
Stochastic Gradient Descent

Ryan Tibshirani
Convex Optimization 10-725

Last time: proximal gradient descent

Consider the problem

min
x

g(x) + h(x)

with g, h convex, g differentiable, and h “simple” in so much as

proxh,t(x) = argmin
z

1

2t
‖x− z‖22 + h(z)

is computable. Proximal gradient descent: let x(0) ∈ Rn, repeat:

x(k) = proxh,tk
(
x(k−1) − tk∇g(x(k−1))

)
, k = 1, 2, 3, . . .

Step sizes tk chosen to be fixed and small, or via backtracking

If ∇g is Lipschitz with constant L, then this has convergence rate
O(1/ε). Lastly we can accelerate this, to optimal rate O(1/

√
ε)

2

Outline

Today:

• Stochastic gradient descent

• Convergence rates

• Mini-batches

• Early stopping

3

Stochastic gradient descent

Consider minimizing an average of functions

min
x

1

m

m∑
i=1

fi(x)

As ∇
∑m

i=1 fi(x) =
∑m

i=1∇fi(x), gradient descent would repeat:

x(k) = x(k−1) − tk ·
1

m

m∑
i=1

∇fi(x(k−1)), k = 1, 2, 3, . . .

In comparison, stochastic gradient descent or SGD (or incremental
gradient descent) repeats:

x(k) = x(k−1) − tk · ∇fik(x(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . . ,m} is some chosen index at iteration k

4

Two rules for choosing index ik at iteration k:

• Randomized rule: choose ik ∈ {1, . . . ,m} uniformly at
random

• Cyclic rule: choose ik = 1, 2, . . . ,m, 1, 2, . . . ,m, . . .

Randomized rule is more common in practice. For randomized rule,
note that

E[∇fik(x)] = ∇f(x)

so we can view SGD as using an unbiased estimate of the gradient
at each step

Main appeal of SGD:

• Iteration cost is independent of m (number of functions)

• Can also be a big savings in terms of memory useage

5

Example: stochastic logistic regression

Given (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . , n, recall logistic regression:

min
β

1

n

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β))

)
︸ ︷︷ ︸

fi(β)

Gradient computation ∇f(β) = 1
n

∑n
i=1

(
yi − pi(β)

)
xi is doable

when n is moderate, but not when n is huge

Full gradient (also called batch) versus stochastic gradient:

• One batch update costs O(np)

• One stochastic update costs O(p)

Clearly, e.g., 10K stochastic steps are much more affordable

6

Small example with n = 10, p = 2 to show the “classic picture” for
batch versus stochastic methods:

−20 −10 0 10 20

−
20

−
10

0
10

20

●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●
●●
●●
●●●
●●●
●●●
●●●●
●●

●
●●

●●

●
●

●
●●

●●●

●●
●

●

●●●
●

●
●

●
●
●●

●

●
●●●

●●
●
●●

●● ●
●●●●●

●●●

●●*

●

●

Batch
Random

Blue: batch steps, O(np)
Red: stochastic steps, O(p)

Rule of thumb for stochastic
methods:

• generally thrive far
from optimum

• generally struggle close
to optimum

7

Step sizes

Standard in SGD is to use diminishing step sizes, e.g., tk = 1/k

Why not fixed step sizes? Here’s some intuition. Suppose we take
cyclic rule for simplicity. Set tk = t for m updates in a row, we get:

x(k+m) = x(k) − t
m∑
i=1

∇fi(x(k+i−1))

Meanwhile, full gradient with step size mt would give:

x(k+1) = x(k) − t
m∑
i=1

∇fi(x(k))

The difference here: t
∑m

i=1[∇fi(x(k+i−1))−∇fi(x(k))], and if we
hold t constant, this difference will not generally be going to zero

8

Convergence rates

Recall: for convex f , gradient descent with diminishing step sizes
satisfies

f(x(k))− f? = O(1/
√
k)

When f is differentiable with Lipschitz gradient, we get for suitable
fixed step sizes

f(x(k))− f? = O(1/k)

What about SGD? For convex f , SGD with diminishing step sizes
satisfies1

E[f(x(k))]− f? = O(1/
√
k)

Unfortunately this does not improve when we further assume f has
Lipschitz gradient

1For example, Nemirosvki et al. (2009), “Robust stochastic optimization
approach to stochastic programming”

9

Even worse is the following discrepancy!

When f is strongly convex and has a Lipschitz gradient, gradient
descent satisfies

f(x(k))− f? = O(γk)

where 0 < γ < 1. But under same conditions, SGD gives us2

E[f(x(k))]− f? = O(1/k)

So stochastic methods do not enjoy the linear convergence rate of
gradient descent under strong convexity

What can we do to improve SGD?

2For example, Nemirosvki et al. (2009), “Robust stochastic optimization
approach to stochastic programming”

10

Mini-batches

Also common is mini-batch stochastic gradient descent, where we
choose a random subset Ik ⊆ {1, . . . ,m}, |Ik| = b� m, repeat:

x(k) = x(k−1) − tk ·
1

b

∑
i∈Ik

∇fi(x(k−1)), k = 1, 2, 3, . . .

