
Copyright c� 2008–2010 John Lafferty, Han Liu, and Larry Wasserman Do Not Distribute

Chapter 18

Directed Graphical Models

Graphs give a powerful way of representing independence relations and computing condi-
tional probabilities among a set of random variables. In a directed graphical model, the
probability of a set of random variables factors into a product of conditional probabilities,
one for each node in the graph.

18.1 Introduction

A graphical model is a probabilistic model for which the conditional independence structure
is encoded in a graph. In a graphical model, vertices (or nodes) represent random variables,
and the edges encode conditional independence relations among the associated vertices.
The graph characterizes the way in which the joint distribution factors into the product of
many small components, each of which contains only a subset of variables. In this chapter,
we introduce directed graphical models, in which the edges of the graph have directions
(or arrows). An example of a directed graphical model is shown in Figure 18.1. In the next
chapter we introduce undirected graphical models, in which the edges carry no directional
information.

X ZY

Figure 18.1. A directed graph with vertices V = {X,Y, Z} and edges E = {(Y,X), (Y, Z)}.

Before getting into details, let us recall the definition of conditional independence.
405



406 Chapter 18. Directed Graphical Models

Let X , Y and Z be random variables. X and Y are conditionally independent given
Z, written X ??Y | Z, if

p(x, y|z) = p(x|z)p(y|z). (18.1)

for all x, y and z.

Intuitively, this means that, once Z is known, Y provides no extra information about X . An
equivalent definition is that p(x|y, z) = p(x|z) for all x, y and z.

Directed graphs are useful for representing conditional independence relations among
variables. They can also be used to represent causal relationships. Some people use the
phrase Bayesian network to refer to a directed graph endowed with a probability distribu-
tion. This is a poor choice of terminology. Statistical inference for directed graphs can be
performed using either frequentist or Bayesian methods, so it is misleading to call them
Bayesian networks.

18.2 Directed Acyclic Graphs (DAGs)

A directed graph G consists of a set of vertices V and an edge set E of ordered pairs of
vertices. For our purposes, each vertex corresponds to a random variable. If (Y,X) 2 E
then there is an arrow pointing from Y to X . See Figure 18.1. One thing to note is that a
node here can either represents a scalar random variable or a random vector.

If an arrow connects two variables X and Y (in either direction) we say that X and Y
are adjacent. If there is an arrow from X to Y then X is a parent of Y and Y is a child
of X . The set of all parents of X is denoted by ⇡X or ⇡(X). A directed path between
two variables is a set of arrows all pointing in the same direction linking one variable to the
other such as the chain shown in Figure 18.2:

X ZY

Figure 18.2. A chain graph with a directed path.

A sequence of adjacent vertices starting with X and ending with Y but ignoring the
direction of the arrows is called an undirected path. The sequence {X,Y, Z} in Figure 18.1
is an undirected path. X is an ancestor of Y if there is a directed path from X to Y (or
X = Y ). We also say that Y is a descendant of X .

There are three basic connection configurations of three-node subgraphs and larger
graphs can be constructed using these three basic configurations. A configuration of the
form as in Figure 18.3(a) is called a collider at Y (head-to-head connection). A configura-
tion not of that form is called a non-collider (head-to-tail and tail-to-tail connections), for
example, Figure 18.3(b) and Figure 18.3(c).



18.3. Probability and DAGs 407

X Z

Y

X Z

Y

X Z

Y

(a) (c)(b)

Figure 18.3. (a) a collider at Y ; (b), (c) non-colliders.

The collider property is path dependent. In Figure 18.4, Y is a collider on the path
{X,Y, Z} but it is a non-collider on the path {X,Y,W}.

X Z

Y

W

Figure 18.4. A collider with a descendant.

When the variables pointing into a collider are not adjacent, we say that the collider is
unshielded. A directed path that starts and ends at the same variable is called a cycle. A
directed graph is acyclic if it has no cycles. In this case we say that the graph is a directed
acyclic graph or DAG. From now on, we only deal with directed acyclic graphs since it is
very difficult to provide a coherent probability semantics over graphs with directed cycles.

18.3 Probability and DAGs

Let G be a DAG with vertices V = (X1, . . . , Xd). For notational simplicity, we sometimes
represent V = {1, . . . , d}. If P is a distribution for V with probability function p(x), we
say that P is Markov to G, or that G represents P , if

p(x) =
dY

j=1

p(xj | ⇡xj ) (18.2)

where ⇡xj is the set of parent nodes of Xj . The set of distributions represented by G is
denoted by M(G).

18.3 Example. Figure 18.5 shows a DAG with four variables. The probability function



408 Chapter 18. Directed Graphical Models

overweight

heart disease

smoking

cough

Figure 18.5. DAG for Example 18.3.

takes the following decomposition:

p(overweight, smoking, heart disease, cough) = p(overweight)⇥ f(smoking)

⇥ p(heart disease | overweight, smoking)⇥ p(cough | smoking).

2

18.4 Example. For the DAG in Figure 18.6, P 2 M(G) if and only if its probability
function p(x) has the form p(x, y, z, w) = p(x)p(y)p(z | x, y)p(w | z). 2

X

Y

Z W

Figure 18.6. Another DAG.

The following theorem says that P 2M(G) if and only if the Markov condition holds.
Roughly speaking, the Markov condition means that every variable W is independent of
the “past” given its parents.

18.5 Theorem. For a graph G = (V,E), a distribution P 2 M(G) if and only if the
following Markov condition holds: for every variable W ,

W ??fW | ⇡W (18.6)

where fW denotes all the other variables except the parents and descendants of W .

Proof. First, we assume that W ??fW | ⇡W and want to show that p(x) =
Qd

j=1 p(xj |

⇡xj ), where p(x) is the density function.



18.3. Probability and DAGs 409

Without loss of generality, we let X1, X2, . . . , Xd be a topological ordering of the vari-
ables in the graph G. The following result follows from the chain rule:

p(x) =
dY

j=1

p(xj |x1, . . . , xj�1). (18.7)

From (18.6), it is easy to see that p(xj |x1, . . . , xj�1) = p(xj |⇡xj ). This proves one
direction. The other direction is left as an exercise (see Exercise 1).

Write I(G) to denote the set of conditional independence relations corresponding to
the graph G. Also write I(P ) to denote the set of conditional independence relations
corresponding to the distribution P . Then we can restate Theorem 18.5 by saying that
P 2M(G) if and only if I(G) ⇢ I(P ). Say that P is faithful to G if I(G) = I(P ).

18.8 Example. Let G = (V,E) where V = (X,Y ) and E = {(X,Y )}. The graph has
one edge from node X to node Y , denoted as X �! Y . Then I(G) = ;. Suppose P has
probability function p(x) and that p(x, y) = p(x)p(y). Then I(P ) = {X ??Y }. Hence
I(G) ⇢ I(P ). Therefore P is Markov to G but is not faithful to G. 2

18.9 Example. Consider the DAG in Figure 18.6, the Markov condition implies that X??Y
and W??{X,Y } | Z. 2

18.10 Example. Consider the DAG in Figure 18.7. In this case the probability function

A

C

B

D E

Figure 18.7. Yet another DAG.

must factor like p(a, b, c, d, e) = p(a)p(b | a)p(c | a)p(d | b, c)p(e | d).
The Markov condition implies the following conditional independence relations:

D??A | {B,C}, E??{A,B,C} | D and B??C | A

2

18.11 Example. Let G be a chain graph denoted as in Figure 18.8. We then have p(x) =
p(x0)p(x1 |x0)p(x2 |x1) · · · . The distribution of each variable depends only on its imme-
diate predecessor. We say that P is a Markov chain. 2



410 Chapter 18. Directed Graphical Models

X1 X2 X3X0

Figure 18.8. A chain graph.

