has utility u2

ij under those circumstances,
then constant sum games are defined by the constraint

u1
ij + u2

ij = c for all i and j, (11.43)

and for some c. Zero-sum games correspond to the special case c = 0. Since the analysis of
zero-sum games is conceptually the same as constant-sum games for any fixed c, we study
the zero-sum case.

We now allow for the possibility that each player may randomize his strategy. Thus let
pi be the probability that P1 chooses ai, and similarly let qj be the probability that P2
chooses bj . We assume that pi ≥ 0 and qj ≥ 0 for all i and j, and

∑m
i=1 pi =

∑n
j=1 qj = 1.

Let p = (p, . . . , pm) and q = (q1, . . . , qn). We now suppose that P1 will choose p from
the set P of all possible probability distributions on (a1, . . . , am), and similarly P2 will
choose q from the set Q of all possible probability distributions on (b1, . . . , bn).

To make these choices, we imagine that P2 knows P1’s probability distribution p, but
not the specific choice P1 is to make among {a1, . . . , am} in accord with p. Similarly we
imagine that P2’s probability distribution q, but not the specific choice P2 is to make among
{b1, . . . , bn}, governed by q, is known to P1.

In this case, P1’s expected utility arising from the choice of ai is

n∑
j=1

uijqj .

Hence P1’s expected utility arising from his choice of the randomized strategy p is

M(p,q) =

m∑
i=1

n∑
j=1

uijpiqj . (11.44)

Reversing the role of P1 and P2, P2’s expected utility arising from his choice of the
randomized strategy q is −M(p,q).

Suppose, then, that P1 chooses p, which is known to P2. P2, then, would choose q to
minimize M(p,q), and the resulting utility is a function of p, say V1(p) = minqεQM(p,q).
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Now P1, in his choice of p, is assumed to make this choice to maximize V1(p) over choice
of pεP , resulting in a value V1 from the best such choice p∗. Then

V1 = V1(p∗) = max
pεP

V1(p) = max
pεP

[
min
qεQ

M(p,q)

]
. (11.45)

The choice p∗ is called the maximin strategy.
Now we do the symmetric analysis, for P2. We suppose that P2 chooses qεQ, which is

known to P1. P1 would then choose pεP to maximize M(p,q), and the resulting utility is
a function of q, say

V2(q) = max
pεP

M(p,q). (11.46)

Now P2, in his choice of q, is assumed to make this choice to minimize V2(q) over choice of
qεQ, resulting in a value V2 form the best such choice q∗. Then

V2 = V2(q∗) = min
qεQ

V2(q) = min
qεQ

[
max
pεP

M(p,q)

]
. (11.47)

The choice q∗ is called the minimax strategy.
Now

V1 = V1(p∗) = min
qεQ

M(p∗,q) ≤M(p∗,q) for all qεQ. (11.48)

Therefore
V1 ≤M(p∗,q∗). (11.49)

Similarly
V2 = V2(q∗) = max

pεP
M(p,q∗) ≥M(p,q∗) for all pεP. (11.50)

Therefore
V2 ≥M(p∗,q∗). (11.51)

Summarizing
V1 ≤M(p∗,q∗) ≤ V2, so V1 ≤ V2. (11.52)

That in fact V1 = V2 is the content of the famous minimax theorem of Von Neumann (von
Neumann and Morgenstern (1944)). A proof of this result is given in the appendix to this
chapter.

The zero-sum two person game is widely regarded as “solved” by this result. Much effort
has been expended in extending this result to games involving more than two people and
to non-zero-sum games.

Consider the game of “even and odd” discussed by Poe, and, suppose that we identify
utilities with marbles. Then “even and odd” is a zero-sum, two-person game. The minimax
strategy is to randomize, choosing independently odds with probability one-half and evens
otherwise. Good advice for the simpletons, but this is bad advice for the school-boy in
question.

11.6.2 Comments from a Bayesian perspective

The first thing to notice, I think, is how peculiar the assumptions are in this formulation.
Each player is presumed to know the other player’s utility, and that it is the exact opposite
of his own. It seems to me extraordinary to have such knowledge.

A Bayesian facing such a game would be uncertain about which choice her opponent is
about to make. Being a Bayesian, such a person would have probabilities, non-negative and
summing to one, about what that other player will do. Then expected utility maximization
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can be accomplished as follows: Consider P1’s decision first. By assumption, P1 has prob-
abilities q = (q1, . . . , qn) about the action of P2. Then P1’s expected utility of choosing
action ai is

n∑
j=1

uijqj , (11.53)

so P1’s optimal choice is that value i (or any of them, in case of ties), that maximizes
(11.53). By the same argument, P2’s optimal choice (or choices) minimize over index j the
expected utility

m∑
i=1

uijpi (11.54)

where p = (p1, . . . , pm) reflect P2’s opinion about the choice P1 will make.
These choices obey the principle of dominance, as follows: Consider P1’s decision prob-

lem, and suppose there are actions ai and ai′ available to P1, satisfying the following
inequality:

uij ≥ ui′j for all j = 1, . . . , n. (11.55)

Choice ai is said to dominate choice ai′ for P1 in this case. Then whatever probabilities q
P1 may have on P2’s choice, ai will always be at least as good a choice for P1 as will ai′ .
Thus ai′ may be eliminated from among P1’s choices without loss of expected utility to P1.

Now consider P2’s decision problem, and suppose there are decisions bj and bj′ available
to P2, satisfying the inequality

uij ≤ uij′ for all i = 1, . . . ,m. (11.56)

In this case choice bj is said to dominate choice bj′ for P2. Then whatever probabilities p
P2 may have on P1’s choice, bj will always be at least as good a choice for P2 as will bj′ .
Thus bj′ may be eliminated from among P2’s choices without loss of expected utility to P2.

What relationship is there between the expected-utility maximizing choices in (11.53)
and (11.54), and the minimax solutions p∗ and q∗ found above? Let’s suppose P1 is sure
that P2 will use his randomized minimax choice q∗. Then the associated maximin solution
p∗ for P1 puts positive probability on a number of choices for P1. We can, without loss of
generality, renumber the choices for P1 so that p∗ is positive for choices i = 1, . . . ,m′ ≤ m.
Each of the choices ai, i = 1, . . . ,m′ then is utility-maximizing for P1, and each has the
same expected utility, as shown in the Corollary in the appendix to this chapter. Then any
randomized strategy that puts positive probability only on a1, . . . , am′ will also have this
same (optimal) expected utility. In particular, p∗ is one of those randomized strategies, and
therefore maximizes P1’s expected utility. But this is a weak recommendation for p∗ as a
strategy for P1. P1 need not randomize among the strategies a1, . . . , am′ at all. If P1 does
not have belief about P2’s strategy q that coincides with q∗, then p∗ will be suboptimal
for P1 in general. Thus p∗ is not very impressive as a utility-maximizing choice for P1.

The same can be said for P2. If P2’s beliefs p about P1’s choice coincide with p∗ exactly,
then the strategies for P2 can be renumbered so that those with indices j = 1, 2, . . . , n′,
and only those, have positive probability under q∗. Then every randomization of b1, . . . , bn′

maximizes P2’s expected utility, including the choices b1, . . . , bn′ , again, as shown in the
appendix. If P2’s beliefs do not coincide with p∗, then q∗ in general is a suboptimal choice
for P2. The fact that q∗ is so weakly recommended for P2 makes p∗ even less attractive as
a belief for P1.

Game theory as developed by von Neumann and Morgenstern (1944) and their successors
places great stress on two distinctions among games: whether there are two players or more
than two, and whether the game is constant-sum or not. Neither of these distinctions seems
critical from the Bayesian perspective. If there are k > 2 players, then P1 must assess his
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probability of the decisions of each of the other players, but again will optimally choose ai
to maximize (11.53), where now the index j ranges over the joint choices of each of the other
players. Similarly (11.53) applies to P1’s choice whether or not the game has constant-sum
utilities. Thus these two distinctions do not affect the Bayesian theory in any conceptual
way.

What does matter for the Bayesian theory, but not for classical game theory, is sequential
play. For a Bayesian, previous play by an opponent or opponents is data, from which a
Bayesian learns information that can be useful in predicting the future play of either those
or other opponents. However, for minimax players, the previous history is not relevant; such
a player continues to use the same mixed strategy regardless of the choices made by the
same or other opponents in past play, of the same game or other games. In the simpler
context of sequential play, as in section 11.3, we have seen that the fact that your opponent
will learn about you from your play leads to major complication in the Bayesian theory.

11.6.3 An example: Bank runs

The essential problem for a traditional bank is that it accepts deposits for which repayment
can be demanded in a short time, and makes loans that have a long time horizon. If everyone
demands their money back from a bank at the same time, the bank cannot pay because it
cannot call in its loans, and bankruptcy ensues.

The heart of this problem can be modeled by imagining two players, P1 and P2, each
of whom has deposited an amount D in the bank. The bank has invested this money in a
project. If the bank is forced to liquidate the project before it matures, the bank can recover
2r, where we assume D > r > D/2. At maturity, the project will pay 2R, where R > D.
The question for the players is whether to demand their money now, that is, withdraw, or
allow the project to proceed to maturity. We’ll assume that the utilities of each player are
linear in money.

The payoffs to the two players can be expressed in the following matrix:

Player 2
W NW

W r, r D, 2r −D
Player 1

NW 2r −D,D R,R

Here the first number gives P1’s payoff, and the second is P2’s payoff.
If P1 is sure that P2 will not withdraw, his optimal strategy is not to withdraw as well,

since R > D. Similarly, if P1 is sure that P2 will withdraw, then his optimal strategy is to
withdraw as well, since 2r−D < r. In the language of traditional game theory, both (W,W )
and (NW,NW ) are Nash equilibria, since the knowledge of the other player’s strategy would
not change one’s own. This fact does not help P1 determine his optimal strategy, however.

How does Bayesian theory suggest that P1 play this game? P1’s uncertainty here is what
P2 will do. Suppose that P1’s probability that P2 will withdraw is θ. Then P1’s expected
utility for withdrawal is

rθ +D(1− θ),
and his expected utility for not withdrawing is

(2r −D)θ +R(1− θ).

Then withdrawal is strictly optimal for P1 if and only if

rθ +D(1− θ) > (2r −D)θ +R(1− θ), or

θ >
R−D
R− r

.
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Not withdrawing is optimal if

θ <
R−D
R− r

,

and P1 is indifferent between withdrawing and not withdrawing if

θ =
R−D
R− r

.

It makes sense that if θ is large, P1 should withdraw, while if θ is small he should not. P2’s
analysis is similar (with perhaps a different θ), because his utilities are assumed to be the
same as P1’s.

Of course this is a highly simplified version of the actual situation. Usually there are
many depositors, but their problem is captured by this simple structure: if the bank is going
down, they want their money immediately. The history of banking has many instances of
panics in which depositors, sometimes in response to rumors, simultaneously demand their
money from a particular bank, or from many banks.

In response to the high social costs of bank runs and bank failures, governments have
instituted two basic policies: regulation of banks to ensure their soundness, and governmen-
tal deposit insurance. Both of these policies aim at reassuring the public that their money
is safe, thus reducing the θ’s of the players. As a public policy, these measures have been
quite successful.

It seems to me that the Bayesian analysis of bank runs illuminates the essential problem,
which is what the depositors believe other depositors will do. Not to have room for those
beliefs in the traditional theory seems to me to deprive it of insight.

It is also to be noted that there aren’t useful principles in this game to tell P1 what
θ to believe about P2. Sometimes bank runs occur, sometimes they do not. To hold that
the payoffs to the game, plus “common knowledge” and “common priors” can resolve P1’s
problem seems to me to be a hopeless quest.

11.6.4 Example: Prisoner’s Dilemma

This is a famous game, attributed by Luce and Raiffa (1957, p. 94) to A. W. Tucker. The
story is that two persons suspected of jointly committing a crime are taken into custody and
separated. They are believed to have committed a serious crime. If both confess, they will
get 8 years imprisonment each. If one confesses and the other does not, the one confessing
will get 3 months, and the other will get 10 years. If neither confesses, they will each get 1
year on minor charges. We’ll suppose that their losses are linear functions of the time they
spend in jail.

In the literature on this problem, to cooperate (C) with the other player is not to confess,
while to defect (D) is to confess.

From the viewpoint of Prisoner 1 (P1), his major uncertainty is whether P2 will confess.
Suppose his probability that P2 will confess is θ, 0 ≤ θ ≤ 1. Then his expected jail time if
he confesses is

8θ + .25(1− θ).
Similarly, if P1 does not confess, his expected jail time is

10θ + (1− θ).

Since 10θ+(1−θ) > 8(θ)+ .25(1−θ) for all θ, 0 ≤ θ ≤ 1, it follows that the optimal strategy
for P1 is to confess, regardless of his probability θ on P2’s behavior. By the same analysis,
it is optimal for P2 to confess, regardless of his probability on P1’s behavior. Some find this
analysis uncomfortable, because both prisoners could do better not confessing (getting only
1 year in jail each), than confessing (8 years each).

Rapoport (1960, p. 175), for example, argues that
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Instead of taking as the basis of calculations the question “Where am I better off?,”
suppose each prisoner starts with the basic assumption: “My partner is like me.
Therefore he is likely to act like me. If I conclude that I should confess, he will
probably conclude the same. If I conclude that I should not confess, this is the way
he probably thinks. In the first case, we both get (10 years); in the second case (1
year). This indicates that I personally benefit by not confessing.”

Later, however, Rapoport (1966, p. 130) appears to change his position:

If no binding agreement can be effected, the mutually advantageous choice (C,C) is
impossible to rationalize by appeal to self-interest. By definition, a “rational player”
looks out for his own interest only. On the one hand, this means that the rational
player is not malicious – that is, he will not be motivated to make choices simply
to make the other lose (if he himself gains nothing in the process). On the other
hand, solidarity is utterly foreign to him. He does not have any concept of collective
interest. In comparing two courses of action, he compares only the payoffs, or the
expected payoffs, accruing to him personally. For this reason, the rational player in
the absence of negotiation or binding agreements cannot be induced to play C in the
game we are discussing. Whatever the other does, it is to his advantage to play D.

If the players had the opportunity to make an enforceable agreement, they could agree
not to confess. Essentially an enforceable agreement changes the utilities of some of the
choices, which of course changes the analysis.

There are people for whom “confessing” has high disutility, because it means doing
something that will harm another person, perhaps a friend. For such people, their losses are
not linear in the time spent in jail. For such a person, the analyses above should be redone
using his or her personal loss function.

It is noteworthy that in market situations involving few players (oligopolies), the players
do better cooperating (to raise prices, or constrain output). The US Antitrust laws specifi-
cally make contracts in restraint of trade unenforceable. Thus in the case of oligopolies, the
public interest is served by the “confess” strategies in which the companies do not cooper-
ate. There are other situations (such as the outbreak of World War I), in which it could be
argued that whatever alliance mobilized first would have a great advantage. Since the sides
were not able to make an enforceable agreement, both mobilized, war ensued, and both
alliances lost utility.

Whether the advice to defect in a single play Prisoner’s Dilemma is paradoxical is left
to the reader. Iterated Prisoner’s Dilemmas are addressed in 11.6.6.

11.6.5 Notes and references

The book of von Neumann and Morgenstern (1944) is the classic work on game theory. It
expounds the minimax view explained in 11.6.1. The proof of the minimax theorem given
in the appendix is based on that of Loomis (1946). The material in 11.6.2 is based on
Kadane and Larkey (1982a). The example concerning bank runs in 11.6.3 is discussed in
Sanchez et al. (1996) and Gibbons (1992). It is an example of a class of games known in
the literature as “stag hunts” (see Skyrms (2004)). An early game theory paper supporting
the use of Bayesian decision theory is Rosenthal (1981).