Again, we are approximating full gradient by an unbiased estimate:

E
[

1

b

∑
i∈Ik

∇fi(x)

]
= ∇f(x)

Using mini-batches reduces variance by a factor 1/b, but is also b
times more expensive. Theory is not convincing: under Lipschitz
gradient, rate goes from O(1/

√
k) to O(1/

√
bk + 1/k)3

3For example, Dekel et al. (2012), “Optimal distributed online prediction
using mini-batches”

11

Back to logistic regression, let’s now consider a regularized version:

min
β

1

n

n∑
i=1

(
− yixTi β + log(1 + ex

T
i β)
)

+
λ

2
‖β‖22

Write the criterion as

f(β) =
1

n

n∑
i=1

fi(β), fi(β) = −yixTi β + log(1 + ex
T
i β) +

λ

2
‖β‖22

Full gradient computation is ∇f(β) = 1
n

∑n
i=1

(
yi− pi(β)

)
xi +λβ.

Comparison between methods:

• One batch update costs O(np)

• One mini-batch update costs O(bp)

• One stochastic update costs O(p)

12

Example with n = 10, 000, p = 20, all methods use fixed step sizes:

0 10 20 30 40 50

0.
50

0.
55

0.
60

0.
65

Iteration number k

C
rit

er
io

n
fk

Full
Stochastic
Mini−batch, b=10
Mini−batch, b=100

13

What’s happening? Now let’s parametrize by flops:

1e+02 1e+04 1e+06

0.
50

0.
55

0.
60

0.
65

Flop count

C
rit

er
io

n
fk

Full
Stochastic
Mini−batch, b=10
Mini−batch, b=100

14

Finally, looking at suboptimality gap (on log scale):

0 10 20 30 40 50

1e
−

12
1e

−
09

1e
−

06
1e

−
03

Iteration number k

C
rit

er
io

n
ga

p
fk

−
fs

ta
r

Full
Stochastic
Mini−batch, b=10
Mini−batch, b=100

15

End of the story?

Short story:

• SGD can be super effective in terms of iteration cost, memory

• But SGD is slow to converge, can’t adapt to strong convexity

• And mini-batches seem to be a wash in terms of flops (though
they can still be useful in practice)

Is this the end of the story for SGD?

For a while, the answer was believed to be yes. Slow convergence
for strongly convex functions was believed inevitable, as Nemirovski
and others established matching lower bounds ... but this was for a
more general stochastic problem, where f(x) =

∫
F (x, ξ) dP (ξ)

New wave of “variance reduction” work shows we can modify SGD
to converge much faster for finite sums (more later?)

16

SGD in large-scale ML

SGD has really taken off in large-scale machine learning

• In many ML problems we don’t care about optimizing to high
accuracy, it doesn’t pay off in terms of statistical performance

• Thus (in contrast to what classic theory says) fixed step sizes
are commonly used in ML applications

• One trick is to experiment with step sizes using small fraction
of training before running SGD on full data set4

• Momentum/acceleration, averaging, adaptive step sizes are all
popular variants in practice

• SGD is especially popular in large-scale, continous, nonconvex
optimization, but it is still not particular well-understood there
(a big open issue is that of implicit regularization)

4For example, Bottou (2012), “Stochastic gradient descent tricks”
17

Early stopping

Suppose p is large and we wanted to fit (say) a logistic regression
model to data (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . , n

We could solve (say) `2 regularized logistic regression:

min
β

1

n

n∑
i=1

(
− yixTi β + log(1 + ex

T
i β)
)

subject to ‖β‖2 ≤ t

We could also run gradient descent on the unregularized problem:

min
β

1

n

n∑
i=1

(
− yixTi β + log(1 + ex

T
i β)
)

and stop early, i.e., terminate gradient descent well-short of the
global minimum

18

Consider the following, for a very small constant step size ε:

• Start at β(0) = 0, solution to regularized problem at t = 0

• Perform gradient descent on unregularized criterion

β(k) = β(k−1) − ε · 1

n

n∑
i=1

(yi − pi(β(k−1)))xi, k = 1, 2, 3, . . .

(we could equally well consider SGD)

• Treat β(k) as an approximate solution to regularized problem
with t = ‖β(k)‖2

This is known as early stopping for gradient descent. Why do this?
It’s both more convenient and potentially much more efficient than
using explicit regularization

19

An intruiging connection

When we plot gradient descent iterates ... it resembles the solution
path of the `2 regularized problem for varying t!

Logistic example with p = 8, solution path and grad descent path:

0.0 0.5 1.0 1.5

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

Ridge logistic path

C
o

o
rd

in
a

te
s

g(β̂(t))

0.0 0.5 1.0 1.5

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

Stagewise path

g(β(k))

C
o
or

d
in

at
es

20

What’s the connection?

The intuitive connection comes from the steepest descent view of
gradient descent. Let ‖ · ‖ and ‖ · ‖∗ be dual norms (e.g., `p and `q
norms with 1/p+ 1/q = 1)

Steepest descent updates are x+ = x+ t ·∆x, where

∆x = ‖∇f(x)‖∗ · u
u = argmin

‖v‖≤1
∇f(x)T v

If p = 2, then ∆x = −∇f(x), and so this is just gradient descent
(check this!)

Thus at each iteration, gradient descent moves in a direction that
balances decreasing f with increasing the `2 norm, same as in the
regularized problem

21

References and further reading

• D. Bertsekas (2010), “Incremental gradient, subgradient, and
proximal methods for convex optimization: a survey”

• A. Nemirovski and A. Juditsky and G. Lan and A. Shapiro
(2009), “Robust stochastic optimization approach to
stochastic programming”

22