18.12 Example. A hidden Markov model (HMM) involves two set of variables X1, X2, . . .
and Y1, Y2, . . .. The Xi’s form a Markov chain but they are unobserved. The Yi’s are
observed and the distribution of Yi depends only on Xi. See Figure 18.9, in which we use
gray variables to indicate the fact that Yi’s are observed. HMMs are used in genetics, speech
recognition and many other applications. 2

X1 X2 X4X3

Y1 Y2 Y4Y3

Figure 18.9. A hidden Markov model. The gray variables indicate that they are observed.

18.13 Example. Some statistical models can naturally be written in layers and are called
hierarchical models or random effects models. For example, suppose we sample k coun-
ties and then we sample ni people in the i-th county. We count the number Yi that test
positive for some disease. Then Yi ⇠ Binomial(ni, ✓i). The ✓i’s can also be regarded as
random variables sampled from some distribution p(✓; ). For example, we might have
✓i ⇠ Beta(↵,�) so that  = (↵,�). The model can be written as

✓i ⇠ Beta(↵,�)

Yi|✓i ⇠ Binomial(ni, ✓i).

Figure 18.10 shows a DAG representing this model. 2

18.4 More Independence Relations

The Markov condition allows us to list some independence relations implied by a DAG.
These relations might imply other independence relations. Let’s consider the DAG in Figure
18.11. The Markov condition implies:

X1??X2, X2??{X1, X4}, X3??X4 | {X1, X2},

X4??{X2, X3} | X1, X5??{X1, X2} | {X3, X4}



18.4. More Independence Relations 411

θ1 θ2 θk

Y1 Y2 Yk

(α, β )

Figure 18.10. A hierarchical model. All Yi’s are represented by gray nodes, indicating the fact that
they are observed.

X1

X2

X3

X4

X5

Figure 18.11. And yet another DAG.

It turns out (but it is not obvious) that these conditions imply that

{X4, X5}??X2 | {X1, X3}.

How do we find these extra conditional independence relations? The answer is “d-
separation,” which is short for “directed separation.” The notion of d-separation can be
summarized by three rules. Consider the four DAGs in Figure 18.12. The first three DAGs
in Figure 18.12 have no colliders. The DAG in Figure 18.12 (d) has a collider. The DAG in
Figure 18.4 has a collider with a descendant.



412 Chapter 18. Directed Graphical Models

X Z

Y

X Z

Y

X Z

Y

X Z

Y

(a) (c)(b) (d)

Figure 18.12. The first three DAGs have no colliders. The fourth DAG has a collider at Y .

The Rules of d-Separation

Consider the DAGs in Figures 18.12 and 18.4.

1. When Y is not a collider, X and Z are d-connected, but they are d-separated
given Y .

2. If X and Z collide at Y , then X and Z are d-separated, but they are d-
connected given Y .

3. Conditioning on the descendant of a collider has the same effect as condition-
ing on the collider. Thus in Figure 18.4, X and Z are d-separated but they are
d-connected given W .

Here is a more formal definition of d-separation. Let X and Y be distinct vertices and
let W be a set of vertices not containing X or Y . Then X and Y are d-separated given W
if there exists no undirected path U between X and Y such that (i) every collider on U has
a descendant in W , and (ii) no other vertex on U is in W . If A,B, and W are distinct sets
of vertices and A and B are not empty, then A and B are d-separated given W if for every
X 2 A and Y 2 B, X and Y are d-separated given W . The sets of vertices that are not
d-separated are said to be d-connected.

18.14 Example. Consider the DAG in Figure 18.13.

X VU

Z

W Y

S

Figure 18.13. Example for d-separation.

From the d-separation rules we conclude that: (i) X and Y are d-separated (given the
empty set); (ii) X and Y are d-connected given {Z, S}; (iii) X and Y are d-separated given
{Z, S, V }. 2



18.5. Gaussian DAGs 413

The following theorem, due to Verma and Pearl (1988), provides the probabilistic im-
plications of d-separation.

18.15 Theorem. (Verma and Pearl (1988)) If sets A and B are d-separated by C in a DAG
G, then A is independent of B conditional on C in every distribution compatible with G.
Conversely, if A and B are not d-separated by C in a DAG G, then A and B are dependent
conditional on C in at least one distribution compatible with G.

Proof Idea. Assuming A and B are d-separated by C, the proof uses the algebraic properties
of conditional independence. For the converse, the proof constructs a distribution P such
that A and B are correlated conditioned on C. Such a construction is possible since A
and B are not d-separated by C. From the definition of d-separability, there are several
cases to consider, depending on whether a collider appears between A and B. In each
case, conditional probability distributions can be constructed so that the correlations can be
propagated from A to B.

18.16 Example. Consider the DAG in Figure 18.5. In this example, overweight and smok-

ing are marginally independent but they are dependent given heart disease. 2

Graphs that look different may actually imply the same independence relations. If G is a
DAG, we let I(G) denote all the independence statements implied by G. Two DAGs G1 and
G2 for the same variable set V are Markov equivalent if I(G1) = I(G2). All DAGs can be
partitioned into equivalence classes so that DAGs within each class are Markov equivalent.
Given a DAG G, let skeleton(G) denote the undirected graph obtained by replacing the
arrows with undirected edges.

18.17 Theorem. (Verma and Pearl (1990)) Two DAGs G1 and G2 are Markov equivalent if
and only if (i) skeleton(G1) = skeleton(G2) and (ii) G1 and G2 have the same unshielded
colliders (i.e. any two nodes pointing to the same collider are not connected).

Proof. See Exercise 3.

18.18 Example. According to Theorem 18.17, the first three DAGs in Figure 18.12 are
Markov equivalent. The DAG in Figure 18.12 (d) is not Markov equivalent to the other
three. 2

18.5 Gaussian DAGs

We now represent the multivariate Gaussian distribution using a directed graphical model.
This representation is based on the linear Gaussian model, which is defined in the following



414 Chapter 18. Directed Graphical Models

18.19 Definition. (Linear Gaussian Model) Let Y be a continuous variable in a DAG with
parents X1, . . . , Xk. We say that Y has a linear Gaussian model of its parents if there are
parameters �0,�1, . . . ,�k and �2 such that

Y = �0 + �1X1 + . . .+ �kXk + ✏, ✏ ⇠ N(0,�2). (18.20)

18.21 Definition. (Gaussian Directed Graphical Models) A directed graphical model is
called a Gaussian directed graphical model (or Gaussian Bayesian network) if all the vari-
ables are continuous and every variable and its parents follow a linear Gaussian model.

In a Gaussian Bayesian network, each variable Xj is modeled as a linear function of
its parents plus normally distributed random noise. One important result is that there is
one-to-one correspondence between a multivariate Gaussian distribution and a Gaussian
Bayesian network. The next theorem shows that Gaussian Bayesian network defines a joint
multivariate Gaussian distribution.

18.22 Theorem. We assume that Y has a linear Gaussian model of its parents X1, . . . , Xk:
Y = �0 +

Pk
j=1 �jXj + ✏, where ✏ ⇠ N(0,�2). We also assume that X = (X1, . . . , Xk)

are jointly Gaussian with distribution N(µ,⌃). Then the joint distribution of (Y,X1, . . . , Xk)
is a Gaussian distribution with Cov(Y,Xi) =

Pk
j=1 �j⌃ij . Moreover, we have E(Y ) =

�0 + �Tµ and Var(Y ) = �2 + �T⌃�, where � = (�1, . . . ,�k).

Proof. Since the marginal distribution of X and the conditional distribution of Y given X
are both Gaussians, the joint distribution of (Y,X) is Gaussian with the covariance:

Cov(Y,Xi) = Cov
⇣
�0 +

kX

j=1

�jXj , Xi

⌘
=

kX

j=1

�jCov(Xj , Xi) =
kX

j=1

�j⌃ij . (18.23)

Also, since Y is the summation of k+ 1 Gaussian variables, the marginal distribution of Y
is Gaussian with the desired mean and variance.