The views expressed in Kadane and Larkey (1982a) have not found universal acceptance
in the game theoretic community. Harsanyi (1982a) comments on the paper with essentially
two arguments. The first is to present a case for a necessitarian view of prior distributions,
alleging that “in some situations there is only one rational prior distribution” (p. 20). In
particular he cites Jaynes’ work in physics to support this view. While the evaluation of
Jaynes’ work in physics is for physicists to work out (see, for example, Shalizi (2004)), let
us suppose that Jaynes’ assumptions allow him successfully to re-derive thermodynamics.



406 MULTIPARTY PROBLEMS

This would not support the proposition that in games there is only one prior probability
distribution that it is rational to believe about one’s opponents’ moves. Harsanyi’s second
argument is the complaint that Kadane and Larkey offer no guidelines about “how this
probability distribution is to be chosen by a rational player” (p. 121). He claims that “Most
game theorists answer this question by constructing various normative ‘solution concepts’
based on suitable rationality postulates and by assuming that the players will act, and will
also expect each other to act, in accordance with the relevant solution concept.”

Let us suppose for the sake of the argument that each solution concept corresponds to
some prior distribution on the other players’ actions. In that case a player will not be a sure
loser by acting in accord with that solution concept. And such an action is then endorsed by
the subjective Bayesian viewpoint of this book. The controversy, then, is whether obedience
to such solution concepts are the only rational choices a player can make. The fact that game
theorists have produced many solution concepts, not all of which coincide, is a hint that this
program can’t succeed in uniquely defining rational play. I regard the prior distributions
generated by solution concepts as interesting subjects of study, and as special cases of
possible belief. Whether a particular such solution concept applies to a particular instance
of a game is still, I believe, a matter of (subjective) judgment to be made by a player.
Perhaps what the debate comes to is that Harsanyi’s vision of game theory seeks to limit
attention to mutual assumptions of rationality while my vision recognizes conflict situations
in which “rationality” of an opponent need not be assumed.

The debate continued with a reply from Kadane and Larkey (1982b), and a rejoinder
from Harsanyi (1982b). A longer response to Harsanyi came in Kadane and Larkey (1983).
This paper discusses the distinction between “ought” and “is,” that is, between recommen-
dations of how to play the game and descriptions of how people (other players) actually
do play. They write “Taking the Bayesian norm as prescriptively compelling for my play
leads me to want the best description I can find of my partner/opponent’s play” (p.
1376). Shubik (1983) commenting on this paper takes a middle position, writing “Those of
us concerned with the applications of game theoretic methods to the social sciences are well
aware of the importance and the limitations of our assumptions concerning the perception,
preferences and abilities of individuals” (p. 1380).

Further contributions to the subjective view of games can be found in Wilson (1986)
and Laskey (1985), concerning iterated Prisoner’s Dilemma games, Kadane et al. (1992),
about elicitation of probabilities in a game theoretic context, and Larkey et al. (1997) on
skill in games.

There is a variety of reactions to this issue. Mariotti (1995) argues that “a divorce is
required between game theory and individual theory” (p. 1108). Mariotti bases his claim on
an example in which a Bayesian is required to have preferences over games, but the game
description does not include the prior of the player. Hence it is not possible to compute an
expected utility for the play of the game, and a contradiction to simple Bayesian principles
ensues. His conclusion is that game theory should abandon trying to justify its recommended
choices from the perspective of Bayesian decision theory, and instead invent some other
kind of decision theory. (See also discussion on Mariotti in Aumann and Dreze (2005).)
I think Mariotti is correct in calling for greater precision by game theorists in specifying
exactly what assumptions are being made in justifying the claim of Bayesianity for their
recommended choices. But I think he is too pessimistic in giving up hope of a reconciliation
between game theory and individually rational Bayesian behavior.

A more recent comment on the debate is by Aumann and Dreze (2005). They write “On
its face, the Kadane-Larkey viewpoint seems straightforward and reasonable. But it ignores
a fundamental insight of game theory: that a rational player should take into account that all
the players are rational, and reason about each other. Let’s call this ‘interactive rationality’ ”
(p. 3). Later they argue that Kadane and Larkey fail to “bear in mind that in estimating
how the others will play, a rational player must take into account that the others are – or
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should be – estimating how she will play” (p. 25). The issue here is in the force of the “must”
and in the distinction between “are” and “should be.” To reiterate the general point, I think
that “interactive rationality” is an interesting special case of coherence, but not the only
one.

As emphasized above, a rational player may or may not model his counterpart as rational.
He does not violate the axioms of Bayesian rationality if he models his counterpart as not
completely rational. However, let’s play along and suppose that he does. Then the regress
cited by Aumann and Dreze occurs. The point here is that whether that regress stops at
some stage or continues indefinitely, it is only the marginal distribution of what move the
counterpart will make that matters. More generally, players can have whatever models they
may have of the other player, with however many uncertain parameters, again, only the
marginal distribution of the other player’s move affects the optimal decision.

In the end, Aumann and Dreze seem not to disagree. They write “Theories of games may
be roughly classified by ‘strength’: the fewer outcomes allowed by the theory, the stronger –
more specific – it is” (p. 23) ... “Viewed thus, the Harsanyi and Selten (1987) selection theory,
which specifies a single outcome for each game, is the strongest. Next come refinements of
Nash equilibrium, like Kohlberg and Mertens (1986); next, Nash equilibrium (1951) itself;
next correlated equilibrium; and then interactive rationality. Weaker is rationalizability
(Bernheim (1984), Pearce (1984)) and weaker still, the Kadane-Larkey ‘theory’ ” (p. 24).

This is a very reasonable view of the situation, I think. As the theories rise in strength,
they require more and more restrictive assumptions about what the players believe about
each other. Thus more and more is packed into phrases like “common knowledge,” “common
knowledge of rationality” and “common priors.” The usefulness of these special assumptions
has to be determined case-by-case in application. Is the strength of the assumption justified
in the application? This is also what Shubik (1983) is suggesting.

In emphasizing the general case, I would not denigrate the special cases. Rather I would
simply remind the reader that in each use, the assumptions underlying a special case have
to be justified.

11.6.6 Iterated Prisoner’s Dilemma

Fool me once, shame on you. Fool me twice, shame on me.

Unless some day somebody trusts somebody, there’ll be nothing left on earth excepting fishes.
—The King and I

Suppose now that the Prisoner’s Dilemma, instead of being played once, is played n
times. Does repeated play affect the player’s strategies?

From the viewpoint of classical decision theory, the answer is “no.” At the nth iteration,
it is uniquely optimal for each player to confess, or, in other words, to defect. Under the
assumption that each player knows the other player to be “rational,” both players then are
sure that the other will confess in the last iteration. Now consider the (n − 1)st iteration.
Knowing the outcome of the last game, it is optimal for each player to confess on the (n−1)st

game, since there is nothing to gain by not confessing. By backward induction, both players
confess in each of the n iterations.

By contrast, a Bayesian player is not so constrained. For example, suppose our Bayesian
believes that if he confesses in the first game, his opponent will confess at every iteration
after that, while if he does not confess at the first iteration, his opponent will never confess at
all ensuing iterations. In such a circumstance, clearly not confessing is the expected-utility
maximizing choice at the first game. The calculations involved in the Bayesian approach to
the iterated Prisoner’s Dilemma can be substantial, but see Wilson (1986).
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There is a vast literature about iterated Prisoner’s Dilemmas. One line of work is exper-
imental (Rapoport and Chammah (1965)), while another involves computer experiments
of strategies against each other. Axelrod (1984)’s contest among strategies was won by
Rapoport’s “tit for tat” strategy, which cooperates on its first iteration, and on subsequent
iterations makes whatever decision the other player made on the previous iteration.

Axelrod’s view of optimal play for the iterated Prisoner’s Dilemma straddles the two
views being contrasted here. On the one hand he endorses the backward induction argument,
writing “Thus two egoists [he means utility maximizers, JBK] playing the game once will
both choose their dominant choice, defection, and each will get less than they both could
have gotten if they had cooperated. If the game is played a known finite number of times,
the players still have no incentive to cooperate” (1984, p. 10). On the other hand he offers
this explanation for cooperation: “What makes it possible for cooperation to emerge is the
fact that the players might meet again. This possibility means that the choices made today
not only determine the outcome of this move, but can also influence the later choices of the
players. The future can therefore cast a shadow back upon the present and thereby affect
the current strategic situation” (1984, p. 12). That the number of iterations is uncertain
seems irrelevant to the first argument, since however many iterations are to be played,
defection is optimal from that perspective. Axelrod seems not to notice or address the
apparent contradiction between these two arguments, the first based on the assumption
that the other player is sure to defect, while the second does not make that assumption.

The upshot of both the experimental and simulation work is that always confessing is
not what people do, and not the strategy that wins tournaments. This might be regarded as
evidence that the standard of rationality proposed by classical game theory is not necessarily
good advice.

11.6.7 Centipede Game

Consider the game illustrated in Figure 11.4:

  
1 1 22

rr

D   d D   d

(1,0) (0,2) (3,1) (2,4)

(3,3)R R

Figure 11.4: Extensive form of the Centipede Game.

To understand the diagram, player 1 decides between D and R at each stage, while
player 2 decides between d and r. A choice of D or d ends the game; a choice of R or
r passes the choice to the other player, except for 2’s second choice, which also ends the
game. The game proceeds from left to right. The payoffs (x, y) mean that player 1 gets x
and player 2 gets y.

Consider first 2’s second choice (if reached). Choosing r results in (3, 3), which gives 3
for player 2. Choice of d results in (2, 4), which means 4 for player 2. Hence, player 2 prefers
d. Now consider 1’s second choice (if reached). Choice of R passes the choice to player 2,
leading (if player 2 accepts the analysis above) to a payoff of 2 for player 1. However, choice
of D results in 3 for player 1, which she prefers. Hence choice of D is best for player 1, under
these assumptions. Now consider player 2’s first choice (if reached). If player 1 behaves as
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predicted above, the resulting payoff is 1 to player 2 from the choice of R. Otherwise he
chooses d, resulting in a payoff of 2 for player 2. Hence his best choice is d, and this results
in 0 for player 1. Hence at player 1’s first choice, choosing D, resulting in 1, would be the
best choice. If the players could make an enforceable agreement, they would both benefit
from the choices R and r, leading to a (3, 3) payoff. A similar game with 100 stages resulted
in the name “centipede.”

The analysis here relies on each player believing that each player (including herself) will
play according to the backward induction. Introduced by Rosenthal (1981), the experimental
results of McKelvey and Palfrey (1992) and Nagel and Tang (1998) show that the first player
does not always choose D at the first choice. The message is the same: backward induction
is not necessarily a good prediction of behavior.

11.6.8 Guessing a multiple of the average

Suppose there are n people in a group. Each person is to choose a number in a set S. A
prize is divided among those whose guess is closest to p times the average of all the guesses,
which we’ll call the target. Thus this game is characterized by n, S and p.

If everyone chooses the same number xεS, then each person gets 1/n of the prize.
Suppose the game is played on the set S of real numbers [a, b], with a ≥ 0, and p < 1. Then
the average cannot be greater than b, so the target cannot be greater than pb. If everyone
understands this and acts on it, there is effectively a new game played on [a, pb], provided
pb > a. If pb ≤ a, choice of a is uniquely optimal. Successive iterations of this reasoning lead
everyone to choose a. (Similarly, if p > 1, iteration of this reasoning would lead everyone to
choose b when a > 0.) This “solution” requires that everyone in the group understands and
acts on this induction.

When S is limited to integers between two integers a and b, and again p < 1, the
argument is similar except that the upper limit of the new game after an iteration is the
integer closest to pb, which might be b iteself. In this case the above argument does not
necessarily reduce to the single point a. Thus if p = 2/3, a = 0 and b = 2, pb = 4/3, so the
closest integer is 1. However, if b = 1, pb = 2/3 and again the closest integer is 1. Thus,
if one believes that everyone else is following this argument, the set of choices reduces to
{0, 1}, but is not further reduced. Again, if p > 1, then a > 0 is raised to the closest integer
to ap, which again might be a itself.

What the backward induction leaves out is a description of who the members of the group
are, and consequently how likely they are to follow the path outlined above. Members of the
(fictional) “Society for the Propagation of Induction in Game Theory” are likely to behave
differently than would a class of seventh grade students. A wise player of the game would
want to know about the other players, and to think about their likely behavior in making
a choice.

11.6.9 References

Keynes (1936) invented a game to explain his view of stock market prices. He imagines a
contest in which contestants are provided photographs of women, and are asked to choose
which six are most beautiful. Those that choose the most popular are eligible for a prize.
The point is not to choose what you find to be the most beautiful, but what you predict
others will. Or, to take it one level deeper, to predict what others will predict others will
choose, etc. This is like the game of predicting p times the average, with p = 1. Nagel (1995)
has done empirical work on how some people behave in the game with p < 1. Some of the
literature on this game concentrates on p = 2/3, and call it “Guess 2/3 of the average.”
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11.6.10 Summary

There is a growing literature on Bayesian approaches to optimal decisions in the context
of simultaneous move games. At this time, there appears to be a glimmer of hope of a
consensus: a hierarchy of assumptions ranging at the low end from only the assumption
of coherence (Kadane-Larkey) to, at the high end, the Harsanyi-Selten work that gives a
single recommended strategy. The choice of which assumptions are reasonable depends on
the context of a given application.

11.6.11 Exercises

1. Vocabulary: State in your own words the meaning of

(a) constant-sum game

(b) minimax strategy

(c) maximin strategy

(d) value of a zero-sum, 2 person game

(e) dominance

(f) n-person game

2. Why might a good prescriptive theory of how to play a game require a good descriptive
theory of the opponents’ play?

3. Suppose, in the single iteration Prisoner’s Dilemma (section 11.6.4), that the prisoner’s
loss function is monotone but not necessarily linear in the amount of jail time they
serve. This means that each prefers less jail time to more jail time. Show that under this
assumption the same result applies: it is optimal for each to confess.

4. Consider the following modification of the iterated Prisoner’s Dilemma problem. Instead
of punishments, years in jail, suppose the problem is phrased in terms of rewards. If both
cooperate, they each get 3 points. If both defect, they each get 1 point. If one cooperates
and the other defects, the defector gets 5 points and the cooperator 0 points. Suppose the
player to be advised wishes to maximize expected points. [By problem 3, this change does
not affect the fact that defection is the optimal strategy in a single iteration situation.]
Now suppose that the player we advise is to play a five-iteration Prisoner’s Dilemma as
specified in the above paragraph against each of 10 players. He will then choose one of
these 10 players to play a 100-iteration Prisoner’s Dilemma with. How would you advise
our player to play in the first phase, which player should he choose for the 100-iteration
game, and how should he play in the 100-iteration second phase?
Explain your reasoning.

5. Recall that a median of an uncertain quantity X is a number m such that P{X ≤ m} ≥
1/2 and P{X ≥ m} ≥ 1/2.

(a) Does the induction for the “guessing p times the mean” game also work for the
“guessing p times the median” game?

(b) More generally, the qth quantile of an uncertain quantity X is a number xq such that
P{X ≤ xq} ≥ q and P{X ≥ xq} ≥ 1 − q. [x1/2 is the median.] Does the induction

work for the “guessing p times the qth quantile” game?

