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Last last time: gradient descent

Consider the problem
min f(x)

for f convex and differentiable, dom(f) = R™. Gradient descent:
choose initial z(9) ¢ R", repeat:

2R — (k=1) _ t, - Vf(:z(k_l)), k=1,2,3,...

Step sizes t; chosen to be fixed and small, or by backtracking line
search

If Vf is Lipschitz, gradient descent has convergence rate O(1/e).
Downsides:

e Requires f differentiable — addressed this lecture

e Can be slow to converge — addressed next lecture



Subgradient method
Now consider f convex, having dom(f) = R"™, but not necessarily
differentiable

Subgradient method: like gradient descent, but replacing gradients
with subgradients. Initialize (%), repeat:

) = (=1 _ (7 g(k_l), k=1,2,3,...
where ¢*=1 € 9 f(x*~1), any subgradient of f at z(*~1

Subgradient method is not necessarily a descent method, thus we
keep track of best iterate :ngz)st among (@, ... z(®) so far, i.e.,

J(@hey) = min f(x?)



Outline

Today:

How to choose step sizes

e Convergence analysis

Intersection of sets

Projected subgradient method



Step size choices

o Fixed step sizes: tp =t all k=1,2,3,...
e Diminishing step sizes: choose to meet conditions

(o] (o]
Zt% < 00, Ztk = 00,
k=1 k=1

i.e., square summable but not summable. Important here that
step sizes go to zero, but not too fast

There are several other options too, but key difference to gradient
descent: step sizes are pre-specified, not adaptively computed



Convergence analysis

Assume that f convex, dom(f) = R", and also that f is Lipschitz
continuous with constant G > 0, i.e.,

[f(@) = f()| < Glle —yllz forall 2,y

Theorem: For a fixed step size ¢, subgradient method satisfies

lim f(z) < f*+ G%t/2
k—oo

Theorem: For diminishing step sizes, subgradient method sat-
isfies

. k *
Jim f(rp) = f




Basic inequality
Can prove both results from same basic inequality. Key steps:
e Using definition of subgradient,

l2®) — 2|3 <
2 ® Y — a1 — 26 (f(@*D) = (@) + R lg* V13

e lterating last inequality,

l2®) — 2|3 <

k
12 —Jf*Hz—2Zt CD) = f@h) + D gV
i=1



o Using ||z — 2*|| > 0, and letting R = ||=(©) — 2*||5,

k
O<R2—2Zt D) — f@) + G 8
=1

e Introducing f(:cgz)st) = min;—o__x f(z®), and rearranging, we

have the basic inequality

R24+G2YF 2
221 ltZ

FaP) - far) <

For different step sizes choices, convergence results can be directly
obtained from this bound, e.g., previous theorems follow



Convergence rate

The basic inequality tells us that after k steps, we have

RQ+GQZ, Lt
221 ltl

Fa®) - far) <

With fixed step size t, this gives

2 2
() R” G
f(xbest) f — th + 9

For this to be < ¢, let's make each term < ¢/2. So we can choose
t=¢/G? and k = R?/t-1/e = R?G?/¢?

That is, subgradient method has convergence rate O(1/€?) ... note
that this is slower than O(1/e) rate of gradient descent



Example: regularized logistic regression

Given (z;,v;) € RP x {0,1} for i = 1,...,n, the logistic regression
loss is
n
78) =" (= wia? 5 + log(1 + exp(a? 9)))
i=1
This is a smooth and convex function with

n

VIB) =D (v — pi(B)) i

=1

where p;(8) = exp(z 8)/(1 + exp(z B)), i = 1,...,n. Consider
the regularized problem:

min f(B)+X-P(B)

where P(3) = ||8||2, ridge penalty; or P(3) = ||3]|1, lasso penalty
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Ridge: use gradients; lasso: use subgradients. Example here has
n = 1000, p = 20:
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Step sizes hand-tuned to be favorable for each method (of course
comparison is imperfect, but it reveals the convergence behaviors)
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Polyak step sizes