The converse of this theorem is also true, which states that any multivariate Gaussian
distribution can be converted to a Gaussian Bayesian network. We first state a simple
lemma, the proof of which follows from straightforward algebraic manipulation.

18.24 Lemma. Let (Y,X) be a multivariate Gaussian distribution:
✓
Y

X

◆
⇠ N

✓✓
µY

µX

◆
,

✓
⌃Y Y ⌃Y X

⌃XY ⌃XX

◆◆
. (18.25)

Then Y |X ⇠ N(�0 + �TX,�2) where

�0 = µY �⌃Y X⌃
�1
XXµX , � = ⌃

�1
XX⌃Y X , and �2 = ⌃Y Y �⌃Y X⌃

�1
XX⌃XY .



18.5. Gaussian DAGs 415

18.26 Theorem. Let P be the joint distribution of d-dimensional multivariate Gaussian
random vector X = (X1, . . . , Xd). For any ordering of the variables X⌧(1), . . . , X⌧(d), we
can construct a DAG G such that P is Markov to G, and where X⌧(i) is a linear Gaussian
model of its parents ⇡(X⌧(i)) ⇢ {X⌧(1), . . . , X⌧(i�1)} for all i.

Proof. See Exercise 4.

Next, we study the conditional independence properties of a Gaussian model. We start
with the definition of partial correlation, which measures the degree of association between
two random variables, with the effect of a set of controlling random variables removed.

18.27 Definition. The partial correlation ⇢X,Y |Z between two variables X and Y given
another set of variables Z = (Z1, Z2, . . . , Zk) is the correlation between the residuals
resulting from regressing X on Z and Y on Z. More formally,

⇢X,Y |Z =
E(XY |Z)� E(X |Z)E(Y |Z)p

Var(X |Z)
p

Var(Y |Z)
. (18.28)

Conditional independencies can be inferred from partial correlations in a multivariate
Gaussian distribution. This result is summarized in the next theorem, which follows from
the elementary properties of the multivariate Gaussian (Lauritzen, 1996a).

18.29 Theorem. Let X be a Gaussian random vector X = (X1, . . . , Xd). For i 6= j 2
{1, . . . , d}, K ⇢ {1, . . . , d} \ {i, j}, denote by ⇢i,j |K the partial correlation between Xi

and Xj given {Xk : k 2 K}. Then ⇢i,j |K = 0 if and only if Xi and Xj are conditionally
independent given {Xk : k 2 K}.

We can thus obtain estimates of conditional independencies for Gaussian DAGs by
calculating sample partial correlations. These can be computed via regression, computing
components of the inverse of the sample covariance, or recursively using the following
proposition.

18.30 Proposition. Let X = (X1, . . . , Xd) be multivariate Gaussian. For i 6= j 2
{1, . . . , d}, K ⇢ {1, . . . , d} \ {i, j}, let ⇢i,j |K be the partial correlation between Xi and
Xj given {Xk : k 2 K}. Then for any h 2 K,

⇢i,j |K =
⇢i,j |K\h � ⇢i,h |K\h · ⇢j,h |K\hq
1� ⇢2i,h |K\h

q
1� ⇢2j,h |K\h

. (18.31)

Proof. See Exercise 5.



416 Chapter 18. Directed Graphical Models

In the above proposition, when A is the empty set, the partial correlation ⇢i,j |A re-
duces to the Pearson correlation between the random variables Xi and Xj . This enables
calculation of higher order partial correlations in a recursive way.

18.6 Exact Inference

For inference in directed graphical models, some of the variables in a graph are set to certain
values due to evidence, and we wish to compute the posterior distribution of some other
variables. This requires calculating the probability distribution on a subset of variables
by marginalizing over the joint. One thing to note is that inference in this section is just
calculating marginal and conditional probabilities. which is different from the general term
statistical inference used in this book.

Even a probability distribution is given, calculating marginal or conditional distributions
can be costly because it requires summing over an exponential number of joint probability
combinations. The first efficient algorithm proposed for probabilistic inference in DAGs
used message-passing architecture and were limited to trees (Pearl, 1982). The main idea
is to view each variable as a simple processor and reduce probabilistic inference to asyn-
chronous local message passing among different nodes until equilibrium is achieved. In this
section, we mainly focus on exact inference methods, and in the later computing chapters
we will consider different approximate inference algorithms.

18.6.1 Belief Propagation (Sum-Product Algorithm) on Polytrees

We now introduce a local message-passing type algorithm named belief propogation (Pearl,
1988; Lauritzen and Spiegelhalter, 1988). For simplicity, we assume all the variables are
discrete, therefore marginalization only requires summations. This assumption is not re-
strictive since for continuous variables we only need to replace summation with integration.

We focus on conducting exact inference on polytrees. In graph theory, a polytree is a
directed graph with at most one undirected path between any two nodes. In other words,
a polytree is a DAG for which there are no undirected cycles. One example of polytree
is provided in Figure 18.14. To introduce belief propagation algorithm for polytrees, we
consider an inference problem that takes the form P(X = x |E = e) where X is a query
node and E is any subset of observed nodes (or evidence nodes) who have been set to certain
values.

Without loss of generality, we assume E = E+
X [ E�

X where E+
X is a subset of the

ancestor nodes of X and E�

X is a subset of the descendant nodes of X (Both E+
X and E�

X
may also be empty). For belief propagation, we treat each node as a processor that receives
messages from its neighbors and pass them along after some local calculation. Let X has
n children Y1, . . . , Yn and k parents Z1, . . . , Zk. The node X receives and processes two
types of messages from its neighbors. First, we use m�

Yj
(X) to represent the message sent

from the child Yj to X . Assuming X has n children, we have n such messages:

m�

Y1
(X), . . . ,m�

Yn
(X). (18.32)



18.6. Exact Inference 417

Y1

X

Yj Yn

Z1 Zi Zk

U V

Figure 18.14. A polytree that is used to illustrate the belief propagation algorithm. In a polytree,
a node may have several children and parents, but there can be at most one undirected path that
connects any two nodes.

More detailed forms of m�

Yj
(X) will be provided in later paragraphs. We also denote

m+
Yj
(X) to be the message sent from X to one of its children Yj . For all the n children

of X , we have the following messages:

m+
Y1
(X), . . . ,m+

Yn
(X). (18.33)

Assuming the node X has exactly k parents, we define m�

X(Z1), . . . ,m
�

X(Zk) to be the
messages sent from X to its parents Z1, . . . , Zk. Similarly, we define m+

X(Z1), . . . ,m
+
X(Zk)

to be the messages sent from Z1, . . . , Zk to X . For more details, see Figure 18.14.
Let E+

X = e+X and E�

X = e�X . We want to evaluate

p(x | e+X , e�X) ⌘ P(X = x |E+
X = e+X , E�

X = e�X). (18.34)

Since X d-separates E+
X and E�

X , we have that p(e+X , e�X |x) = p(e+X |x)p(e�X |x).
We further define E+

X = E+
X,Z1

[ · · · [ E+
X,Zk

where E+
X,Zi

is a subset of E+
X that

are also ancestors of Zi. Similarly, we define E�

X = E�

X,Y1
[ · · · [ E�

X,Yn
where E�

X,Yj
is

a subset of E�

X that are also descendants of Yj . We define m+(x) ⌘ p(x | e+X) to be the
propagated E+

X = e+X that X receives from its parents and passes on to its children, and
m�(x) ⌘ p(e�X |x) to be the propagated E�

X = e�X that X receives from its children and



418 Chapter 18. Directed Graphical Models

passes on to its parents. We then have

p(x | e+X , e�X) =
p(e+X , e�X |x)p(x)

p(e+X , e�X)
=

p(e+X |x)p(e�X |x)p(x)

p(e+X , e�X)
(18.35)

=
p(x | e+X)p(e+X)p(e�X |x)p(x)

p(x)p(e+X , e�X)
(18.36)

= ↵p(x | e+X)p(e�X |x) (18.37)

= ↵m+(x)m�(x) (18.38)

where the normalizing constant ↵ = p(e+X)/p(e+X , e�X) does not depend on x.
We now explain how to evaluate m+(x) and m�(x) in a recursive way. Similarly to the

definition of m+(x) and m�(x), we define the messages

m+
Yj
(x) = p(x | e+X,Yj

) and m�

Yj
(x) = p(e�X,Yj

|x), (18.39)

m+
X(zi) = p(zi | e

+
X,Zi

) and m�

X(zi) = p(e�X,Zi
| zi). (18.40)

We then have

m�(x) = p(e�X |x) = p(e�X,Y1
, . . . , e�X,Yn

|x) =
nY

j=1

p(e�X,Yj
|x) =

nY

j=1

m�

Yj
(x), (18.41)

where we have utilized the fact that X d-separates Y1, . . . , Yn.
Similarly, we have

m+(x) = p(x | e+X) = p(x | e+X,Z1
, . . . , e+X,Zk

) (18.42)

=
X

z1

X

z2

· · ·

X

zk

p(x | z1, z2, . . . , zk)p(z1, . . . , zk | e
+
X,Z1

, . . . , e+X,Zk
) (18.43)

=
X

z1

X

z2

· · ·

X

zk

p(x | z1, z2, . . . , zk)
kY

i=1

p(zi | e
+
X,Zi

) (18.44)

=
X

z1

X

z2

· · ·

X

zk

p(x | z1, z2, . . . , zk)
kY

i=1

m+
X(zi). (18.45)

Therefore, we see that given all the messages passed from the node X’s parents and chil-
dren, we can evaluate p(x | e+X , e�X) easily. The remaining question is how can we efficiently
collect these messages. This requires us to calculate the messages a node send to its chil-
dren and parents. Without loss of generality, we only need to explain how to calculate the
messages that X send to its parents and children:

m�

X(Z1), . . . ,m
�

X(Zk), and m+
Y1
(X), . . . ,m+

Yn
(X).

Note that what node Yj receives from X includes both information that X gets from its
parents Z1, . . . , Zk (i.e. E+

X ) and also from its other children Y1, . . . , Yj�1, Yj+1, . . . , Yn



18.6. Exact Inference 419

(i.e. {E�

X \ E�

X,Yj
}). Let

� =
1

p
⇣
{e�X \ e�X,Yj

} | e+X

⌘ .

To evaluate m+
Yj
(X), we have

m+
Yj
(x) = p(x | e+X,Yj

) = p
⇣
x | e+X , {e�X \ e�X,Yj

}

⌘
(18.46)

=
p
⇣
{e�X \ e�X,Yj

} |x, e+X

⌘
p
�
x | e+X

�

p
⇣
{e�X \ e�X,Yj

} | e+X

⌘ (18.47)

= � · p
⇣
{e�X \ e�X,Yj

} |x, e+X

⌘
p
�
x | e+X

�
(18.48)

= �
Y

` 6=j

p
⇣
e�X,Y`

|x, e+X

⌘
p
�
x | e+X

�
(18.49)

= �
Y

` 6=j

p
⇣
e�X,Y`

|x
⌘
p
�
x | e+X

�
(18.50)

= �
Y

` 6=j

m�

Y`
(x)m+(x). (18.51)

Where have used the fact that X d-separates Y1, . . . , Yn.
We then show how to evaluate m�

X(Zi). Note that the message m�

X(Zi) that X passes
on to one of its parents Zi includes not only the messages X gets from its children (i.e. E�

X )
but also the messages X receives from its other parents (i.e. {E�

X \ E�

X,Zi
}). Let

� = p
⇣
{e+X \ e+X,Zi

}

⌘
. (18.52)



420 Chapter 18. Directed Graphical Models

We then have

m�

X(zi) = p(e�X,Zi
| zi) =

X

x

X

{z`}` 6=i

p(e�X,Zi
, x, {z`}`6=i | zi) (18.53)

=
X

x

X

{z`}` 6=i

p
⇣
e�X , {e+X \ e+X,Zi

}, x, {z`} 6̀=i | zi
⌘

(18.54)

=
X

x

X

{z`}` 6=i

p
⇣
e�X , {e+X \ e+X,Zi

} |x, {z`}`6=i, zi
⌘
p (x, {z`} 6̀=i | zi) (18.55)

=
X

x

X

{z`}` 6=i

p
�
e�X |x

�
p
⇣
{e+X \ e+X,Zi

} | {z`}`6=i

⌘
p (x, {z`}` 6=i | zi) (18.56)

=
X

x

X

{z`}` 6=i

p
�
e�X |x

� p
⇣
{z`}` 6=i | {e

+
X \ e+X,Zi

}

⌘
· �

p ({z`}`6=i)
p (x, {z`}`6=i | zi)(18.57)

= �
X

x

X

{z`}` 6=i

p
�
e�X |x

�
p
⇣
{z`}`6=i | {e

+
X \ e+X,Zi

}

⌘
p (x | {z`}`6=i, zi) (18.58)

= �
X

x

X

{z`}` 6=i

m�(x)

0

@
Y

6̀=i

m+
X(zi)

1

A p(x | z1, . . . , zk) (18.59)

= �
X

x

m�(x)
X

{z`}` 6=i

p(x | z1, . . . , zk)
Y

` 6=i

m+
X(zi). (18.60)

Given the above recursive relationship of the message-passing algorithm, the only thing left
is to determine the initial values of the leaf nodes, root nodes, and evidence nodes. Let X
be a node with parents Z1, . . . , Zk and children Y1, . . . , Yn (If X is a leaf node, then there
is no children; If X is a root node, then there is no parents). It is easy to see that if X is
initialized to be a certain evidence value e, then

m�

X(Z1) = · · · = m�

X(Zn) = m+
Y1
(X) = · · · = m+

Yn
(X) = 1. (18.61)

If X is an un-initialized leaf node with parents Z1, . . . , Zk, we have m�

X(Z1) = · · · =
m�

X(Zk) = 1. If X is an un-initialized root node with children Y1, . . . , Yn, we have
m+

Y1
(X) = · · · = m+

Yn
(X) = P(X) with P(X = x) = p(x).

The belief propagation algorithm conducts exact inference for polytrees. However, if
there is a cycle in the underlying undirected graph, the belief propagation algorithm will no
longer work. The main reason is that when cycles exist, a node X is no longer guaranteed
to d-separate its ancestors and descendants. Therefore, the messages can be propagated
through multiple paths. To apply belief propagation, we need to convert the graph into a
polytree T . Each node of T may correspond to a set of original variables. This is related
to the junction tree algorithms, which can be viewed as belief propagation on a modified
graph guaranteed to be a polytree. The basic idea is to eliminate cycles by clustering them
into single nodes. More details about junction trees will be introduced in the next chapter



18.7. Approximate Inference 421

on undirected graphical models. Since the messages in the belief propagation algorithm
takes the form of summing over many product terms. The belief propagation is also called
the sum-product algorithm.