11.7 The Allais and Ellsberg Paradoxes

Honey, you can believe nearly everything I say.
—An unknown country and western song

Paradoxes play an important role in a normative theory, such as Bayesian decision
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theory. A single unresolved paradox could lead to the abandonment of the theory, as it
would have been shown to be an inadequate guide to optimal behavior. Such an example
would have the character of proposing a scenario and reasonable seeming choices within it
that contradict the normative theory. The two most serious challenges to Bayesian theory
were proposed by Allais and by Ellsberg.

11.7.1 The Allais Paradox

Allais (1953) proposed a paradox, which is discussed extensively in Savage (1954). In situa-
tion 1, would you prefer choice A ($500,000 for sure) to choice B ($500,000 with probability
.89, $2,500,000 with probability 0.10 and status quo ($0) with probability 0.01)? In situation
2, would you prefer choice C ($500,000 with probability 0.11, and status quo otherwise) or
choice D ($2,500,000 with probability .1, status quo otherwise)? Allais proposes that many
would choose A in situation 1 and D in situation 2, and that these choices, jointly, contradict
expected utility theory.

Allais’s argument is as follows: Your expected utility for choices A and B are respectively
U($500,000) and .89 U($500,000) + .1 U($2,500,000) + .01 U($0). Therefore you will prefer
A to B in situation 1 if and only if

U($500, 000) > .89 U($500, 000) + .1 U($2, 500, 000) + .01 U($0),

if and only if
.11 U($500, 000) > .1 U($2, 500, 000) + .01 U($0). (11.57)

In situation 2, your expected utility for choice D is

.1 U($2, 500, 000) + .9 U($0),

while your expected utility for choice C is

.11 U($500, 000) + .89 U($0).

Hence you will prefer D to C in situation 2 if and only if

.1 U($2, 500, 000) + .9 U($0) > .11 U($500, 000) + .89 U($0),

if and only if
.1 U($2, 500, 000) + .01 U($0) > .11 U($500, 000). (11.58)

But your utilities cannot satisfy both (11.57) and (11.58). Therefore, Allais argues, a rational
Bayesian agent cannot prefer A to B in situation 1 and D to C in situation 2. Allais’ argument
depends on the acceptance of the proffered probabilities .89, .1 and 0.1 as your subjective
probabilities.

Savage (1954) agreed that his first impulse was to choose A and D, and gave the following
table:

Ticket Number
1 2-11 12-100

Situation 1
Choice A 5 5 5
Choice B 0 25 5

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Situation 2
Choice C 5 5 0
Choice D 0 25 0

Prizes, in units of $100,000
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Based on this analysis, Savage used the sure-thing principle to change his choice in situation
2 from D to C. [It is not clear whether Allais’s subjects would choose A and D if those choices
were presented in Savage’s table.]

In situation 1, if I am to contemplate choice B, I would be very curious about the
random mechanism that would be used to settle the gamble, and about the incentives faced
by the kind person making these offers. I might well decide that my subjective probability of
getting nothing if I chose B is higher than 0.01. Thus, I might have some healthy skepticism
about the offered probabilities. Simply because someone says I have a high probability of
winning some fabulous prize doesn’t imply that I am required to believe them.

By contrast, in situation 2, I am unlikely to win anything anyway, and hence am about
equally vulnerable to being cheated whether I choose C or D.

Suppose my probability is θ that the person offering me a gamble will cheat me by
giving me the lowest payoff possible in whatever gamble I choose. Also suppose, without
loss of generality, that my utility function satisfies 1 = u($2, 500, 000) > u($500, 000) =
w > u($0) = 0. Then choice A has expected utility w, while choice B has expected utility
(1− θ)[.89w + .1]. Thus subjective expected utility favors A over B if and only if

w >(1− θ)[.89w + 0.1], or

w >
(0.1)(1− θ)

1− (1− θ)(0.89)
. (11.59)

Similarly D is preferred over C if

(1− θ)(0.1) >(1− θ)(0.11)w, so

0.1

0.11
>w. (11.60)

Thus we can ask, under what conditions on θ is there a w satisfying both (11.59) and

(11.60), which requires 0.1
0.11 >

(0.1)(1−θ)
1−(1−θ)(0.89) .

But this inequality holds if and only if

1− (1− θ)(.89) >(1− θ)(.11), or equivalently

1 >1− θ, or

θ >0. (11.61)

Thus choices A and D are compatible provided I put any positive probability θ on being
cheated. If I choose A in situation 1, I can sue if I don’t get paid my $500,000. With choices
B, C and D, the situation is much murkier.

11.7.2 The Ellsberg Paradox

Suppose there are two urns containing red and black balls. One ball is to be drawn at
random from one of the urns. To “bet on BlackI” means you choose to have a ball drawn
from urn 1, and will win $1 if the ball drawn is black, and nothing otherwise. To “bet on
RedI , BlackII or RedII” are defined similarly. Urn 1 contains 100 balls, some of which are
red and some black, but you do not know how many of each are in urn 1. In urn 2, you
confirm that there are 50 red balls and 50 black balls.

Now consider the following questions:

#1 Do you prefer to bet on RedI or BlackI , or are you indifferent?

#2 Do you prefer to bet on RedII or BlackII , or are you indifferent?

#3 Do you prefer to bet on RedI or RedII , or are you indifferent?
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#4 Do you prefer to bet on BlackI or BlackII , or are you indifferent?

Many people are indifferent in the first two choices, but prefer RedII to RedI and BlackII
to BlackI . Suppose they are your choices. Are these choices coherent?

With slight abuse of notation, let BlackI be the event that a black ball is drawn from
urn 1, and similarly for RedI , BlackII and RedII .

Indifference in question #1 implies that, for you,

P{RedI} = P{BlackI}. (11.62)

Since in addition
P{RedI}+ P{BlackI} = 1, we conclude

P{RedI} = P{BlackI} = 1/2. (11.63)

Similarly indifference in question #2 implies that, for you,

P{RedII} = P{BlackII} = 1/2. (11.64)

Then it is incoherent to prefer RedII to RedI , and to prefer BlackII to BlackI . Thus these
answers appear to be incoherent. But are they?

I note that the experimenter probably knows the content of urn 1, which is unknown
to you. By deciding which bet is “on,” the experimenter might choose to put you at a
disadvantage. Not knowing the experimenter’s utilities, you don’t know if he wants to do
this or not. Only by choosing RedII over RedI and BlackII over BlackI can you ensure
yourself against such manipulation.

Suppose your probability is θ1 that, if the proportion of red balls in urn 1 is less than
1/2 and you bet on RedI in question #3, the experimenter will malevolently choose to
enact question #3. With probability 1− θ1, the bet will be enacted without regard to the
contents of urn 1. Similarly, suppose your probability is θ2 that, if the proportion of black
balls in urn 1 is less than 1/2 and you bet on BlackI in question #4, the experimenter will
malevolently choose to enact question #4. With probability 1− θ2, under these conditions,
the bet occurs regardless of the contents of urn 1.

Let P̃R be the proportion of red balls in urn 1. P̃R is a known constant to the experi-
menter, but is a random variable to you. Let PR be the expectation, to you, of P̃R. Thus
PR is your probability for a red ball being drawn from urn 1. By your answers to question
1, we know that PR = 1/2. We will suppose that P̃R has positive variance for you, so
you put positive probability on the event {P̃R > 1/2} and on the event {P̃R < 1/2}. Let
m1 be your conditional expectation of P̃R if P̃R is less than or equal to 1/2. Similarly, let
m2 be your conditional expectation of 1 − P̃R if P̃R is greater than or equal to 1/2. Then
0 ≤ m1 < 1/2 and 0 ≤ m2 < 1/2. With this notation, your probability of winning if you
bet on RedI in question #3 is (1 − θ1)PR + θ1m1. Similarly if you bet BlackI in question
#4, your probability of winning is (1− θ2)(1− PR) + θ2m2.

So the question is whether there are values of θ1 and θ2 such that

1

2
>

(1− θ1)

2
+ θ1m1 (11.65)

and
1

2
>

(1− θ2)

2
+ θ2m2. (11.66)

But
1− θ1

2
+ θ1m1 =

1

2
− θ1(

1

2
−m1) > 1/2, for all θ1 > 0. (11.67)

Similarly
1− θ2

2
+ θ2m2 > 1/2 for all θ2 > 0. (11.68)
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The final question to address is whether there is a probability distribution on P̃R satisfying
the following constraints:

(a) The conditional mean of P̃R if P̃R ≤ 1/2 is m1.

(b) The conditional mean of P̃R if P̃R ≥ 1/2 is m2.

(c) The mean of P̃R is 1/2.

Consider the distribution for P̃R that puts all its probability on m1 < 1/2 and on 1 −
m2 > 1/2. Then (a) and (b) are automatically satisfied. Suppose m1 has probability (1/2−
m2)/(1 − m1 − m2) > 0 and m2 has probability (1/2 − m1)/(1 − m1 − m2) > 0. These
probabilities sum to 1, since

(1/2−m2)

1−m1 −m2
+

1/2−m1

1−m1 −m2
=

1−m1 −m2

1−m1 −m2
= 1. (11.69)

The mean of P̃R is

E(P̃R) =
m1(1/2−m2)

1−m1 −m2
+

(1−m2)(1/2−m1)

1−m1 −m2

=
(1/2)m1 −m1m2 + 1/2− (1/2)m2 −m1 +m1m2

1−m1 −m2

=
1/2−m1/2−m2/2

1−m1 −m2
= 1/2.

Therefore (c) is satisfied.

Thus if a person has any suspicion (i.e., θ1 > 0, θ2 > 0), then the common choices are
coherent.

11.7.3 What do these resolutions of the paradoxes imply for elicitation?

My resolution of both paradoxes involves what I call healthy skepticism of the experimenter.
In both cases, I would argue that the setup of the paradox enhances reasonable fear. In the
Allais case, the enormous rewards involved provide the experimenter the motive to cheat. In
the Ellsberg case, the mechanism, and hence the opportunity to cheat, is all too apparent.

But might not the same skepticism affect every elicitation of probability? Yes, it would,
but it need not. Much depends on the circumstances of the elicitation, including anonymity,
whether the person doing the elicitation has an obvious stake in the outcome, etc. Reason-
able elicitations are performed without these issues apparently corrupting them. But these
paradoxes serve a healthy warning that the entire circumstances of an elicitation must be
thought about carefully. See Kadane and Winkler (1988) for more on the impact of incentive
effects on elicitation.

11.7.4 Notes and references

The Allais Paradox first appeared in Allais (1953) and is commented on by Savage (1954,
pp. 101-103). The Ellsberg Paradox is from Ellsberg (1961). They appeared at a time in
which it was widely understood that utilities might differ from person to person, but many
still held the idea that probabilities were interpersonal. The discussion in this section is
based on Kadane (1992).

The Allais Paradox led Machina (1982, 2005) and others to explore the consequences to
expected utility theory of abandoning the sure-thing principle.
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11.7.5 Summary

This section shows how the paradoxes of Allais and Ellsberg can be explained by “healthy
skepticism,” which essentially asks “what’s in it for the other guy?” In this sense, it is an
explanation with a game-theoretical flavor.

11.7.6 Exercises

1. Vocabulary: Explain in your own words

(a) Allais Paradox

(b) Ellsberg Paradox

(c) Healthy Skepticism

2. Do you think healthy skepticism offers a good explanation of why coherent actors would
make the choices prescribed by the Allais and Ellsberg Paradoxes? Why or why not?

11.8 Forming a Bayesian group

Make of our hands, one hand
Make of our hearts, one heart

—West Side Story

Can we all get along?
—Rodney King

This section concerns the conditions under which two Bayesian agents can find a
Bayesian compromise, that is, find a probability and utility that represents them together.
The Bayesian agents are each assumed to have probabilities in the sense of Chapter 1 and
utilities in the sense of Chapter 7. I do not assume interpersonal utility comparisons, the
idea that one person cares more than another about a particular choice (see Arrow (1978),
Elster and Roemer (1991), Harsanyi (1955), and Hausman (1995) for commentary).

I also must specify the sense in which I use the word “compromise.” What I mean is
the satisfaction of a weak Pareto condition, which says that if each of the agents strictly
prefer one option to another, then so must the compromise. I seek conditions under which
there is a probability and utility for the agents jointly, so that they can be modeled as a
Bayesian group.

One solution to this problem is autocratic, that is, to choose one individual and adopt
that person’s probabilities and utilities. While such a solution satisfies the weak Pareto
condition, it does not comport with what in ordinary language might be thought of as
a compromise. To introduce this result, recall from section 7.3 that a consequence cij is
the outcome if you decide to do decision di and that state-of-the-world θj ensues. Each of
the two Bayesians, whom we’ll call Dick and Jane, have utility functions over the set of
consequences. These utility functions are denoted UD(·) and UJ(·), respectively.

Additionally, Dick and Jane are assumed to have probability distributions on Θ, denoted
respectively pD(·) and pJ(·). The following definitions recur repeatedly:

1. pJ(·) ≡ pD(·). [Dick and Jane are said to agree in probability.]

2. UJ(·) ≡ rUD(·) + s for some constants r > 0 and s. [Dick and Jane are said to agree in
utility.]

If Dick and Jane are not distinct, there are no compromises that need to be made.
Structurally, I assume that Dick and Jane agree about the distribution of one uniformly

distributed random variable. Thus the set of prizes may be taken to be a convex set, because
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Case Utility Probability Result Lemma
1 lina, r > 0 yes o.a.c.b 11.8.8
2 lina, r > 0 no compromises 11.8.2
3 lina, r < 0 yes compromises 11.8.2
4 lina, r < 0 no o.a.c.b 11.8.7
5 nonlinc yes compromises 11.8.2
6 nonlinc no o.a.cb 11.8.6

alin: UJ (·) = rUD(·) + s, r 6= 0
bonly autocratic compromises
cnonlin: a fails for all r 6= 0, s

Table 11.1: Cases for Theorem 11.8.1.

mixtures of prizes are available, and mean the same to both parties. This device is equivalent
to the “horse lotteries” of Anscombe and Aumann (1963).

With these remarks as introduction, I can now state the result to be proved in this
section:

Theorem 11.8.1. There exist non-autocratic, weak Pareto compromises for two Bayesians
if and only if they either agree in probability, but not in utility, or agree in utility, but not
in probability.

The proof of Theorem 11.8.1 divides into six cases, as shown in Table 11.1. There are
two important facts to be gleaned from this table. First, the six cases are disjoint and do
not omit possibilities claimed by the theorem. Second, if each of the results stated in the
table is proved by the related lemma as claimed, then the theorem is established.

It is relatively simple to prove the existence of non-autocratic Pareto-respecting com-
promises when they exist, so cases 2, 3 and 5 are dealt with in the following lemma.

Lemma 11.8.2 (Existence of Compromises). In cases 2, 3 and 5, there are non-autocratic
compromises.

Proof. Case 2: Here the parties agree in utility, but not in probability. Let the consensus
utility U be U(·) = UD(·), (UJ would do as well), and let the consensus probability P (·)
satisfy

P (·) = αPD(·) + (1− α)PJ(·)
for some α, 0 < α < 1. Suppose both Dick and Jane strictly prefer decision d1 to decision
d2, which means

UD(d1) > UD(d2) and UJ(d1) > UJ(d2).

Then

U(d1)− U(d2) =

∫
[U(d1, θ)− U(d2, θ)] d [αPD(θ) + (1− α)PJ(θ)]

=α

∫
[UD(d1, θ)− UD(d2, θ)] dPD(θ)

+ (1− α)

∫
[UD(d1, θ)− UD(d2, θ)] dPJ(θ)

=α [UD(d1)− UD(d2)]

+ (1− α)

∫
[(rUJ(d1, θ) + s)− (rUJ(d2, θ) + s)] dPJ(θ)

=α [UD(d1)− UD(d2)] + (1− α)r [UJ(d1)− UJ(d2)]

>0.
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Thus (U,P ) respects the Pareto condition. Since P does not coincide with either PD or PJ ,
the pair (U,P ) is a non-autocratic, Pareto-respecting compromise.