Polyak step sizes: when the optimal value f* is known, take

fla®=D) — f*

. k=1,2,3,...
lg%*=D1|3

te =
Can be motivated from first step in subgradient proof:
lz® —a*|3 < a* D —a* |3 -20 (£ (2" D) = (7)) +7llg "V
Polyak step size minimizes the right-hand side

With Polyak step sizes, can show subgradient method converges to
optimal value. Convergence rate is still O(1/¢€?)
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Example: intersection of sets

Suppose we want to find z* € C1 N --- N Cyy, i.e., find a point in
intersection of closed, convex sets C1,...,Cp,

First define

filx) =dist(z,Cy), i=1,...,m
f(z) = max fi(x)

i=1,....m

and now solve
min f(x)
X

Check: is this convex?

Note that f* =0 «<— a2*e€CiN---NCpy
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Recall the distance function dist(x,C') = minyec ||y — x|2. Last
time we computed its gradient

x — Po(x)

Vdist(z,C) = |z = Po(@)|2

where Po(x) is the projection of 2 onto C

Also recall subgradient rule: if f(z) = max;=1__n fi(z), then

of (z) = conv< U afz(m)>
irfi(w)=f(z)

So if fi(x) = f(z) and g; € Ofi(x), then g; € Of(x)
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Put these two facts together for intersection of sets problem, with
fi(z) = dist(x, C;): if C; is farthest set from z (so f;(x) = f(z)),

and
x — Po,(7)

gi = Vfi(z) = 7= Pe.(@)s

then g; € 0f(x)

Now apply subgradient method, with Polyak size t;, = f(z(*~1).
At iteration k, with C; farthest from z(*~1) we perform update

k—1 k—1
20 = -1 _ D) 1‘; 1)—Pci( <k 1>)
[z~ — P, (2:=1)]|2

= PCi (x(k_l))

15



For two sets, this is the famous alternating projections algorithm?,
i.e., just keep projecting back and forth

(From Boyd's lecture notes)

von Neumann (1950), “Functional operators, volume Il: The geometry of

orthogonal spaces”
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Projected subgradient method

To optimize a convex function f over a convex set C,
min f(xz) subject to z € C
x

we can use the projected subgradient method. Just like the usual
subgradient method, except we project onto C' at each iteration:

2R — Pc(l‘(k_l) — .g(k—l))’ k=1,2,3,...

Assuming we can do this projection, we get the same convergence
guarantees as the usual subgradient method, with the same step
size choices
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What sets C are easy to project onto? Lots, e.g.,
o Affine images: {Ax +b:x € R"}

Solution set of linear system: {z : Az = b}

Nonnegative orthant: R} = {z : 2 > 0}

e Some norm balls: {z : ||z||, <1} for p=1,2,00

Some simple polyhedra and simple cones

Warning: it is easy to write down seemingly simple set C, and P¢
can turn out to be very hard! E.g., generally hard to project onto
arbitrary polyhedron C' = {z : Az < b}

Note: projected gradient descent works too, more next time ...
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Can we do better?

Upside of the subgradient method: broad applicability. Downside:
O(1/€?) convergence rate over problem class of convex, Lipschitz
functions is really slow

Nonsmooth first-order methods: iterative methods updating z(*) in
20 + span{g®, g, ... g~}

where subgradients ¢(©, g, ... ¢~ come from weak oracle

Theorem (Nesterov): For any k < n—1 and starting point z(?),
there is a function in the problem class such that any nonsmooth
first-order method satisfies

Wy _ s RGO
J@) =1 2 0+ VhED)
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Improving on the subgradient method

In words, we cannot do better than the O(1/€?) rate of subgradient
method (unless we go beyond nonsmooth first-order methods)

So instead of trying to improve across the board, we will focus on
minimizing composite functions of the form

f(x) = g(x) + h(x)

where g is convex and differentiable, A is convex and nonsmooth
but “simple”

For a lot of problems (i.e., functions k), we can recover the O(1/¢)
rate of gradient descent with a simple algorithm, having important
practical consequences
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