18.6.2 Max-Product and Max-Sum Algorithms

A similar algorithm is commonly referred to as max-product, also known as max-sum algo-
rithm, which solves a related problem of maximizing a probability, or finding the most prob-
able explanation for certain observations. Instead of attempting to calculate the marginal,
the goal now is to find a joint configuration of X = bx which has maximum a posterior
probability (the MAP estimate):

bx = argmax
x

P(X = x |E = e), (18.62)

where X is a query node which could possibly represents a set of random variables. E is the
evidence node as before. An algorithm that solves this problem is nearly identical to belief
propagation, with sums replaced by maxima in messages. The resulting procedure is called
the max-product algorithm. Note that to avoid potential underflow, the max-product algo-
rithm can equivalently be written in terms of log-probabilities, in which case one obtains
the max-sum algorithm. Once again we see that in a polytree, exact MAP inference can
be performed in two sweeps using the max-product algorithm. The algorithm is in fact an
example of dynamic programming. The max-product or max-sum algorithm, when applied
to hidden Markov models (HMMs), is known as the Viterbi algorithm.

18.7 Approximate Inference

The graphical models encountered in applications may have large cliques or long loops,
which make exact inference intractable. In this setting we must conduct approximate infer-
ence. There are two popular ways for approximate inference: (i) variational methods and
(ii) sampling methods. The former class of methods are deterministic and the latter class
of methods are stochastic. We defer the discussions of these two families of approximation
inference algorithms to later computing chapters. Another way to conduct approximate
inference is to directly apply the belief propagation algorithm without worrying about the
loops. Such a method is known as loopy belief propagation (Frey and MacKay, 1997). This
algorithm can be effective on certain applications, though its convergence is not guaranteed.

18.8 Parameter Estimation

Two estimation questions arise in the context of DAGs. First, given a DAG G and data
x1, . . . , xn from a distribution p(x) consistent with G, how do we estimate p(x)? Second,
given data x1, . . . , xn how do we estimate G? The first question is a standard parameter
estimation problem. The second question is a structure learning problem and is similar in



422 Chapter 18. Directed Graphical Models

approaches and terminology to model selection procedures for classical statistical models.
In this section we only discuss parameter estimation with pre-fixed DAG G. For parameter
estimation, one important distinction is whether all the variables are observed, or whether
some of them are hidden. We discuss these two cases separately.

18.8.1 Parameter Estimation from Fully Observed Data

Let G be a DAG with vertices V = (X1, . . . , Xd). Once G is given, the task of estimating
the parameters of the joint distribution can be greatly simplified by the application of the
Markov property. Suppose we use a parametric model p(xj |⇡xj ; ✓j) for each conditional
density in (18.2), where ⇡xj is the set of parent nodes of Xj . Let ✓ = (✓1, . . . , ✓d) be the
set of parameters, the joint distribution in (18.2) can be written as

p(x; ✓) =
dY

j=1

p(xj | ⇡xj ; ✓j). (18.63)

Given n data points {x1, . . . , xn}, the likelihood function is

L(✓) =
nY

i=1

p(xi; ✓) =
nY

i=1

dY

j=1

p(xij |⇡xj ; ✓j), (18.64)

where xij is the value of Xj for the ith data point and ✓j are the parameters for the jth

conditional density. We can then estimate the parameters by maximum likelihood. It is
easy to see that the log-likelihood decomposes according to the graph structure:

`(✓) = logL(✓) =
dX

j=1

log

 
nY

i=1

p(xij |⇡xj ; ✓j)

!
⌘

dX

j=1

logLj(✓j) =
dX

j=1

`j(✓j),(18.65)

where `j(✓j) =
Pn

i=1 log p(xij |⇡xj ; ✓j) is a localized conditional likelihood for ✓j . There-
fore we can maximize the contribution to the log-likelihood of each node independently. (It
is straightforward to extend this to the shared parameter paradigms.)

When there is not enough information from the data points, we could also regularize
the log-likelihood to avoid overfitting:

b✓ = argmax
✓

{`(✓)� Pen(✓)} , (18.66)

where Pen(✓) � 0 is some penalty term of ✓.

18.8.2 Parameter Estimation with Hidden Variables

In many applications, observed data may not include the values of some of the variables
in the DAG. We refer to these variables as hidden variables. If Z denotes be the hidden



18.8. Parameter Estimation 423

variables, the log-likelihood can be written as

`(✓) =
nX

i=1

log p(xi; ✓) =
nX

i=1

log

Z

zi

p(xi, zi; ✓)dzi. (18.67)

With hidden variables, the log-likelihood is no longer decomposable as in (18.65), and
maximizing the log-likelihood in (18.67) is often difficult. This can be approached using
the EM algorithm, which is discused in later chapters.

18.68 Example. Consider the graphical models in Figure18.15. The DAG has four nodes.
Each node corresponds to one univariate random variable. We consider two settings: (a) all
the four variables are fully observable, with data {(xi, yi, zi, wi)}ni=1; (b) only three vari-
ables X,Z,W are observable, with data {(xi, zi, wi)}ni=1. Given the DAG topology, we

X

Z

Y

W

X

Z

Y

W

(a) (b)

Figure 18.15. (a) a DAG where all the four nodes are observable; (b) a DAG where only three nodes
are observable and one node Y is hidden. A node is gray-colored if it is observable.

know that the joint density has the decomposition p(x, y, z, w) = p(w | y)p(z | y)p(y |x)p(x).
We parametrize the conditional distributions as the following:

W |Y = y ⇠ N(µ1, 1)I(y = 1) +N(µ0, 1)I(y = 0) (18.69)

Z |Y = y ⇠ N(µ0, 1)I(y = 1) +N(µ1, 1)I(y = 0) (18.70)

Y |X = x ⇠ Bernoulli

✓
1

1 + exp(��0 � �1x)

◆
(18.71)

X ⇠ N(µ2,�
2). (18.72)

From the above parameterization, we see that the conditional distributions p(w | y) and
p(z | y) share the same set of parameters µ0 and µ1. Let ✓ = (µ0, µ1,�0,�1, µ2,�) and
�(·) be the standard Gaussian density function. When all the four variables are observable,
the joint log-likelihood of ✓ has the following decomposition

`(✓) = `(µ0, µ1) + `(�0,�1) + `(µ2,�
2) + constant, (18.73)

where `(µ0, µ1) = �
1

2

nX

i=1

I(yi = 1) ·
⇥
(wi � µ1)

2 + (zi � µ0)
2
⇤
�

1

2

nX

i=1

I(yi = 0) ·

⇥
(wi � µ0)

2 + (zi � µ1)
2
⇤
, and `(�0,�1) = �

nX

i=1

I(yi = 1) log (1 + exp(�0 + �1xi)) �



424 Chapter 18. Directed Graphical Models

nX

i=1

I(yi = 0) log (1 + exp(��0 � �1xi)). We also have `(µ2,�2) = �
1

2�2

nX

i=1

(xi � µ2)
2.

It is easy to see that the maximum likelihood estimates take the form

bµ0 =
1

2n

nX

i=1

⇥
I(yi = 0) · wi + I(yi = 1) · zi

⇤
(18.74)

bµ1 =
1

2n

nX

i=1

⇥
I(yi = 1) · wi + I(yi = 0) · zi

⇤
(18.75)

bµ2 =
1

n

nX

i=1

xi and c�2 = 1

n

nX

i=1

(xi � bµ2)
2 . (18.76)

The parameters �0 and �1 can also be easily estimated by solving a logistic regression using
Y as output and X as input.