Case 3: In this case, because r < 0, their utilities are directly opposed, but their proba-
bilities agree. Suppose Dick strictly prefers d1 to d2, so UD(d1) > UD(d2).

Then

UJ(d1)− UJ(d2) =

∫
[UJ(d1, θ)− UJ(d2, θ)] dPJ(θ)

=

∫
[(rUD(d1, θ) + s)− (rUD(d2, θ) + s)] dPJ(θ)

=r

∫
[UD(d1, θ)− UD(d2, θ)] dPD(θ)

=r [UD(d1)− UD(d2)]

< 0.

Hence whenever Dick strictly prefers d1 to d2, Jane strictly prefers d2 to d1. Then the Pareto
condition is vacuous, and every pair (U,P ) is a Pareto-respecting compromise.

Case 5: In this case, the utilities of the parties are not linearly related, so there do
not exist r 6= 0 and s such that UJ(·) = rUD(·) + s, and PD(·) ≡ PJ(·). In this case let
P = PD(·) = PJ(·), and let U(·) = αUD(·) + (1−α)UJ(·) after some α, 0 < α < 1. Suppose
that Dick and Jane both strictly prefer d1 to d2, or, in notation, UD(d1) > UD(d2) and
UJ(d1) > UJ(d2).

Then

U(d1)− U(d2) =

∫ ([
αUD(d1, θ) + (1− α)UJ(d1, θ)

]
−[

αUD(d2, θ) + (1− α)UJ(d2, θ)
])
dP (θ)

=α

∫ [
UD(d1, θ)− UD(d2, θ)

]
dPD(θ)

+ (1− α)

∫ [
UJ(d1, θ)− UJ(d2, θ)

]
dPJ(θ)

=α[UD(d1)− UD(d2)] + (1− α)
[
UJ(d1)− UJ(d2)

]
> 0.

Thus the (U,P ) pair is Pareto-respecting. Since in addition it is not autocratic, this pair
satisfies the conditions of the lemma.

Lemma 11.8.3. In Case 6, reversing the roles of Dick and Jane if necessary, there exists
an event F and consequences r∗, r∗ and c satisfying the following:

a) PD(F ) < PJ(F )

b) UJ(r∗) = UD(r∗) = 1

UJ(r∗) = UJ(r∗) = 0

UD(c) < UJ(c)

Proof. In this case, UJ(·) 6= rUD(·) + s for all r 6= 0 and s, and PD(·) 6= PJ(·).
Dick is assumed to have some strict preferences (so his utility is not constant). Thus

there exist consequences r∗ and r∗ satisfying UD(r∗) > UD(r∗). There are now three cases
to consider:

Case A: For all consequences such that UD(r∗) > UD(r∗), Jane’s preferences are such that
UJ(r∗) < UJ(r∗).
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Case B: There are consequences such that UD(r∗) > UD(r∗) and UJ(r∗) = UJ(r∗). Similarly
there are consequences t∗ and t∗ such that UJ(t∗) > UJ(t∗) and UD(t∗) = UD(t∗).

Case C: There are consequences r∗ and r∗ such that UD(r∗) > UD(r∗) and UJ(r∗) > UJ(r∗).

Below Case A is shown to contradict the utility assumption, Case B is shown to reduce
to Case C, and Case C leads to the conclusion of the lemma.

Case A: If UD(r∗) > UD(r∗) implies UJ(r∗) < UJ(r∗). then we must have

UJ(·) = rUD(·) + s with r < 0

and PD(·) = PJ(·), both of which contract the assumptions of the case. For more on this,
see Kadane (1985).

Case B:
Let

r∗∗ =

{
r∗ with probability 1/2

t∗ with probability 1/2

and

r∗∗ =

{
r∗ with probability 1/2

t∗ with probability 1/2
.

Then

EDUD(r∗∗) =
1

2
UD(r∗) +

1

2
UD(t∗)

EDUD(r∗∗) =
1

2
UD(r∗) +

1

2
UD(t∗)

EJUJ(r∗∗) =
1

2
UJ(r∗) +

1

2
UJ(t∗)

EJUJ(r∗∗) =
1

2
UJ(r∗) +

1

2
UJ(t∗).

Both parties prefer r∗∗ to r∗∗. Since r∗∗ and r∗∗ are in the convex set of rewards, they are
legitimate rewards themselves, and hence satisfy case C.

Case C: In this case, there are r∗ and r∗ such that UD(r∗) > UD(r∗) and UJ(r∗) >
UJ(r∗). Without loss of generality, we may normalize Dick and Jane’s utilities so that

UD(r∗) =UJ(r∗) = 1

UD(r∗) =UJ(r∗) = 0.

If there were no reward such that UD(c) 6= UJ(c), then we would have UD(·) = UJ(·),
which would contradict the utility assumption of case 6. Hence there is some c such that
UD(c) 6= UJ(c). We may identify Dick as the party such that UD(c) < UJ(c). This shows
part b) of the lemma.

To show part a), since PD( ) 6= PJ( ), there is some event G such that PD(G) 6= PJ(G).
If PD(G) < PJ(G), let F = G. If PD(G) > PJ(G), then PD(G) < PJ(G), so let F = G. In
both cases, PD(F ) < PJ(F ), which is part a).

The strategy we now pursue is to see what utilities U(c) and probabilities P (F ), can-
didates for the compromise utility and probability of Dick and Jane, are compatible with
Pareto optimality. There may be many choices of c satisfying condition b of Lemma 11.8.3.

Let Z1 = UD(c) and Z2 = UJ(c).

Lemma 11.8.4. Under the conditions of Lemma 11.8.3, there exists a choice of c such that
0 < Z1 < Z2 < 1.
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The interpretation of Lemma 11.8.4 is that this new consequence lies strictly between
r∗ and r∗ in utility for both parties.

Proof. To this end, choose 0 < α < 1/2 (there will be further constraints on α imposed
later) and let cN = αr∗ + αr∗ + (1− 2α)c.

Then

UD(cN ) = α+ (1− 2α)Z1

UJ(cN ) = α+ (1− 2α)Z2. (11.70)

Since Z1 < Z2, UD(cN ) < UJ(cN ), so condition b) is satisfied. What remains to be shown
is that α can be chosen so that

0 < UD(cN ) < 1

and
0 < UJ(cN ) < 1.

To that end,

α+ (1− 2α)Zi < 1

iff (1− 2α)Zi < 1− α, or

Zi <
1− α
1− 2α

i = 1, 2.

Similarly 0 < α+ (1− 2α)Zi iff
(1− 2α)Zi > −α

or
Zi > −α/(1− 2α) , i = 1, 2.

These are both satisfied if

−α
1− 2α

< Zi <
1− α
1− 2α

for i = 1, 2. (11.71)

Now if α→ 1/2 from below, −α
1−2α → −∞ and 1−α

1−2α →∞. Thus for fixed Z1 and Z2, there
are values of α, less than but sufficiently close to 1/2, so that (11.71) is satisfied.

Indeed an inspection of equation (11.70) shows that choosing α close to 1/2 arbitrarily
diminishes the influence of the term (1−2α)Zi on the sum, which is why this works. For this
argument to work, it is necessary that utility be finite, so that Zi 6=∞ or −∞ in (11.71).

Recalling (11.70), we now have, without loss of generality,

0 < Z1 < Z2 < 1. (11.72)

This completes the proof of Lemma 11.8.4.

We now suppose that there may be a probability p and a utility U satisfying the Pareto
principle. It will turn out that the only such p and U are autocratic, that is, identical to
those of one of the parties. The technique is to use the Pareto condition repeatedly. To do
so, I can choose decisions to compare. When I choose decisions such that both Dick and
Jane prefer one to the other, then so must the consensus. This gives me control over what
the consensus utility and probability can be. The choice of which decisions to compare is
not always obvious.

The first step is to normalize U . Both parties prefer r∗ to r∗. Therefore the consensus
utility U must also prefer r∗ to r∗. Consequently we may normalize U so that U(r∗) = 1
and U(r∗) = 0. With U so normalized, we may state the next lemma.
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Lemma 11.8.5. If r∗, r
∗, c and F satisfy the conditons of Lemma 11.8.4, then there is one

of the parties (either Dick or Jane), whose utilities and probabilities will be subscripted with
a ∗, such that p∗(F ) = p(F ) and U∗(c) = U(c).

[The party denoted ∗ will later turn out to be the autocrat.]

Proof. I first show that the consensus utility U(c), (if it exists) must satisfy Z1 ≤ U(c) ≤ Z2.
To show Z1 ≤ U(c), consider the decision d1(ε) that yields r∗ with probability Z1 − ε

and r∗ otherwise, with 0 < ε < Z1. Also let decision d2 yield c with probability 1.
For both parties

UD(d1(ε)) =Z1 − ε = UJ(d1(ε)).

UD(d2) =Z1 and UJ(d2) = Z2.

Thus both parties prefer d2 to d1(ε), for all ε > 0.
Therefore so must the consensus utility. Hence we must have

Z1 − ε < U(c) for all ε, 0 < ε < Z1.

Therefore Z1 ≤ U(c).
Similarly consider the decision d3(ε) that yields r∗ with probability Z2 +ε, and r∗ other-

wise, where 0 < ε < 1−Z2. To both parties the expected utility of d3(ε) is Z2+ε, larger than
that of d2. Therefore the consensus utility must prefer d3(ε) to d2 for all ε, 0 < ε < 1− Z2.

Thus we must have

U(c) < Z2 + ε for all ε, 0 < ε < 1− Z2,

i.e., U(c) ≤ Z2.
Hence we have

Z1 ≤ U(c) ≤ Z2. (11.73)

I now show that the Pareto condition implies that pD(F ) ≤ p(F ), where p(F ) is the
compromise probability. If pD(F ) = 0 there is nothing to prove. Then suppose that pD(F ) >
0. Let ε be chosen so that 0 < ε < pD(F ). Consider the decision d4 that yields r∗ if F occurs
and r∗ if F does not occur. Consider also the family of decisions d5(ε) that yields r∗ with
probability pD(F )−ε and r∗ otherwise. The specified d4 has expected utility pD(F ) to Dick
and pJ(F ) to Jane. So the expected utility to each is pD(F ) or higher. The expected utility
of d5(ε) is pD(F )− ε to both. Therefore for each ε, they prefer d4 to d5(ε). Therefore, by the
Pareto condition, so must the consensus. The consensus expected utility of d4 is p(F ), and
of d5(ε) is again pD(F )− ε. Therefore, we must have, for each ε satisfying pD(F ) > ε > 0,

pD(F )− ε < p(F ).

Therefore we have
pD(F ) ≤ p(F ). (11.74)

To show that p(F ) ≤ pJ(F ), if pJ(F ) = 1 there is nothing to prove. So suppose pJ(F ) < 1
and choose ε > 0 so that pJ(F ) < 1− ε < 1. Now consider decisions d6(ε) yielding r∗ with
probability pJ(F ) + ε, and r∗ otherwise. Then d6(ε) has expected utility pJ(F ) + ε. Since d4

has expected utility no higher than pJ(F ) to both Dick and Jane, they both prefer d6(ε) to
d4 for all ε satisfying 0 < ε < 1− pJ(F ). Therefore so must the consensus, using the Pareto
condition. Hence we must have

pJ(F ) + ε > p(F ) for all ε, 0 < ε < 1− pJ(F ).
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Consequently

pJ(F ) ≥ p(F ). (11.75)

We may summarize (11.74) and (11.75) by stating that the consensus probability p(F ) must
satisfy

pD(F ) ≤ p(F ) ≤ pJ(F ). (11.76)

Equations (11.73) and (11.76) show that the consensus p(F ) and U(c), if they exist, are
constrained to lie in a rectangle whose lower left corner is (pD(F ), UD(c)) and whose upper
right corner is (pJ(F ), UJ(c)). The last part of this argument shows that only those two
corner points, which correspond to autocratic solutions, are possible. This is shown using
decisions that are somewhat more complicated than those we studied above.

To simplify the notation, let x1 = pD(F ), x2 = pJ(F ), and x0 = x1+x2

2 . Similarly,

recalling Z1 = UD(c) and Z2 = UJ(c), let Z0 = Z1+Z2

2 .

Now let d7(ε) be a decision with the following consequences:

If F occurs, c has probability 1− x0. Otherwise r∗ has probability x0.

If F occurs, r∗ has probability x1Z2+x2Z1

2 + ε and r∗ has probability 1− x1Z2+x2Z1

2 − ε.
Also let d8(ε) be a decision with these consequences:

If F occurs, r∗ happens with probability Z2(1−x1)+Z1(1−x2)
2 −ε, and otherwise r∗ happens.

If F occurs, c happens with probability x0, and r∗ happens otherwise.

Obviously ε > 0 can be chosen small enough that all the probabilities above involving ε
are positive and less than 1.

Now I compute the expected utility of the difference between d7(ε) and d8(ε) for each
of the parties.

For i = D,J ,

Ei[Ui(d7(ε))−Ui(d8(ε))] = pi(F )

{
− Z2(1− x1)− Z1(1− x2)

2
− ε
}

(11.77)

+pi(F )Ui(c){1− x0}+ (1− pi(F ))

{
x1Z2 + x2Z1

2

+ ε

}
+ (1− pi(F ))Ui(c){−x0} (11.78)

=ε+ pi(F )U1(c)− pi(F )Z0 − Ui(c)x0 +
x1Z2 + x2Z1

2
(11.79)

=(pi(F )− x0)(Ui(c)− Z0) +
x1Z2 + x2Z1

2
− x0Z0 + ε. (11.80)

We now re-express the constant

x1Z2 + x2Z1

2
− x0Z0

=
x1Z2 + x2Z1

2
−
(
x1 + x2

2

)(
Z1 + Z2

2

)
=

1

4

{
2x1Z2 + 2x2Z1 − x1Z1 − x1Z2 − x2Z1 − x2Z2

}
=

1

4

{
x1Z2 + x2Z1 − x1Z1 − x2Z2

}
=− 1

4
(x2 − x1)(Z2 − Z1). (11.81)
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Hence we have, substituting (11.81) into (11.77),

Ei[Ui(d7(ε))− Ui(d8(ε)] =

(pi(F )− x0)(Ui(F )− Z0)− 1

4
(x2 − x1)(Z2 − Z1) + ε. (11.82)

From Dick’s point of view, this comes to

ED[UD(d7(ε)− UD(d8(ε))] =

(x1 − x0)(Z1 − Z0)− 1

4
(x2 − x1)(Z2 − Z1) + ε.

Now

x1 − x0 = x1 −
(
x1 + x2

2

)
=
x1 − x2

2
.

Similarly

Z1 − Z0 =
Z1 − Z2

2
.

Therefore

ED[UD(d7(ε))− UD(d8(ε))]

=
(x1 − x2)

2

(Z1 − Z2)

2
− 1

4
(x2 − x1)(Z2 − Z1) + ε = ε. (11.83)

Therefore, for all sufficiently small ε > 0, Dick prefers d7(ε) to d8(ε).
Now we examine the same utility difference from Jane’s perspective, as follows:

EJ [UJ(d7(ε))− UJ(d8(ε))] =

(x2 − x0)(Z2 − Z0)− 1

4
(x2 − x1)(Z2 − Z1) + ε. (11.84)

Now

x2 − x0 =
x2 − x1

2

and

Z2 − Z0 =
Z2 − Z1

2
.

Therefore

EJ [UJ(d7(ε))− UJ(d8(ε))] =(
x2 − x1

2

)(
Z2 − Z1

2

)
− 1

4
(x2 − x1)(Z2 − Z1) + ε = ε. (11.85)

Therefore for each sufficiently small ε > 0, Jane also prefers d7(ε) to d8(ε). By the weak
Pareto principle, we then require that, for all sufficiently small ε > 0, the compromise U(c)
and p(F ) also prefer d7(ε) to d8(ε). Thus U(c) and p(F ) must satisfy

(p(F )− x0)(U(c)− Z0)− 1

4
(x2 − x1)(Z2 − Z1) + ε > 0 (11.86)

for all small ε > 0, so

(p(F )− x0)(U(c)− Z0) ≥ 1

4
(x2 − x1)(Z2 − Z1). (11.87)
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To appreciate (11.87), it is useful to rewrite it as follows:[
2(p(F )− x0)

x2 − x1

][
2(U(c)− Z0)

Z2 − Z1

]
≥ 1. (11.88)

Let r = 2(p(F )−x0)
x2−x1

and s = 2(U(c)−Z0)
Z2−Z1

.
Then (11.88) can be rewritten as

rs ≥ 1. (11.89)

In this notation, the constraint (11.73) can be written as

− 1 ≤ s ≤ 1. (11.90)

Similarly the constraint (11.76) can be written as

− 1 ≤ r ≤ 1. (11.91)

It is obvious that there are only two solutions to equations (11.89), (11.90) and (11.91):
(r, s) = (−1,−1), corresponding to p(F ) = x1 = pD(F ), and U(c) = Z1 = UD(c), and
(r, s) = (1, 1), corresponding to p(F ) = x2 = pJ(F ) and U(c) = Z2 = UJ(c).

This completes the proof of Lemma 11.8.5.

It remains to show that the party identified in Lemma 11.8.5 is an autocrat, that is,
that the consensus probability p and utility U are identical with those of ∗, whichever party
that may identify.

First I consider probabilities. Let G be an arbitrary event. If pD(G) 6= pJ(G), then
Lemma 11.8.5 applies to the pair (G, c), [relying on Lemma 11.8.4 for the existence of such
a c]. We denote the autocrat found in this application of Lemma 11.8.5 with a double star
**.

Then we have

p∗∗(G) = p(G) and U∗∗(c) = U(c).

But U(c) = U∗(c) and Z1 6= Z2. Therefore ∗∗ and ∗ are the same party, and

p∗(G) = p(G). (11.92)

Now suppose pD(G) = pJ(G) 6= p(G). In this case, p∗(G) = pD(G) = pJ(G). In particular,
suppose that pD(G) = pJ(G) < p(G). Then there is a real number x such that

pD(G) = pJ(G) < x < p(G).

Let d9 =

{
r∗ with probability x
r∗ with probability 1− x

and let d10 =

{
r∗ if G occurs
r∗ if Gc occurs

.

Then, for both parties

Ui(d9) = x > Ui(d10) = pi(G) i = D,J

so by the Pareto principle, the consensus utility must prefer d9 to d10. But

U(d9) = x < U(d10) = p(G),

contradiction.
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Similarly, if pD(G) = pJ(G) > p(G), there is a real number y such that pD(G) =
pJ(G) > y > p(G). Then comparing

d11 =

{
r∗ with probability y
r∗ with probability 1− y

to d10, we find that both parties prefer d10 to d11, but the consensus prefers d11 to d10,
again a contradiction. Thus we must have

p∗(G) = p(G),

when pd(G) = pJ(G). Combining this result with that in equation (11.92), we have p∗(G) =
p(G) for all events G.

Finally, it remains to show that U∗(g) = U(g) for all consequences g. First suppose
that UJ(g) 6= UD(g). Using the event E whose existence is proved in Lemma 11.8.3, there
is a consequnce g′ whose existence is proved in Lemma 11.8.4 satisfying the conditions of
Lemma 11.8.4. Then Lemma 11.8.5 applies to the pair (E, g′) and there is an autocrat
(again denoted **) such that

p∗∗(E) = p(E) and U∗∗(g
′) = U(g).

Now using the fact that pJ(E) 6= pD(E), we again find that the autocrat ∗∗ is the same
party as the autocrat ∗, so U∗(g

′) = U(g′). The construction in Lemma 11.8.4 shows that g
and g′ are related, for some 0 < α < 1/2, by

g = αr∗ + αr∗ + (1− 2α)g′.

Thus U(g) = α+ (1− 2α)U(g′) = α+ (1− 2α)U∗(g
′) = U∗(g).

Now suppose UJ(g) = UD(g) 6= U(g).
Again we apply Lemma 11.8.4 to the two utilities, and find that we may assume, without

loss of generality that 0 < UJ(g) = UD(g) < U∗(g) < 1. Then there is some real number z
such that 0 < UJ(g)− UD(g) < z < U(g) < 1.

Now let

d12 have consequence g with probability 1, and

d13 =

{
r∗ with probability z
r∗ with probability 1− z .

Then for both parties

Ui(d12) = Ui(g) < z = Ui(d13), i = D,J

so by the Pareto principle, the consensus utility must prefer d13 to d12. But

U(d12) = U(g) > z = U(d13),

contradiction. Therefore we must have UJ(g) = UD(g) = U(g) and hence U∗(g) = U(g) for
all g.

Hence the party ∗, whichever it may be, has

p∗(g) = p(g) for events G

and U∗(g) = U(g) for all consequences g. Therefore, the party ∗ is an autocrat.
This proves the following:

Lemma 11.8.6. In Case 6, the only Pareto-respecting compromises are autocratic.
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Lemma 11.8.7. In Case 4, the Pareto-respecting compromises are autocratic.

Proof. In Case 4, Dick and Jane’s utilities satisfy UJ(·) = rUD(·) + s with r < 0. Thus if `
and m are prizes such that UD(`) > UD(m), then we have UJ(`) < UJ(m). Without loss of
generality, we may normalize so that UD(`) = UJ(m) = 1 and UD(m) = UJ(`) = 0. Thus
s = 0, r = −1 and UD + UJ = 1. Also, since PD(·) 6= PJ(·), there is an event C such that
PD(C) 6= PJ(C).

The consensus utility U must satisfy either U(`) ≥ U(m) or U(`) < U(m). By reversing
the identities of Dick and Jane if needed we may suppose that UD(`) > UD(m) and U(`) ≥
U(m).

In addition, we may assume that there is an event F such that PD(F ) < PJ(F ): if
PD(C) < PJ(C), let F = C. Otherwise let F = C.

Now let G =

{
` if F occurs

m if F occurs
.

Then EDUD(G) = PD(F ) and EJUJ(G) = 1− PJ(F ).
Let ε be chosen so that PD(F )− PJ(F ) > ε > 0, and let

G∗(ε) =

{
` with probability PD(F )− ε
m with probability 1− PD(F ) + ε

.

Then EDUD(G∗) = PD(F )− ε and EJUJ(G∗) = 1− PD(F ) + ε.
Thus both Dick and Jane prefer G to G∗.
Therefore the consensus utility and probability (U,P ) must also strictly prefer G to G∗.
This implies first that U(`) 6= U(m), since if U(`) = U(m), the consensus would be

indifferent between G and G∗. Hence we must have U(`) > U(m). Now we may normalize
U so that U(`) = 1 and U(m) = 0.

With respect to the consensus (U,P ),

EPU(G) = P (F ) and EP (U(G∗)) = PD(F )− ε.

Therefore P (F ) > PD(F )− ε for all ε in the range specified, and hence,

P (F ) ≥ PD(F ). (11.93)

Now let

H =

{
` if F occurs

b if F occurs
.

EDUD(H) = 1− PD(F ) ;EJUJ(H) = PJ(F ).
Also let

H∗(ε) =

{
` with probability 1− PD(F ) + ε

m with probability PD(F )− ε
.

EDUD(H∗) = 1− PD(F ) + ε ;EJUJ(H∗) = PD(F )− ε.
Both parties prefer H∗ to H for all ε in the designated range. Evaluated at the consensus,

(U,P ),
EPU(H∗) = 1− PD(F ) + ε and EPU(H) = 1− P (F ).

Then
1− PD(F ) + ε > 1− P (F )

so
1− PD(F ) ≥ 1− P (F ).
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Consequently
P (F ) ≤ PD(F ). (11.94)

Combining (11.93) and (11.94), we have P (F ) = PD(F ).
Now we deal with the case in which F satisfies PJ(F ) = PD(F ). By assumption of the

lemma, there is at least one event F ∗ such that PJ(F ∗) 6= PD(F ∗), and by the analysis

above, PD(F∗) = P (F ∗). Also F
∗

satisfies the same equations.
Now F ∗ = (F ∗ ∩ F ) ∪ (F ∗ ∩ F ) and this is a disjoint union.
Then

PD(F ∗) = PD(F ∗ ∩ F ) + PD(F ∗ ∩ F )

PJ(F ∗) = PJ(F ∗ ∩ F ) + PD(F ∗ ∩ F ).

Now PD(F ∗) 6= PJ(F ∗) implies one of the following:

a) PD(F ∗ ∩ F ) 6= PJ(F ∗ ∩ F )

b) PD(F ∗ ∩ F ) 6= PJ(F ∗ ∩ F )

c) both a) and b).

If a) holds, then PD(F ∗∩F ) = P (F ∗∩F ). which implies PD(F ∗∩F ) = P (F ∗∩F ). Similarly,
if b) holds, then PD(F ∗ ∩ F ) 6= PJ(F ∗ ∩ F ), so PD(F ∗ ∩ F ) = P (F ∗ ∩ F ). So in all cases
PD(F ∗ ∩ F ) = P (F ∗ ∩ F ) and PD(F ∗ ∩ F ) = P (F ∗ ∩ F ).

Now

P (F ) = P (F ∩ F ∗)P (F ∩ F ∗) = PD(F ∩ F ∗) + PD(F ∩ F ∗) = PD(F ).

Hence in all cases P ≡ PD.
It remains to show that U(c) = UD(c) for all consequences c. Choose c different from

` and m. Redefining them as needed, we may assume without loss of generality, that Dick
prefers ` to c to m, so UD(`) ≥ UD(c) ≥ UD(m). Then there is some probability p such that
Dick is indifferent between the gamble

X =

{
` with probability p

m with probability 1− p

and the gamble Y{c with probability 1}. By this construction, p = UD(c).
To say that Dick is indifferent between X and Y is equivalent to saying that Dick strictly

prefers Y to all gambles of the form

X(ε) =

{
` with probability p− ε
m with probability 1− p+ ε

and strictly prefers X∗(ε) to Y , where

X∗(ε) =

{
` with probability p+ ε

m with probability 1− p− ε
.

Since Jane’s preferences are opposite, she strictly prefers X(ε) to Y for all ε > 0 and Y
to X ∗ (ε) for all ε > 0. Then Jane is also indifferent between X and Y .

Let R = 1
2G+ 1

2X and R∗ = 1
2G
∗ + 1

2Y .
Since both parties are indifferent between X and Y and both prefer G to G∗, both prefer

R to R∗.

EPU(R) =
1

2
EPU(G) +

1

2
EU(x) =

1

2
P (F ) +

1

2
P

EPU(R∗) =
1

2
EpU(G∗) +

1

2
EU(Y ) =

1

2
[PD(F )− ε] +

1

2
U(c).
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Then
1

2
P (F ) +

1

2
P >

1

2
[PD(F )− ε] +

1

2
U(c),

so 1
2P (F ) + 1

2P ≥
1
2PD(F ) + 1

2U(c).
Recalling P (F ) = PD(F ). we have

p ≥ U(c). (11.95)

Similarly let

T =
1

2
H +

1

2
X and T ∗ =

1

2
H∗ +

1

2
Y.

Both parties prefer H∗ to H, so both prefer T ∗ to T .

Ep(T ) =
1

2
(1− P (F )) +

1

2
p

Ep(T
∗) =

1

2
(1− PD(F ) + ε) +

1

2
U(c).

Therefore 1
2 (1 − PD(F ) + ε) + 1

2U(c) > 1
2 (1 − P (F ) + 1

2p. So 1
2 (1 − PD(F ) + 1

2U(c) ≥
1
2 (1− P (F )) + 1

2P . Hence
U(c) ≥ p. (11.96)

Combining (11.95) and (11.96), we have

U(c) = p = UD(c)

so Dick is an autocrat.

Lemma 11.8.8. In Case 1, the only Pareto-respecting compromise is autocratic.

Proof. In this case there is an obvious compromise: choose P (·) = PD(·) = PJ(·) and
choosing any a > 0 and b, U = aUD(·) + b. Suppose both Dick and Jane prefer d1 to d2.
Then the expected utility of d1 is greater than that of d2 for both, and hence also under
the compromise (U,P ). It may be peculiar to think of this compromise as autocratic, but
it is, because it coincides with one (here both) of the party’s utilities and probabilities.

The heart of this lemma, then, is to prove that only the choice above respects the Pareto
condition. Therefore, we suppose that (U,P ) is any other choice of utility and probability,
and show that it violates the Pareto condition. For clear notation, let P ∗(·) ≡ PJ(·) ≡ PD(·)
and U∗(·) ≡ aUD(·) + b for some a > 0 and b.

Since U∗ is the utility of both parties, there must be prizes r∗ and r∗ such that U∗(r∗) >
U∗(r∗). If d1 yields r∗ with probability 1, and d2 yields r∗ with probability 1, both parties
prefer d1 to d2. Therefore, by Pareto, so does (U,P ). Therefore, we must have U(r∗) > U(r∗).
Now we can normalize U and U∗ so that

U∗(r∗) = U(r∗) = 1

and
U∗(r∗) = U(r∗) = 0.

Suppose there is a consequence c such that U(c) < U∗(c). Then there is some x such
that U(c) < x < U∗(c).

Let

d3 =

{
r∗ with probability x

r∗ with probability 1− x
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and let d4 = {c with probability 1}.
Then

EP∗U
∗(d3) = EPU(d3) = x.

EP∗U
∗(d4) = U∗(c) and EPUP (d4) = U(c).

Hence both parties strictly prefer d4 to d3. However, under (U,P ), the purported compro-
mise strictly prefers d3 to d4, which violates the Pareto condition.

Now suppose there is a consequence c such that U(c) > U∗(c). The same argument as
above applies, reversing (U,P ) and (U∗, P ∗). Therefore, we must have U(c) = U∗(c) for all
c.

Finally, suppose that there is an event F such that P (F ) < P ∗(F ). Then there is a y
such that P (F ) < y < P ∗(F ).

Let

d5 =

{
r∗ with probability y

r∗ with probability 1− y

d6 =

{
r∗ if F occurs

r∗ if F occurs.
.

Then
EP∗U

∗(d5) = EP (U(d5) = y
EP∗(U

∗(d6)) = P ∗(F ) and EP (UP (d6)) = P (F ).

Hence both parties prefer d6 to d5, but the purported compromise prefers d5 to d6, violating
the Pareto condition.

If P ∗(F ) < P (F ), the same argument applies, again reversing (U,P ) and (U∗, P ∗).
Hence we have P ∗(·) = P (·).

Therefore the only Pareto-respecting compromise is autocratic.

11.8.1 Summary

We may summarize the results of this section with the following theorem:
There exist non-autocratic, weak Pareto compromises for two Bayesians if and only if

they either agree in probability, but not in utility, or agree in utility, but not in probability.

11.8.2 Notes and references

Case 6 is discussed in Seidenfeld et al. (1989). Goodman (1988) gives an extensive discussion
of the relationship of hyperbolas to differences in the utilities of different decisions. He also
explores generalization of the result here to more than two decision makers. Many cases
ensue, in some of which there are non-trivial, non-autocratic, weak Pareto compromises.