When Y is hidden (as in Figure 18.15 (b)), the log-likelihood no longer decomposes.
Parameter estimation is more challenging and requires an iterative EM algorithm. 2

18.9 Structure Learning

Estimating a DAG from data is very challenging due to the enormous size of the space
of DAGs (the number of possible DAGs is super-exponential in the number of nodes).
Existing methods can be roughly divided into two categories: (i) constraint-based methods
and score-based methods. Constraint-based methods use statistical tests to learn conditional
independence relationships (called constraints in this setting) from the data and prune the
graph-searching space using the obtained constraints. In contrast, score-based algorithms
assign each candidate DAG a score reflecting its goodness of fit, which is then taken as
an objective function to be optimized. In this section, we introduce a constraint-based
method, named PC algorithm (after its authors, Peter and Clark, see Spirtes et al. (2000)),
for estimating DAGs from observed data. Under certain conditions, a sample version of the
PC algorithm has been shown to be consistent even for large graphs. In the following, we
first describe the population PC algorithm (i.e. we assume the true distribution is given).
We then explain if only n i.i.d. observations are obtained, how can we use these samples to
estimate the corresponding population quantities of the PC algorithm.

18.9.1 Representing Equivalence Classes

Let X = (X1, . . . , Xd) be a d-dimensional random vector with distribution P . We assume
that there exists a DAG G such that I(P ) = I(G). In another word, P is faithful to G.
Without this assumption, the PC algorithm may fail.

With the faithfulness assumption, one obvious goal is to identify the DAG G from P .
However, from Example 18.18, we know that there might exists another DAG G0 which
is Markov equivalent to G (i.e., G and G0 are actually indistinguishable from P ). There-
fore, instead of identifying one single DAG G, we can only identify the whole Markov



18.9. Structure Learning 425

equivalence class of G. From Theorem 18.17, we know that all DAGs in the equivalence
class have the same skeleton and the set of unshielded colliders. Motivated by this theorem,
the whole equivalence class can be compactly represented by the skeleton graph with un-
shielded colliders marked (All the edges are undirected except the edges corresponding to
unshielded colliders). One such example is shown in Figure 18.16.

X Z

Y

W

U V

X Z

Y

W

U V

X Z

Y

W

U V

(a) original DAG (b) skeleton + unshielded collider (c) CPDAG

Figure 18.16. (a) The original DAG G; (b) The skeleton of G with unshielded colliders; (c) The
CPDAG corresponds to G. The figure shows that CPDAG can be more informative than just graph
skeleton annotated with unshielded colliders.

Figure 18.16 (a) shows an original DAG G which has only one unshielded collider
X �! Y  � Z. Figure 18.16 (b) shows the skeleton of G annotated with the unshielded
collider. Every DAG that is Markov equivalent to G should have the same skeleton and the
unshielded collider. Such a graph, containing both directed and undirected edges, is called
partially directed acyclic graph (PDAG). The definition of PDAG is:

18.77 Definition. (PDAG) A partially directed acyclic graph or PDAG is an acyclic graph
containing both directed and undirected edges and one can not trace a cycle by following
the direction of directed edges and any direction for undirected edges.

However, the representation in Figure 18.16 (b) is not compact at all. There are 6
undirected edges in the PDAG in Figure 18.16 (b). Since each edge have two possible
directions, the potential number of DAGs represented by this graph is 26 = 64. However, if
we think more carefully, the directions of many undirected edges can in fact be determined
based on the PDAG representing the skeleton and all the unshielded colliders. For example,
the edge connecting Y and W must be Y �!W . Otherwise we will get another unshielded
collider Z �! Y  �W , which contradicts the fact that the equivalence class has only one
unshielded collider. Similarly, we get two more directed edges W �! U and W �! V .
Given the path X �! Y �! W , we immediately get the edge X �! W since any
element in the equivalence class must be a DAG (which does not contain loops). Similarly,
given X �! W �! U , the edge connecting X and U must be X �! U . Therefore, the
directions of many undirected edges in the skeleton can be determined using simple rules
(e.g. we can not introduce new unshielded colliders or cycles.). Therefore the size of the



426 Chapter 18. Directed Graphical Models

equivalence class can be greatly reduced. For the PDAG in Figure 18.16 (b), the only edge
that we can not determine its directionality is U—V , which lead to two potential DAGs.

We define a special PDAG, named completed PDAG (CPDAG), to compactly represent
an equivalent class:

18.78 Definition. (CPDAG) Let G be a DAG and K be a PDAG. K is a completed
PDAG (or CPDAG) with respect to the equivalence class of G: if (i) skeleton(K) =
skeleton(G); (ii) K contains a directed edge X �! Y if and only if any DAG G0

that is Markov equivalent to G contains the same directed edge X �! Y .

In other words, if an edge is directed in a CPDAG, all DAGs in the equivalent class agree on
the direction of this edge. If an edge is undirected, then there are at least two DAGs within
the equivalence class, such that they disagree on the direction of this edge.

Given a distribution P that is faithful to G, we can only identify the CPDAG of G.
The population PC algorithm takes a distribution P as input and return a CPDAG. The
algorithm starts from a complete, undirected graph and recursively deletes edges based on
conditional independence decisions. This yields an undirected skeleton graph which can
then be partially directed and further extended to represent the CPDAG. The algorithm
has two parts: (i) identify the DAG skeleton; (ii) identify the CPDAG. After introducing
the population PC algorithm, We describe a sample version PC algorithm that can reliably
recover the true CPDAG purely based on observational data for Gaussian models.

18.9.2 PC Algorithm, Step 1: Identifying the Skeleton

Let P be a distribution that is faithful to G. We want to construct an undirected graph S
such that S = skeleton(G). The algorithm is based on evaluating conditional independence
relationships of the form

Xi??Xj |A (18.79)

for different subsets of variables A. For finite data, these evaluations are based on statistical
tests of conditional independence. The basic idea is if Xi and Xj are adjacent in G, then
Xi??Xj |A does not hold for any A. This is summarized in the next theorem.

18.80 Theorem. Let G be a DAG and P be a distribution that is faithful to G. If Xi

and Xj are adjacent in G, then the conditional independence test Xi??Xj |A fails for
all A ⇢ V \ {i, j}. On the other hand, if Xi and Xj are not adjacent in G, then either
Xi??Xj |⇡(Xi) or Xi??Xj |⇡(Xj), where ⇡(Xi),⇡(Xj) are the parent sets of Xi and
Xj in the DAG G.

Proof. For the first part, with no loss of generality, we assume a directed edge X �! Y is in



18.9. Structure Learning 427

G. For any A ⇢ V \{i, j}, there is no way for A to d-separate Xi and Xj . Since P is faithful
to G, we know that Xi and Xj must be conditionally dependent for any A ⇢ V \ {i, j}.

For the second part, we consider two cases: (i) Xj is a descendant of Xi and (ii) Xj is
not a descendant of Xi. By the definition of d-separation, in the first case we can show that
Xi??Xj |⇡(Xj), and in the second case we have Xi??Xj |⇡(Xi).

From Theorem 18.80, we see that to determine whether Xi and Xj has an undirected
edge in skeleton(G), we need to check whether there exists A ⇢ V \ {i, j}, such that
Xi??Xj |A. If we can find such an A, it is enough to ensure that Xi and Xj are not
adjacent. The corresponding A is called a separating set for Xi and Xj . In the next section,
we will show that these separating sets are useful for determining unshielded colliders. If
Xi and Xj are conditionally independent given A, they must be conditionally independent
given any superset of A. Therefore, we can search the set of possible separating sets in
order of increasing size.

To make sure that Xi and Xj are actually adjacent in G, we need to exhaustively check
that Xi??Xj |A fails for all A ⇢ V \ {i, j}. This is computationally intensive. The
corresponding algorithm is shown in Figure 18.17. where adj(C, i) represents the adjacency
nodes of Xi in an undirected graph C. The outer loop k = 0, 1 . . . , d indexes the size of
the separating sets. In the next paragraph, we will show that the number of iterations of this
outer loop is upper bounded by the maximum degree of skeleton(G). Also, it is easy to see
that if skeleton(G) is sparse, the algorithm will converge much faster.

Let K ⌘ the maximum degree of skeleton(G). The following theorem shows the cor-
rectness of Algorithm 18.17.