Case 4 emerged from consideration of an error pointed out to us by Dennis Lindley in
a previous “proof” of this theorem.

Where there is a weak Pareto condition, there must also be a strong one. The strong
Pareto condition says that if A1 is preferred to or is indifferent to A2 for all agents,
and at least one agent prefers A1 to A2 (strictly), then the compromise prefers A1 to A2.
Seidenfeld et al. (1989) show that the strong Pareto condition eliminates the autocratic
solutions, leaving none in the interesting Case 3.

Earlier literature on this problem include important papers by Hylland and Zeckhauser
(1979) and by Hammond (1981). Those papers restrict the group amalgamation to sepa-
rately amalgamating probabilities and utilities, which the work described in 11.8 does not.
Additionally, the results described here apply to all agents whose probabilities and utilities
differ, while Hylland and Zeckhauer’s and Hammond’s are restricted to showing that there
is some configuration of probabilities and utilities that causes difficulty for amalgamation.
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There is an extensive literature on the amalgamation of probabilities, and a somewhat
less extensive literature on the amalgamation of utilities. (See Genest and Zidek (1986),
French (1985) and the discussion of Kadane (1993).) The results of this section make pressing
the question of what meaning these amalgamations may have.

This result is different from Arrow’s famous impossibility theorem (Arrow (1951)) in that
he finds, under general conditions, that there is no non-dictatorial social utility function. His
result requires only an ordering of alternatives from each participant, and aims to return a
social ordering. It is a generalization of the observation that three voters, with preferences
among alternatives A, B and C satisfying:

Voter 1: A > B > C
Voter 2: B > C > A
Voter 3: C > A > B

will have intransitive pairwise majority votes:

A > B > C > A.

By contrast the result discussed in this section requires more of the participants, that their
preferences be coherent, and hopes to deliver more, that their consensus be coherent, under
the weak Pareto condition.

One interpretation of the result given here is that it emphasizes how profoundly personal
the theory of maximization of expected utility is. Perhaps a satisfactory decision theory
should be required to address both individuals and groups, where the group decision relates
gracefully to its constituent individuals. If so, the result of this section suggests that Bayesian
decision theory that has separate probabilities and utilities fails to meet this criterion.

Alternatively, we may work with the perspective of Rubin (1987) mentioned in sec-
tion 7.3. Then we may work with the functions

hi(θ, d) = Ui(θ, d)pi(θ) for i = J,D.

If both Dick and Jane strictly prefer decision d1 to d2, then∫
hi(θ, d1)dθ >

∫
hi(θ, d2)dθ for i = J,D.

Consider the function

h(θ, d) = αhD(θ, d) + (1− α)hJ(θ, d) for some α, 0 < α < 1.

Then ∫
h(θ, d1)dθ =

∫
[αhD(θ, d1) + (1− α)hJ(θ, d1)]dθ

= α
∫
hD(θ, d1)dθ + (1− α)

∫
hJ(θ, d1)dθ

> α
∫
hD(θ, d2)dθ + (1− α)

∫
hJ(θ, d2)dθ

=
∫
h(θ, d2)dθ.

Hence the function h(θ, d) can be regarded as a compromise decision function for Dick and
Jane that respects the Pareto condition.

11.8.3 Exercises

1. State in your own words what is meant by

(a) weak Pareto condition

(b) strong Pareto condition

(c) Bayesian group
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(d) autocratic compromise

2. Show that if one Bayesian is indifferent, say U1(d, θ) = b for all dεD and θεΩ, then the
Pareto condition is vacuous regardless of whether p1(θ) = p2(θ) for all θεΩ, or whether
p1(θ) 6= p2(θ).

3. Show that, in Case 2(b), if p1(θ) 6= p2(θ) and UD(d, θ) = aUJ(d, θ) + b, where a > 0,
then p(θ) = αpD(θ) + (1−α)pJ(θ)(0 ≤ α ≤ 1) and U(d, θ) = UD(d, θ) satisfy the Pareto
condition.

4. Verify that (11.73) implies (11.90).

5. Verify that (11.76) implies (11.90).

6. Show that r = −1, s = −1 implies p(E) = pD(E) and U(c) = UD(c).

7. Show that r = 1, s = 1 implies p(E) = pJ(E) and U(c) = UJ(c).

Appendix A: The minmax theorem

Let U = (uij) be an m×n matrix. Let p = {(p1, . . . , pm) | pi ≥ 0,
∑m
i=1 pi = 1} be the set of

all m-dimensional probability vectors p and similarly let Q be the set of all n-dimensional
probability vectors q.

Theorem 11.1. There exists a unique λ, and (not necessarily unique) vectors pεp and qεQ
such that

λ ≥
n∑
j=1

uijqj for i = 1, . . . ,m (11.A.1)

and

λ ≤
m∑
i=1

piuij for j = 1, . . . n. (11.A.2)

Proof. To show this, we introduce a different symbol for λ in (11.A.2):

µ ≤
m∑
i=1

piuij for j = 1, . . . , n. (11.A.3)

There are λ’s and q’s satisfying (11.A.1), and µ’s and p’s satisfying (11.A.3). Also (11.A.2)
and (11.A.3) yield

µ ≤
∑
i

∑
j

piuijqj ≤ λ, (11.A.4)

so µ ≤ λ. The values of λ satisfying (11.A.1) are bounded below. Since Q is compact (closed
and bounded), the greatest lower bound λ0 can be used in (11.A.1) for some vector q0εQ.
Similarly the least upper bound, µ0, for µ can be used for some vector p0εp. Since (11.A.4)
holds for all pεp and qεQ, we have µ0 ≤ λ0. We wish to show µ0 = λ0.

The proof is by induction on m+ n. If m+ n = 2, then m = n = 1 and the theorem is
trivial. If equality occurs in (11.A.1) for all i = 1, . . . ,m when λ = λ0 and q = q0 then∑

j

uijq
0
j = λ0 for all i = 1, . . . ,m.

Let ei = (0, 0 0, 1 0, . . . , 0) where the 1 occurs at the ith coordinate. Then∑
k

∑
j

eikukjq
0
j = λ0 for i = 1, . . . ,m.

Hence µ0 ≥ λ0. But since µ0 ≤ λ0, we have µ0 = λ0 and the result is proved.
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Now consider the case in which strict inequality holds at least once in (11.A.1). Renum-
bering if necessary, we have

λ0 =
∑
j

uijp
0
j i = 1, . . . ,m1

λ0 >
∑
j

uijp
0
j i = m1 + 1, . . . ,m. (11.A.5)

Consider now the reduced matrix U∗ = (uij), which is an m1×n matrix, and let λ1 and
µ1 be the greatest lower bound in (11.A.1) and the least upper bound in (11.A.3) for U∗.
Then we claim

λ1 ≤ λ0 and µ1 ≤ µ0. (11.A.6)

The first inequality follows from the observation that every λ and q satisfying (11.A.1) for
i = 1, . . . ,m also satisfies (11.A.1) for the reduced set i = 1, . . . ,m1. The second inequality
is shown because every µ and pεp satisfying the reduced (11.A.3) (with m1 replacing m in
the sums) also satisfies the original (11.A.3) if p is extended to p = (p1, . . . , pm1

, 0, . . . , 0).
Now we assert λ1 = λ0. Suppose to the contrary that λ1 < λ0, and that λ1 is associated

with p = p′, so

λ1 ≥
n∑
j=1

uijp
′
j for i = 1, . . . ,m1. (11.A.7)

Let p = αp0 + (1− α)p′, where 0 < α < 1. Then pεp.
Using both (11.A.5) and (11.A.7), for i = 1, . . . ,m1

n∑
j=1

uijpj =
∑
j

uij(αp
0
j + (1− α)p′0)

=α
∑
j

uijp
0
j + (1− α)

∑
j

uijp
′
j

≥αλ0 + (1− α)λ1 > λ0. (11.A.8)

It follows from the second set of equations in (11.A.5) and the continuity of the linear
function that

n∑
j=1

uijxj > λ0

for i = m1 + 1, . . . ,m if α is small enough. Hence λ0 is not the greatest lower bound
in (11.A.1), a contradiction. Therefore λ1 = λ0. Noting that λ1 = µ1 by the inductive
hypothesis, we have

λ0 = λ1 = µ1 ≤ µ0 ≤ λ0.

Hence λ0 = µ0 and the theorem is proved.

Corollary 11.8.9. Without loss of generality, renumber the m choices available to P1 so
that pi > 0 for i = 1, . . . ,m′ and pi = 0 for i = m′ + 1, . . . ,m. Here 1 ≤ m′ ≤ m. Similarly
renumber the n choices available to P2 so that qj > 0 for j = 1, . . . , n′ and qj = 0 for
j = n′ + 1, . . . , n. Here 1 ≤ n′ ≤ n.

(a) Every pure strategy a1, . . . , am′ maximizes P1’s expected utility, as does every random-
ized strategy that puts probability 1 on a1, . . . , am′ .

(b) Every pure strategy b1, . . . , bn′ maximizes P2’s expected utility, as does every randomized
strategy that puts probability 1 on b1, . . . , bn′ .
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Proof. The minimax theorem shows that for all i, i = 1, . . . ,m

n∑
j=1

uijqj ≤ λ.

Therefore
m∑
i=1

pi

n∑
j=1

uijqj ≤ λ
m∑
i=1

pi = λ. (11.A.9)

Similarly the minimax theorem says that for all j, j = 1, . . . , n,

m∑
i=1

piuij ≥ λ.

Therefore
n∑
j=1

qj

m∑
i=1

uijpi ≥ λ
n∑
j=1

qj = λ. (11.A.10)

Putting (11.A.9) and (11.A.10) together yields

λ ≤
m∑
i=1

pi

n∑
j=1

uijqj =

n∑
j=1

qj

m∑
i=1

uijpi ≤ λ.

Therefore

λ =

m∑
i=1

pi

n∑
j=1

uijqj =

n∑
j=1

qj

m∑
i=1

uijpi. (11.A.11)

I now proceed to prove (a). Let, for i = 1, . . . ,m

xi =

n∑
j=1

uijqj .

Then xi is the expected utility of P1’s choice ai. From the minimax theorem, we have, for
i = 1, . . . ,m

xi ≤ λ. (11.A.12)

From (11.A.11) we have
m∑
i=1

pixi = λ. (11.A.13)

Now (11.A.13) can be rewritten as

m∑
i=1

pi(xi − λ) = 0. (11.A.14)

Since pi ≥ 0, in view of (11.A.12), (11.A.14) is a sum of non-positive terms which sums to
zero. Therefore we must have

pi(xi − λ) = 0 for i = 1, . . . ,m. (11.A.15)

Since pi > 0 for i = 1, . . . ,m′, we have

xi = λ for i = 1, . . . ,m′. (11.A.16)
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If p′ = (p′1, . . . , p
′
m′ , 0, . . . , 0) is an arbitrary mixture of the strategies a1, . . . , am that puts

probability 1 on a1, . . . , a
′
m, then (11.A.16) implies

m′∑
i=1

p′ixi = λ

which completes the proof of (a).
The proof of (b) is similar. Let, for j = 1, . . . , n,

yj =

m∑
i=1

uijpi.

Here yj is the expected loss of P2’s choice of bj . From the minimax theorem, we have, for
j = 1, . . . , n,

yj ≥ λ. (11.A.17)

From (11.A.11) we have
n∑
j=1

qjyj = λ. (11.A.18)

Again we have, rewriting (11.A.11),

n∑
j=1

qj(yj − λ) = 0. (11.A.19)

In view of (11.A.17), and the fact that qj ≥ 0, for j = 1, . . . , n, we know that (11.A.19) is
the sum of non-negative quantities that sum to zero. Therefore we must have

qj(yj − λ) = 0 for j = 1, . . . , n. (11.A.20)

Because qj > 0 for j = 1, . . . , n′, we have

yj = λ for j = 1, . . . , n′. (11.A.21)

Again, if q′ = (q′1, q
′
2, . . . , q

′
n′ , 0, 0, . . . , 0) is an arbitrary mixture of the strategies b1, . . . , bn

that puts probability 1 on b1, . . . , bn′ , then (11.A.21) implies

n′∑
j=1

q′jyj = λ, (11.A.22)

which proves (b).

11.A.1 Notes and references

The proof here follows that of Loomis (1946). Other proofs use the Brouwer fixed point
theorem, separating hyperplanes, or duality theory in linear programming. The λ, p and q
can be computed for any matrix B using linear programming.





Chapter 12

Exploration of Old Ideas

I can see clearly now, the pain is gone
I can see all obstacles in my way
Gone are the dark clouds that had me blind
Gonna be a bright (bright), bright (bright) sun-shiny day!

—Johnny Nash

12.1 Introduction

A volume on statistics would be remiss if it failed to comment on sampling theories, since
they occupy so much space in many statistics books and journals. The distinction between
the sampling theory and Bayesian viewpoint is stark. It comes down to the issue of what is
to be considered fixed and what is to be considered random.

The Bayesian viewpoint is quite simple. All the quantities of interest in a problem are
tied together by a joint probability distribution. (Often this joint probability distribution is
expressed as a likelihood (i.e., a probability distribution of the data given the parameters)
times a prior distribution on the parameters.) This probability distribution reflects the
beliefs of the person doing the analysis. Since these beliefs are not necessarily shared by
the intended readers, the reasoning behind the beliefs should be explained and defended.
Any decisions that are to be made before new data are available are made by maximizing
expected utility, where the expectation is taken with respect to the probability distribution
specified.

When new information becomes available, in the form of data or otherwise, that new
information is conditioned upon, leading to a posterior distribution. And that posterior
distribution is used as the distribution with respect to decisions that are made after the
data become available. Thus the probability distributions reflect the uncertainty of the
author, both before and after data are observed.

Sampling theory reverses what is random and what is fixed. The parameter is taken to
be fixed but unknown (whatever that might mean). The data are taken to be random, and
comparisons are made between the distribution of a statistic before the data are observed,
and the observed value of the statistic. It further assumes that likelihoods are known (be-
cause they are objective or by consensus) while priors are highly suspect (because they are
subjective). In the sections below we’ll look at examples of reasoning of this kind.

Chapter 9 discusses how to handle missing data in a Bayesian framework. From a sam-
pling theory framework, it is unclear whether missing data are (i) fixed parameters that
become random when they are observed, (ii) “data” that are to be treated as random when
they are observed, or (iii) a third kind of quantity with its own set of rules.

A simple example can show how difficult it is to adhere to sampling theory. Suppose I
observe a random sample of n from a normal distribution with mean µ and variance σ2.
Then the likelihood function is

435
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f(x, . . . , xn | µ, σ2) =

n∏
i=1

1

σ
√

2π
exp

{
−1

2

(
xi − µ
σ

)2
}

=
1

(2π)n/2
· 1

σn
exp

{
−1

2

n∑
i=1

(
xi − µ
σ

)2
}
. (12.1)

We’ll adopt the popular sampling theory estimation using maximum likelihood. It is easily
shown that the maximum likelihood estimators are

µ̂ = X̄ =

n∑
i=1

xi
n

and σ̂2 =

∑n
i=1(xi − x̄)2

n
. (12.2)

Now suppose that in fact there were originally 2n observations, of which the n observed
are chosen at random. How should Xn+1, . . . , X2n be treated?

It would seem legitimate to think that from x1 . . . , xn I have learned something about
Xn+1, . . . , X2n. So perhaps I can treat them as parameters. If I do, the maximum likelihood
estimates are now

µ̂ = X̄ =

n∑
i=1

xi/n,

X̂n+1 = X̂n+2 = . . . = X̂2n = X̄ (12.3)

σ̂2 =

∑2n
i=1(xi − x̄)2

2n
=

∑n
i=1(xi − x̄)2

2n
.

Hence by imagining another n data points I never saw, the estimate of the variance is now
half of what it was. And of course if I imagine kn normal random variables, I get

σ̂2 =

∑n
i=1(xi − x̄)2

kn
(12.4)

so by dint of a great imagination (k →∞), the maximum likelihood estimate of the variance
vanishes!

Of course what should be done with Xn+1, . . . , X2n is to integrate them out. But there
is no real distinction between unobserved data and a parameter. And to integrate out a
parameter means it must have a distribution, which is where Bayesians were to begin with.

For more on this, see Bayarri et al. (1988).
Some hint of the havoc caused by the doctrine that parameters do not have distributions

can be seen in the classical treatment of fixed and random effects, as in Scheffe (1999). Take
for example an examination given to each child in a class, and several classes in a school, as
discussed in Chapter 9. If you are interested in each individual child’s performance, classical
doctrine says to use a fixed effect model. However, if you are interested in how the classes
compare, you should use a random effects model. This is a puzzle on several grounds:

1) According to the classical theory, the model represents how the data were in fact gener-
ated. But the above account has the model dependent on the interest of the investigator,
the children or the classes, which is a utility matter.

2) To have a random effects model means to use a prior on the parameters for each child,
and to integrate those parameters out of the likelihood. So here a classical statistician
apparently feels OK about using such a prior. If that’s OK for random effects, why not
elsewhere?
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3) An investigator might be interested in both each child and the classes. What model
would classical statistics recommend then?

Because of this fundamental difference about what is fixed and what is random, attempts
to find compromises or middle grounds between Bayesian and sampling theory statistics
have failed. For example, Fisher (1935) proposed something he called fiducial inference. An
instance of it looks like this:

X ∼ N(θ, 1) (12.5)

X − θ ∼ N(0, 1) (12.6)

θ −X ∼ N(0, 1) (12.7)

θ ∼ N(X, 1) (12.8)

This looks plausible if one isn’t too precise about what ∼ means. A more careful version
would write

X | θ ∼ N(θ, 1). (12.9)

Then one can proceed through analogs of (12.6) to get an analog of (12.7),

θ −X | θ ∼ N(0, 1), (12.10)

from which (12.8) does not follow. Barnard (1985) also attempted to find compromises
essentially having to do with what he, following Fisher, called pivotals, like X − θ above,
which have the distribution N(0, 1) whether regarding X or θ as random. Fraser’s structural
inference (1968, 1979) is yet another attempt to find cases that can be interpreted either
way. But at best these are examples of a coincidence that holds only in special cases. As
soon as there is divergence, the issue must be addressed of which is fundamental and which
is not. Hence, each reader has to decide for themselves what path to take.

12.1.1 Summary

The key distinction between Bayesian and sampling theory statistics is the issue of what is
to be regarded as random and what is to be regarded as fixed. To a Bayesian, parameters
are random and data, once observed, are fixed. To a sampling theorist, data are random
even after being observed, but parameters are fixed. Whether missing data are a third kind
of object, neither data nor parameters, is a puzzle for sampling theorists, but not an issue
for Bayesians.

Some standard modern references for sampling theory statistics are Casella and Berger
(1990) and Cox and Hinkley (1974).

12.1.2 Exercises

1. Show that µ̂ and σ̂2 given in (12.2) maximize (12.1) with respect to µ and σ2. HINT:
maximize the log of f , first with respect to µ, and then substitute that answer in and
then maximize with respect to σ.

2. Show that µ̂, σ̂2 and X̂n+1, . . . , X̂2n given in (12.3) maximize the analogue of (12.1) with
respect to µ, σ2 and Xn+1, . . . , X2n. Same hint.

3. Explain what is random and what is fixed to (a) a Bayesian and (b) a sampling theorist.
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12.2 Testing

There are two flavors of testing that are part of sampling theory, Fisher’s significance testing
and the Neyman-Pearson testing of hypotheses. We’ll consider them in that order.

Suppose that X1, . . . , Xn are a random sample (i.e., independently and identically dis-
tributed, given the parameter) from a normal distribution with mean µ and variance 1,
which can be written

X1 . . . , Xn ∼ N(µ, 1). (12.11)

Then we know that
(X̄ − µ)√

n
∼ N(0, 1). (12.12)

Suppose that we wish to test the hypothesis that µ = 0. (Such a hypothesis is called “sim-
ple,” reflecting the fact that it consists of a single point in parameter space. A “composite”
hypothesis consists of at least two points.) If µ = 0,

P{| X̄n |> 1.96/
√
n} = 0.05, (12.13)

so Fisher would say that the hypothesis that µ = 0 is rejected at the .05 level. This is
(more’s the pity) the most common form of statistical inference used today.

Of course, the number 0.05 (called the size of the test) is arbitrary and conventional,
but that’s not the heart of the difficulties with this procedure.

What does it mean to reject such a hypothesis? Fisher (1959a, p. 39) says that it means
that either the null hypothesis is false or something unusual has happened. However this
theory does not permit one to say which of the above is the case, nor even to give a
probability for which is the case. If the null hypothesis is not rejected, nothing can be said.
Furthermore, one may reject a true null hypothesis, or fail to reject when the null hypothesis
is false.

The biggest issue with significance testing, however, is a practical one. It is easy to see
(and many users of these methods have observed) that when the sample size is small, very
few null hypotheses are rejected, while when the sample size is large, almost all are rejected.
This is because of the

√
n behavior in (12.12). Thus while significance testing purports to

be addressing (in some sense) whether µ = 0, in fact the acceptance or rejection of the null
hypothesis has far more to do with the sample size than it does with the extent to which
the null hypothesis is a good reflection of the truth.

This lesson was driven home to me by some experiences I had early in my career. I was
coauthor of a study of participation in small groups (Kadane et al. (1969)). There was a
simple theory we were testing. The theory was rejected at the .05 level, the .01 level, indeed
at the 10−6 level. I had to think about whether I would be more impressed if it were rejected
at say the 10−13 level, and decided not. The issue was that we had a very large data set,
so that any theory that isn’t exactly correct (and nobody’s theory is exactly correct) will
be rejected at conventional levels of significance. A simple plot showed that the theory was
pretty good, in fact.

Sometime later I was working at the Center for Naval Analyses. A study had been done
comparing the laboratory to the field experience on a new piece of equipment. The draft
report said that there was no significant difference. On further scrutiny, it turned out that,
while the test was correctly done, there were only five field-data points (which cost a million
dollars apiece to collect). Indeed, the machine was working roughly 75% as well in the field,
which seemed a far more useful summary for the Navy.

These experiences taught me that with a large sample size virtually every null hypothesis
is rejected, while with a small sample size, virtually no null hypothesis is rejected. And we
generally have very accurate estimates of the sample size available without having to use
significance testing at all!
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Significance testing violates the Likelihood Principle, which states that, having observed
the data, inference must rely only on what happened, and not on what might have happened
but did not. The Bayesian methods explored in this book obey this principle. But the
probability statement in (12.13) is a statement about X̄n before it is observed. After it is
observed, the event | X̄n |> 1.96/

√
n either happened or did not happen, and hence has

probability either one or zero.
There’s one other general point to make about significance testing. As discussed in

section 1.1.2, it is based on a limiting relative frequency view of statistics. The interpretation
is that if µ were zero and X̄n were computed from many samples of size n, the proportion
of instances in which | X̄n | would exceed 1.96/

√
n would approach .05. But the application

of this method is to a single instance of X̄n. Thus a theory that relies on an arbitrarily large
sample for its justification is being applied to a single instance.

Consider, for example, the following trivial test. Flip a biased coin that comes up heads
with probability 0.95, and tails with probability 0.05. If the coin comes up tails reject the
null hypothesis. Since the probability of rejecting the null hypothesis if it is true is 0.05,
this is a valid 5% level test. It is also very robust against data errors; indeed it does not
depend on the data at all. It is also nonsense, of course, but nonsense allowed by the rules
of significance testing.

A Bayesian with a continuous prior on µ (any continuous prior) puts probability zero
on the event µ = 0, and hence is sure, both prior and posterior, that the null hypothesis is
false. It is an unusual situation in which a hypothesis of lower dimension than the general
setting (here the point µ = 0 on the real line for µ) is so plausible as to have a positive
lump of probability on exactly that value.

Neyman and Pearson (1967) modify significance testing by specifying an alternative
distribution, that is, an alternative value (or space of values) for the parameter. Thus they
would test (using (12.11) again) the null hypothesis H0 : µ = 0 against an alternative
hypothesis, like Ha : µ = µ0 > 0, for a specific chosen value of µ. In this case Neyman and
Pearson would choose to see whether the event

X̄n > 2.36/
√
n (12.14)

occurs, because, under the null hypothesis, this event has probability 0.05 and, under the
alternative hypothesis, it has maximum probability. The emphasis on this probability, which
they call the power of the test, is what distinguishes the Neyman-Pearson theory of testing
hypotheses from Fisher’s tests of significance.

Neyman and Pearson use language different from Fisher’s to explain the consequences
of such a test. If the event (12.14) occurs, they would reject the null hypothesis and accept
the alternative. Conversely, if it does not they would accept the null hypothesis and reject
the alternative. The probability of rejecting the null hypothesis if it is true is called the
type 1 error rate; the probability of rejecting the alternative if it is true is called the type
2 error rate.

Again, Neyman-Pearson hypothesis testing violates the likelihood principle, because the
event (12.14) either happens or does not, and hence has probability one or zero. Again, the
behavior of the test depends critically on the sample size, particularly when it is used with
a fixed type 1 error rate, as it most typically is. And again, a single instance of X̄n is being
compared to a long-run relative frequency.

The trivial test that relies on the flip of a biased coin that comes up heads with probabil-
ity 0.95 is again a valid test of the null hypothesis within the Neyman-Pearson framework,
but it has disappointingly low power.

Often in practice the Neyman-Pearson idea is used, not with a simple alternative (like
µ = µ0) in mind, but with a whole space of alternatives instead. This leads to power (one
minus the type 2 error) that is a function of just where in the alternative space the power
is evaluated.
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From a Bayesian perspective, it would make more sense to ask for the posterior proba-
bility of the null hypothesis, as a substitute for significance testing, or for the conditional
posterior probability of the null hypothesis given that either the null or alternative hypoth-
esis is correct, as a substitute for the testing of hypotheses.

12.2.1 Further reading

The classic book on testing hypotheses is Lehmann (1986). More recent developments have
centered on the issue of maintaining a fixed size of test when simultaneously testing many
hypotheses (see, for instance, Miller (1981)). Still more recently, literature has sprung up
concerning limiting the false discovery rate (Benjamini and Hochberg (1995)).

For a detailed comparison of methods in the context of an application, see Kadane
(1990).

There have been various attempts to square testing with the Bayesian framework. For
example, Jeffreys (1961) proposes to put probability 1/2 on the null hypothesis. This is
unobjectionable if it is an honest opinion an author is prepared to defend, but Jeffreys
presents it as an automatic prior to use in a testing problem. Thus Jeffreys would change
his prior depending on what question is asked, which is incoherent.

12.2.2 Summary

Although widely used in statistical practice, testing, whether done using the Fisher or the
Neyman-Pearson approach, rests on shaky foundations.

12.2.3 Exercises

1. Vocabulary. State in your own words the meaning of:

(a) test of significance

(b) test of a hypothesis

(c) null hypothesis

(d) alternative hypothesis

(e) type I and type II error

(f) size of a test

(g) power of a test

(h) the likelihood principle

12.3 Confidence intervals and sets

The rough idea of a confidence interval or, more generally, a confidence set, is to give an
interval in which the parameter is likely to be. However the fine print that goes with such
a statement is crucial.

There is a close relationship between testing and confidence intervals. Indeed a confidence
set can be regarded as the set of simple null hypotheses which, had they been tested, would
not have been rejected at the (say) 0.05 level. More formally, it is a procedure (i.e., an
algorithm) for producing an interval or set having the property that (say) 95% of the time
it is used it will contain the parameter value. Recall, however, that this is part of sampling
theory, in which the data are random and the parameters fixed but unknown. Therefore,
what is random about a confidence interval (or set) is the interval, not the parameter.

It is appealing, but wrong, to interpret such an interval as a probability statement about
the parameter, because that would require a Bayesian framework in which parameters have
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distributions. There are such intervals and sets, called credible intervals and credible sets,
which contain, say, 95% of the (prior or posterior) probability.

Like their testing cousins, confidence intervals and sets violate the likelihood principle.
Also, like them, such sets rely on a single instance in a hypothetical infinite sequence of like
uses for their justification. The trivial flip-of-a-biased coin example of the preceding section
has the following confidence set equivalent: if the coin comes up heads (which it will with
95% probability) take the whole real line. Otherwise (with probability 5%) take the empty
set. Such a random interval has the advertised property, namely that 95% of the time it
will contain the true value of the parameter, whatever that happens to be. Therefore this
is a valid confidence interval. It is also useless, since we know immediately whether this is
one of the favorable instances (the 95% of the time we get the whole real line), or one of
the 5% of the time we get the empty set.

While such an example is extreme, the same kind of thing happens in more real settings.
Consider a random sample of size two, Y1 and Y2, from a distribution that is uniform on
the set (θ − 1/2, θ + 1/2) for some θ (fixed but unknown). First, we do some calculations:

P{min(Y1, Y2) > θ | θ} = P{Y1 > θ and Y2 > θ | θ} =

P{Y1 > θ | θ}P{Y2 > θ | θ} = 1/2 · 1/2 = 1/4. (12.15)

Similarly,

P{max(Y1, Y2) < θ | θ} = P{Y1 < θ and Y2 < θ | θ} =

P{Y1 < θ | θ}P{Y2 < θ | θ} = 1/2 · 1/2 = 1/4. (12.16)

Therefore
P{min(Y1, Y2) < θ < max(Y1, Y2) | θ} = 1/2 for all θ, (12.17)

so the interval (min(Y1, Y2),max(Y1, Y2)) is a valid 50% confidence interval for θ. If the
length of this interval is small, however, it is less likely to contain θ than if the interval
has length approaching one. Indeed if the interval has length one, we would know that
θ lies within the interval, and, even more, we would know that θ is the midpoint of that
interval. Thus in this case the length of the interval gives us a very good hint about whether
this is one of the favorable or unfavorable cases for the confidence interval, which is like
the previous example. Because whether a procedure yields a valid confidence interval is a
matter of its coverage over many (a limiting infinite number!) uses and not its character in
this particular use, examples like this cause embarrassment. (This example is discussed in
Welch (1939) and DeGroot and Schervish (2002, pp. 412-414).)

What property might make a particular confidence interval desirable among confidence
intervals? Presumably one would like it to be short if it contains the point of interest, and
wide otherwise. The standard general method is to minimize the expected length of the
interval, where the expectation is taken with respect to the distribution of possible samples
at a fixed value of the parameter. However this criterion is challenged by Cox (1958), who
discusses the following example: Suppose the data consist of the flip of a fair coin, which is
coded as X = 0 for heads and X = 1 for tails.

If X = 0, we see data
Y ∼ N(θ, σ0).

If X = 1, however, we see data
Y ∼ N(θ, 100σ0).