18.81 Theorem. Let G be a DAG and P be a distribution that is faithful to G. Then the
algorithm in Figure 18.17 correctly reconstruct skeleton(G). Furthermore, let

`stop ⌘ the maximum reached value of ` in the outer loop. (18.82)

Then either `stop = K � 1 or `stop = K.

Proof. Let Cout be the final output from the algorithm. We know the algorithm only removes
an edge Xi—Xj from the current skeleton graph if a separating set A ⇢ V \ {i, j} is found
such that Xi??Xj |A. From Theorem 18.80, we know that all the removed edges do not
belong to skeleton(G). Therefore skeleton(G) ⇢ Cout. For the other direction, if for any
edge Xi—Xj 2 Cout, it follows that in G, Xi and Xj are not d-separated given any subset
of the adjacencies of Xi or any adjacencies of Xj in Cout. Since the adjacencies of Xi is
a superset of ⇡(Xi) and the adjacencies of Xj is a superset of ⇡(Xj), Xi and Xj are not
d-separated given ⇡(Xi) and ⇡(Xj) in G. It then follows from Theorem 18.80 that Xi and
Xj must be adjacent in G.

We now show that `stop = K � 1 or `stop = K. Since we just proved that Cout =
skeleton(G), it’s obvious that `stop  K. We now show that `stop � K � 1. Suppose
the contrary. Then `stop  K � 2. We could then continue with a further iteration in the



428 Chapter 18. Directed Graphical Models

Population PC Algorithm, Step 1: Skeleton Identification

Input: Vertex set V and joint distribution P .
Initialize C  complete undirected graph on V ; Aij  � for any i, j 2 V .
Loop through k = 0, 1, . . . , d:

• Loop through any two adjacent nodes Xi, Xj , such that |adj(C, i) \ {j}| � k:

– For every A 2 |adj(C, i) \ {j}| with |A| = k

If Xi??Xj |A

⇤ Remove Xi—Xj from C;
⇤ Aij  A;
⇤ Break;

End if
– End for

Output: Estimated skeleton C and the class of separating sets A.

Figure 18.17. The population PC algorithm on skeleton identification.

algorithm since `stop + 1  K � 1 and there is at least one node Xj with neighborhood-
size |adj(G, j)| = K; that is, the reached stopping level would at least be K � 1 which
contradicts the assumption that `stop  K � 2.

To understand the time complexity of the PC algorithm for skeleton identification, the
algorithm uses N conditional independence checks where N is at most

N 

✓
d

2

◆ KX

k=1

✓
d� 1

k

◆


dK+1

2(d� 1)
. (18.83)

Here K is the maximal degree of any vertex in skeleton(G); the worst case complexity is
thus exponential.

18.9.3 PC Algorithm, Step 2: Identifying the CPDAG

Once the skeleton Cout and the class of separating sets A are obtained, the second step of
the PC algorithm is to identify all the unshielded colliders and further identify the CPDAG.
We consider all of the triples Xi—Xk—Xj with Xi and Xj nonadjacent in Cout as candi-



18.9. Structure Learning 429

date unshielded colliders. The following theorem gives necessary and sufficient conditions
under which a candidate is actually an unshielded collider.

18.84 Theorem. Let G be a DAG and P be a distribution that is faithful to G. Assume we
use P as input and the PC algorithm part 1 outputs an identified skeleton C and a class
of separating sets A. A candidate unshielded collider Xi—Xk—Xj in C is an unshielded
collider Xi �! Xk  � Xj if and only if Xk /2 Aij .

Proof. Since Xi and Xj are nonadjacent, there exists a non-empty set A = Aij such that
Xi??Xj |A. First, we show that if Xi—Xk—Xj is an unshielded collider Xi �! Xk  �

Xj , then Xk /2 A. Suppose on the contrary that Xk 2 A, then conditioning on A, since
Xk is also conditioned on, there is no way for Xi and Xj to be d-separated. Thus it is
impossible that Xi??Xj |A, which leads to contradiction.

Next, we show that if Xi—Xk—Xj is not an unshielded collider, then Xk 2 A. To see
this, since Xi—Xk—Xj is not an unshielded collider, there are only three possible cases:
Xi �! Xk �! Xj , Xi  � Xk  � Xj , and Xi  � Xk �! Xj . In any case, to
d-separate Xi and Xj , Xk must be conditioned on. Therefore, we have Xk 2 A.

From Theorem 18.84, it is easy for us to evaluate a candidate unshielded collider
Xi—Xk—Xj ; we only need to check if Xk belongs to the separating set of Xi and Xj .

X

Z

Y

(a) R1: unshielded collider (b) R2: acyclicity (c) R3: hybrid rule

Y Z

W

X

X

Z

Y

X

Z

Y

X

Z

Y Y Z

W

X

Figure 18.18. Three basic configurations for which directions of certain edges can be determined:
(a) R1: unshielded collider rule; (b) R2: acyclicity rule. (c) R3: hybrid rule.

Once the skeleton and all the unshielded colliders are given, the next task is to identify



430 Chapter 18. Directed Graphical Models

the whole CPDAG. This requires us to infer the directions of certain edges based on existing
knowledge. Three simple rules are provided in Figure 18.18. The first rule R1 is based on
the idea that if a local configuration X �! Y —Z is not an unshielded collider, then the
edge connecting Y and Z must be Y �! Z. Otherwise, we will form an unshielded
collider. The second rule R2 is based on the idea that the graph is a DAG, thus no cycles
are allowed. The third rule R3 is in fact a combined application of R1 and R2. To see
this, given the upper configuration in R3, let’s assume we have a directed edge W �! X .
Then by R2, we know that the directions of edge Y —X and Z—X must be Y �! X and
Z �! X . This forms an unshielded collider Y �! X  � Z, which violates R1. These
three rules can be applied in a dynamic way. Given a PDAG, a rule applies whenever a
subgraph in the PDAG can be found that matches the upper parts of the three rules. In that
case, we modify this subgraph by applying the rule and orienting a previously undirected
edge. Such an operation then creates a new PDAG. The new PDAG may create another
subset that match one of the three rules, leading to the orientation of more edges. We could
then proceed this process until we obtain a PDAG on which none of these three rules can
apply. This PDAG is then exported as the final identified CPDAG. The convergence of this
procedure is obvious. We will show its correctness in a later theorem.

Population PC Algorithm, Step 2: CPDAG Identification

Input: The identified skeleton C and a class of separating sets A.
Initialize K  C.
For every pair of nonadjacent variables Xi, Xj with common neighbor Xk:

If k /2 Aij Then Replace Xi—Xk—Xj by Xi �! Xk  � Xj ;

End for
Loop until converge:

Find a subgraph in K on which any rule R1-R3 in Figure 18.18 can apply;

Apply the rule on the subgraph and add in the corresponding directions;

End loop
Output: Identified CPDAG K.

Figure 18.19. The population PC algorithm on CPDAG identification.

The algorithm in Figure 18.19 summarizes the whole process. With the estimated skele-
ton and the class of separating sets as input. The algorithm have two parts. In the first part,
every candidate unshielded colliders are examined and all unshielded colliders are identi-



18.9. Structure Learning 431

fied. In the section part, many undirected edges in the obtained PDAG are further oriented
until no updates can be made. The final PDAG is then output as the identified CPDAG.

The next theorem secures the correctness of the algorithm in Figure 18.19, which was
first proved by Meek (1995).

18.85 Theorem. Let G be a DAG and P be a distribution that is faithful to G. Then the
algorithm in Figure 18.19 correctly reconstruct the CPDAG of G.