In this case, urges Cox, doesn’t it make sense to offer two confidence intervals, one of
X = 0 and a different one of X = 1, each having the standard structure? An interval with
shorter average length can be found by making the interval, conditional on X = 1, a lot
shorter at the cost of making the interval conditional on X = 0 a bit longer. See also the
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discussion in Fraser (2004) and in Lehmann (1986, Chapter 10). A statistic such as X is
called ancillary, because its distribution is independent of the parameter. Cox and Fraser
advocate conditioning on the ancillary statistic. However, Basu (1959) shows that ancillary
statistics are not unique, which calls into question the general program of conditioning on
ancillary statistics.

As teachers of statistics, it is common that, no matter how carefully one explains what
a confidence interval is, many students misinterpret a confidence interval as if it were a
(Bayesian) credible interval, that the probability is α that the parameter lies in the interval
specified, where what is random and hence uncertain, is the parameter. Credible intervals
and sets can be seen as a part of descriptive statistics, that is, as a quick way of conveying
where the center of a distribution, prior or posterior, lies.

12.3.1 Summary

Like the theory of testing, the basis of confidence intervals is weak.

12.4 Estimation

An estimator of a real-valued parameter is a real-valued function of the data hoped to
be close, in some sense, to the value of the parameter. As such, it is an invitation to
certainty-equivalence thinking, neglecting the uncertainty about the value of the parameter
inherent in the situation. Sometimes certainty-equivalence is a useful heuristic, simplifying a
problem so that its essential characteristics become clearer. But sometimes, when parameter
uncertainty is crucial, such thinking can lead to poor decisions. Thus estimation is a tool
worth having, but not one to be used automatically.

In order to think about which estimators might be good ones to use, it is natural to
have a measure of how close the estimator θ̂(x) is to the value of the parameter. The most
commonly used measure of loss (i.e., negative utility) is squared error,

(θ̂(x)− θ)2. (12.18)

When uncertainty is taken with respect to a distribution on θ (prior or posterior) the
optional estimator is

θ̂(x) = E(θ) (12.19)

and the variance of θ (prior or posterior) is the resulting loss. (Indeed this estimator is called
in some literature “the Bayes estimate,” as if squared error were a law of nature, rather
than a statement of the user’s subjective utility function.)

However, when (12.18) is viewed from a sampling theory point of view, the expectation
must be taken over x with θ regarded as fixed. The result is an expected loss that depends,
with rare exceptions, on the value of θ. The two candidate estimators can have expected
loss functions that cross, meaning that for certain values of the parameter one would be
preferred, and for other values of the parameter, a different one would be preferred. Since
the sampling theory paradigm has no language to express the idea that certain parts of
the parameter space are more likely (and hence more important) than others, an impasse
results. A plethora of principles then ensue, with no guidance of how to choose among them
except for the injunction to use something “sensible,” whatever that might mean.

One criterion often used by sampling theory statisticians is unbiasedness, which requires
that

E(θ̂(X)) = θ (12.20)

for all θ, where the expectation is taken with respect to the sampling distribution of X. And
among unbiased estimators, one with minimum (sampling) variance is to be preferred. Of
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course this violates the likelihood principle, since it depends on all the samples that might
have been observed but were not. Nonetheless, I can see some attractiveness to this idea
in the case in which the same commercial entities do business with each other repetitively.
Each can figure that whatever such a rule may cost them today will be balanced out over
the long run. And here there is a valid long run to consider, unlike most other applications
of statistics.

However, unbiased estimates don’t always exist, and many times minimum-variance
unbiased estimates exist only when unbiased estimates are unique. Consider estimating the
function e−2λ where X has a Poisson distribution with parameter λ.

An unbiased estimate is

I{Xis even} − I{X is odd},

which has expectation

E(I{Xis even} − I{Xis odd}) =

e−λ(1 +
λ2

2!
+
λ4

4!
+ . . .)− e−λ

(
λ

1!
+
λ3

3!
+ . . .

)
= e−2λ, (12.21)

and indeed it can be shown (Lehmann (1983, p. 114)), that this is the only unbiased esti-
mator, and hence a fortiori the minimum variance unbiased estimator. But this estimator
is either +1 or −1. Of course −1 is surely too small since e−2λ is always positive, and +1
is too big, since e−2λ is always less than 1.

Another popular method is maximum likelihood estimation. Were the likelihood multi-
plied by the prior, what would be found is the mode of the posterior distribution. Under some
circumstances, maximum likelihood estimation can thus be a reasonable general method for
finding an estimate, if it is necessary to find one. However, the example discussed in section
12.1 shows that even maximum likelihood estimates can have problems when the parameter
space is unclear.

That’s not all of the story, however. Consider the following example: with probability p,
we observe a normal distribution with mean µ and variance 1; with probability 1 − p, we
observe a normal distribution with mean µ and variance σ2. Thus the likelihood is

pφ(x− µ) +

(
1− p
σ

)
φ

(
x− µ
σ

)
(12.22)

for a single observation x, and the product of these for a sample of size n:

f(x | µ, σ, p) =

n∏
i=1

[
pφ(xi − µ) +

1− p
σ

φ

(
xi − µ
σ

)]
. (12.23)

Maximizing (12.23) with respect to µ, σ and p yields the following: if µ̂ = xi for some
i, σ → 0 and p̂ = 1/2, the likelihood goes to infinity! Thus for a sample of size n there
are n maximum likelihood estimates for µ. And this example has only 3 parameters and
independent and identically distributed observations.

Another example shows just how unintuitive maximum likelihood estimation can be.
An urn has 1000 tickets, 980 of which are marked 10θ and the remaining 20 are marked θ,
where θ is the parameter of interest. One ticket is drawn at random, and the number x on
the ticket is recorded. The maximum likelihood estimate θ̂ of θ is θ̂ = x/10, and this has
98% probability of being correct.

Now choose an ε > 0; think of ε as positive but small. Let a1, . . . , a980 be 980 distinct
constants in the interval (10− ε, 10 + ε). Suppose now that the first 980 tickets in the urn
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are marked θa1, . . . , θa980, while the last 20 continue to be marked θ. Again, we choose one
ticket chosen at random, and observe the number x marked. Then the likelihood is

L(θ|x) =


.02 θ = x

.001 θ = x/ai i = 1, 2, . . . , 980

0 otherwise

.

Hence the maximum likelihood estimator in this revised problem is θ̂ = x, which has only
a 2% probability of being correct. We know that there is a 98% probability that θ is in the
interval (x/(10 + ε), x/(10 − ε), but maximum likelihood estimation is indifferent to this
knowledge.

12.4.1 Further reading

The classic book on estimation is Lehmann (1983). An excellent critique of estimation from
a Bayesian perspective is given by Box and Tiao (1973, pp. 304-315). The second example
of peculiar behavior of a maximum likelihood estimate is a modification of one given in
Basu (1975).

12.4.2 Summary

Estimation is useful (sometimes) as a way of describing a prior or posterior distribution,
particularly when it is concentrated around a particular value. As such, for Bayesians it is
part of descriptive statistics.

12.4.3 Exercise

1. Let ε > 0. Show that there are 980 distinct numbers between 10− ε and 10 + ε.

12.5 Choosing among models

Model choice is estimation applied to the highest level in the hierarchical model specified
in section 9.4. Under what circumstances is it useful to choose one particular model and
neglect the others? One circumstance might be if one model had all but a negligible amount
of the probability. This case corresponds to estimation where a posterior distribution is
concentrated around a particular value.

As a general matter, I would think it is sounder practice to keep all plausible models in
one’s calculations, and hence not to select one and exclude the others.

12.6 Goodness of fit

There is a burgeoning literature in classical statistics examining whether a particular model
fits the data well. However, the assumptions underlying goodness of fit are rarely questioned.

Typically, fit is measured by the probability of the data if the model were true. As such,
the best fitting model is one that says that whatever happened had to happen. Such a model
is useless for prediction of course, but fits the data excellently. Why do we reject such a
model out of hand? Because it fails to express our beliefs about the process generating the
data. Also it is operational only after seeing the data, and hence is prone to hindsight bias
(see section 1.1.1).

Generally goodness of fit has to do with how regular (or well-understood) the process
under study is, compared to some, often unexpressed, independence model. I think a better
procedure is to be explicit about what alternative is contemplated, and then use the methods
outlined in section 12.5.
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12.7 Sampling theory statistics

A general issue for sampling theory statistics goes under the name of “nuisance parameters,”
which roughly are parameters not of interest, those that do not appear in a utility or
loss function. But “nuisance” hardly describes the havoc such parameters wreak on many
sampling theory methods. Bayesian analyses are undisturbed by nuisance parameters: you
can integrate them out and deal only with the marginal distribution of the parameters of
interest, or you can leave them in. Either way the expected utility of each decision, and
hence the expected utility of the optimal decision, will be the same.

As you can see, I find serious foundational problems with each of these methods. But
to voice these concerns is not to denigrate the authors cited or the many others who have
contributed to sampling theory. Quite the contrary: I stand in awe and dismay at the
enormous amount of statistical talent that has been devoted to work within, and try to
make sense of, a paradigm with such weak foundations.

12.8 “Objective” Bayesian methods

The notion of a reasonable degree of belief must be brought in before we can speak of a proba-
bility.

—H. Jeffreys (1963, p. 402)

This volume would also be incomplete if it failed to address “Objective Bayesian” views
(Bernardo (1979); Berger and Bernardo (1992)). For example, suppose a Bayesian wants
to report his posterior to fellow scientists who share his model and hence his likelihood.
Objective Bayesians search for priors that have a minimal effect on the posterior, in some
sense. Some comments are in order:

1. It is not an accident that this hypothetical framework is exactly that of classical, sam-
pling theoretical statistics. From the viewpoint of this book, this framework exaggerates
the general acceptability of the model, and also exaggerates the lack of general accept-
ability of the prior. The likelihood is rarely so universally acclaimed, and often there is
useful prior information to be gleaned. If you accept the argument of this book, likeli-
hoods are just as subjective as priors, and there is no reason to expect scientists to agree
on them in the context of an applied problem. Yet another difficulty with this program is
ambiguity in hierarchical models of just where the likelihood ends and the prior begins.

2. The purpose of an algorithmic prior is to escape from the responsibility to give an
opinion and justify it. At the same time, it cuts off a useful discussion about what is
reasonable to believe about the parameters. Without such a discussion, appreciation
of the posterior distribution on the parameters is likely to be less full, and important
scientific information may be neglected.

3. The literature is replete with various attempts to find a unifying way to produce “low
information” priors. Often these depend on the data, and violate the likelihood princi-
ple. Some make distinctions between parameters of interest and nuisance parameters,
which implicitly depends on the utility function of an unstated decision problem. Some
are disturbed by transformation: if a uniform distribution on [0, 1] is ok for p, is the
consequent for the distribution of 1/p also ok? Jeffreys’ (Jeffreys (1939, 1961)) priors do
not suffer from this, but do violate the likelihood principle. The fact that there are many
contenders for “the” objective prior suggests that the choice among them is to be made
subjectively. If the proponents of this view thought their choice of a canonical prior were
intellectually compelling, they would not feel attracted to a call for an internationaly
agreed convention on the subject, as have Berger and Bernardo (1992, p. 57) and Jeffreys
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(1955, p. 277). For a general review of this area, see Kass and Wasserman (1996), and,
on Jeffreys’ developing views, ibid. (pp. 1344 and 1345).

And finally, there is the issue of the name. A claim of possession of the objective truth
has been a familiar rhetorical move of elites, whether political, social, religious, scientific, or
economic. Such a claim is useful to intimidate those who might doubt, challenge or debate
the “objective” conclusions reached. History is replete with the unfortunate consequences,
nay disasters, that have ensued. To assert the possession of an objective method of analyzing
data is to make a claim to extraordinary power in our society. Of course it is annoyingly
arrogant, but, much worse, it has no basis in the theory it purports to implement.



Chapter 13

Epilogue: Applications

“In theory, there is no difference between theory and practice. In practice, there is.”∗

A centipede has sore feet. Slowly, painfully, he climbs the tree to see the owl, and explains his
problem. “Oh, I see,” says the owl. “Then walk three inches above the forest floor and your feet
won’t hurt.” “Thank you, Owl,” says the centipede, as he starts, slowly, painfully, to descend
the tree. Suddenly he reverses, and comes back to see the owl. “Owl, how do I do that?” asks
the centipede. The owl replies “I’ve solved the problem in principle. The implementation is up
to you.”

It may come as a surprise that after what may seem like endless mathematics, I now take
the position that the material discussed in this book is only a prelude to the most important
aspects of the subject of uncertainty. As mathematics, probability theory has some charms,
but certainly lacks the elegance of other branches of mathematics. Much of statistics has
to do with special functions and other topics that cannot be regarded as fundamental to
further mathematical development.

The reason to study these subjects then, is that they are useful. If our justification is to
be that we are useful, we had better attend to being useful. Applications of statistics and
probability is where the center of the subject is.

In my view, probability is like a language. Just as grammar specifies what expressions
follow the rules that make thoughts intelligible, the rules of coherence specify what prob-
ability statements are intelligible. That sentences are grammatical says nothing about the
wisdom of what is expressed. Similarly beliefs expressed in terms of probability may or may
not be acceptable or interesting to a reader. That is a different discussion, one having to do
with rhetoric, with persuading a reader of the reasonableness of the beliefs expressed.

The ideas expressed in this book introduce probability as a disciplined way of conveying
beliefs about uncertain quantities, and utilities (losses) as a disciplined way of expressing
values. Here “disciplined” means only “free of certain internal contradictions.” As I have
stressed, the theory here places no other constraints on the content of those beliefs and
values. Thus it is possible, using Bayesian methods, to express beliefs and values that
are wise or foolish, meritorious or evil. What is offered here is a common language that

∗I have seen this attributed both to Jan van de Snepscheut and to Yogi Berra. I have not been able to
verify to whom it should be attributed.
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encourages being explicit about assumptions, beliefs and values. The hope is that the use
of this language will encourage better communication. As such, it may help contending
interpreters of data only to understand more precisely where they disagree. But that, in
itself, can be a step toward progress.

In doing applied work, the focus has to be on the applied problem. In addressing it, one
uses all the tools at one’s disposal. I have had, more than once, the experience of doing
applied work in a way that did not satisfy me, and only later seeing my way to doing the
problem “right.” And for me, doing it right means expressing it in the way outlined in this
book.

“Statistics is never having to say you’re certain.”

13.1 Computation

For better an approximate answer to the right question, which is often vague, than an exact
answer to the wrong question, which can always be made precise.

—John Tukey (1962, pp. 13,14)

An attentive reader will have noticed, and perhaps been disturbed to realize, that in the
main I have made no concessions to pleas that what I propose is difficult to compute (or
would take billions of years, or whatever). My reason is precisely that stated by Tukey: until
the right question is identified, it is hopeless to rush to the computer. Thus the emphasis
here is on a framework for posing questions. How to find approximate answers to these
questions is a continuously unfolding story, on which there has been, and continues to be,
dramatic progress. I have reflected what I take to be the most important computational
developments to date, particularly in Chapter 10, but expect more progress to be made.

13.2 A final thought

The perspective of this book is to honor the possibility of alternative points of view about
the assumptions: prior, likelihood and utility, that go into the analysis of data. There is no
claim that I can sustain, that another person is obligated to agree with my specifications
of these objects. Rather, it is my obligation, as author, to explain the considerations that
lead to my choices, in the hope that a reader may find them acceptable. But I have no
right to pretend that my views have per se authority, no right to claim that these views
are “objective,” and hence no basis for a claim that my assumptions live on some mystical
higher plane than those of the reader.

What about the thought that at a higher methodological level, this book is rather
opinionated about appropriate methodology? It is precisely to explain the reasons why I
find certain methodologies appropriate, and others less so, that I undertook to write this
book.
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