Proof Idea. In Theorem 18.81, we have already shown that the identified skeleton is correct.
We only need to show all the directed and undirected edges in the output CPDAG K is
indeed the same as the true CPDAG of G. To establish this result we need to show three
properties of the obtained PDAG: (i) Property 1: the final graph returned by the algorithm
is acyclic; (ii) If an edge X �! Y appears in K, then this edge appears in all DAGs of
the equivalence class of G; (iii) If an undirected edge X—Y 2 K, then we can find two
DAGs G1 and G2. Both G1 and G2 are Markov equivalent to G and X �! Y 2 G1 and
X  � Y 2 G1. The first two properties are straightforward. The third property requires
additional machinery and is omitted here. More details can be found in (Meek, 1995).

The time complexity of the second part of the PC algorithm is no larger than that of the
first part on skeleton identification. Therefore, the total time complexity of the algorithm
is O(dK+1). However, one thing to keep in mind is that in applications, such a worst case
scenario is seldom met.

18.9.4 PC Algorithm: Sample Version

In the population version PC algorithm, the only place where we utilize the population
quantities is on the conditional independence query Xi??Xj |A with A ⇢ V \ {i, j}. If
we only have observed data points, we need to test whether Xi and Xj are conditional
independent given A. For Gaussian DAGs, such a test is very easy to construct.

Under the Gaussian DAG assumption, Theorem 18.29 says that

Xi??Xj |A if and only if ⇢i,j |A = 0, (18.86)

where ⇢i,j |A is the partial correlation between Xi and Xj given A. Therefore, to query
whether Xi??Xj |A, we only need to test the hypothesis

H0 : ⇢i,j |A = 0 vs. H1 : ⇢i,j |A 6= 0. (18.87)

Let b⇢i,j |A be the sample partial correlation which can be calculated using the recursive
formula (18.31). In order to test whether b⇢i,j |A = 0, we apply Fisher’s Z-transform and
define

bzij |A =
1

2
log

✓
1 + b⇢i,j |A
1� b⇢i,j |A

◆
and zij |A =

1

2
log

✓
1 + ⇢i,j |A
1� ⇢i,j |A

◆
. (18.88)



432 Chapter 18. Directed Graphical Models

Classical distribution theory in the Gaussian case characterizes the asymptotic distribution
of bzij |A:

(
p

n� |A|� 3)(bzij |A � zij |A)
D
�! N(0, 1), (18.89)

where |A| is the cardinality of A . Under the null hypothesis we have zij |A = 0, which
suggests a level ↵ test that we reject the null hypothesis if

(
p
n� |A|� 3)|bzij |A| > ��1

⇣
1�

↵

2

⌘
, (18.90)

where �(·) is the cumulative function for the standard Gaussian random variable. The
sample PC algorithm is almost identical to the population PC algorithm with the population
conditional independence query on whether Xi??Xj |A replaced by a finite sample level
↵ test (18.90).

Sample Version of the PC Algorithm

The Sample version PC algorithm is identical to the population PC algorithm but re-
place the conditional independence query on whether Xi??Xj |A by a finite sample
level ↵ test:

(
p
n� |A|� 3)|bzij |A| > ��1

⇣
1�

↵

2

⌘
. (18.91)

Figure 18.20. The sample version PC algorithm.

The large-sample properties of this sample version PC algorithm has been analyzed by
Kalisch and Bühlmann (2007). They have the following assumptions:

(A1) The distribution P is multivariate Gaussian and faithful to the DAG G even when the
dimension d increases with the sample n.

(A2) d = O(na) for some 0  a <1.

(A3) Let q = max1jd |adj(G, j)|. Then q = O(n1�b) for some 0 < b  1.

(A4) inf{|⇢i,j |A|; i, j, A with ⇢i,j |A 6= 0} � cn, where c�1
n = O(n�) for some 0 < � <

b/2. Also supi,j,A |⇢i,j |A| M < 1. Here 0 < b  1 is as in (A3).

18.92 Theorem. (Kalisch and Bühlmann (2007)) Under Assumptions (A1) - (A4), we denote
by � the true CPDAG. Let b�↵n

n be the estimated CPDAG from the sample PC algorithm



18.9. Structure Learning 433

with sample size n and level ↵n for each conditional independence test. Then, there exists
↵n ! 0 as n goes to infinity, such that

P

⇣
b�↵n
n = �

⌘
= 1�O(exp(�Cn1�2d))! 1 as n!1 for some 0 < C <1,

where d > 0 is as in (A4).

18.9.5 Analysis of Cell-Signaling Networks

We apply the PC algorithm on a flow-cytometry dataset from Sachs et al. (2005) with p =
11 variables and n = 7, 466 data points. Each data point corresponds to a cell and the
variables correspond to the expression levels of proteins. The abbreviated variable names
are: Raf, Mek, Plcg, PIP2, PIP3, P44/42, Akt, PKA, PKC, P38, Jnk. The only tuning
parameter for the PC algorithm is the level ↵ of the conditional independence tests. The
larger the value ↵ is, the sparser the estimated CPDAG will be. In this example, we use
↵ = 0.01 and the estimated CPDAG is shown in Figure 18.21.

P38

PKC

PKA

Akt

Erk

PIP3

PIP2
Plcg

Mek
Raf

Jnk

Figure 18.21. An estimated CPDAG from a flow cytometry dataset, with d = 11 protein measured
on n = 7, 466 cells. The network structure is estimated using the PC algorithm with level ↵ = 0.01.

In this example, the estimated CPDAG contains many undirected edges. We see that the
variable Mek is pointed to by all variables that are connected with it. In the next chapter, we
will estimate undirected Gaussian graphs on this same dataset, and discuss the relationships
between directed acyclic graphs and undirected graphs.



434 Chapter 18. Directed Graphical Models

18.10 Bibliographic Remarks

There are a number of texts on DAGs including Edwards (1995) and Jordan (2003). The
first use of DAGs for representing causal relationships was by Wright (1934). Modern
treatments are contained in Spirtes et al. (2000) and Pearl (2000). Robins et al. (2003)
discuss the problems with estimating causal structure from data. Nice treatments on graph-
ical model inference appears in Bishop (2007) and Alpaydin (2004). A very thorough and
excellent discussion of DAGs can be found in Koller and Friedman (2009).

Exercises

18.1 Complete the proof of Theorem 18.5.

18.2 Show the equivalence of the following two statements:

• p(x | y, z) = p(x | z) for all x, y and z

• p(x, y | z) = p(x | z)p(y | z) for all x, y and z.

18.3 Prove Theorem 18.17.

18.4 Prove Theorem 18.26.

18.5 Prove Proposition 18.30.

18.6 Let X , Y and Z have the following joint distribution:

Y = 0 Y = 1 Y = 0 Y = 1
X = 0 .405 .045 X = 0 .125 .125
X = 1 .045 .005 X = 1 .125 .125

Z = 0 Z = 1

(a) Find the conditional distribution of X and Y given Z = 0 and the conditional
distribution of X and Y given Z = 1.
(b) Show that X ??Y |Z.
(c) Find the marginal distribution of X and Y .
(d) Show that X and Y are not marginally independent.

18.7 Consider the three DAGs in Figure 18.12 without a collider. Prove that X ??Z |Y .

18.8 Consider the DAG in Figure 18.12 with a collider. Prove that X ??Z and that X and
Z are dependent given Y .

18.9 Let X 2 {0, 1}, Y 2 {0, 1}, Z 2 {0, 1, 2}. Suppose the distribution of (X,Y, Z)
is Markov to: X �! Y �! Z. Create a joint distribution p(x, y, z) that is
Markov to this DAG. Generate 1000 random vectors from this distribution. Esti-
mate the distribution from the data using maximum likelihood. Compare the es-
timated distribution to the true distribution. Let ✓ = (✓000, ✓001, . . . , ✓112) where
✓rst = P(X = r, Y = s, Z = t). Use the bootstrap to get standard errors and 95
percent confidence intervals for these 12 parameters.


