Stochastic Gradient Descent

Ryan Tibshirani Convex Optimization 10-725

Last time: proximal gradient descent

Consider the problem

 $\min_{x} g(x) + h(x)$

with g, h convex, g differentiable, and h "simple" in so much as

$$\operatorname{prox}_{h,t}(x) = \operatorname*{argmin}_{z} \frac{1}{2t} \|x - z\|_{2}^{2} + h(z)$$

is computable. Proximal gradient descent: let $x^{(0)} \in \mathbb{R}^n$, repeat:

$$x^{(k)} = \operatorname{prox}_{h,t_k} \left(x^{(k-1)} - t_k \nabla g(x^{(k-1)}) \right), \quad k = 1, 2, 3, \dots$$

Step sizes t_k chosen to be fixed and small, or via backtracking

If ∇g is Lipschitz with constant L, then this has convergence rate $O(1/\epsilon)$. Lastly we can accelerate this, to optimal rate $O(1/\sqrt{\epsilon})$

Outline

Today:

- Stochastic gradient descent
- Convergence rates
- Mini-batches
- Early stopping

Stochastic gradient descent

Consider minimizing an average of functions

$$\min_{x} \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

As $\nabla \sum_{i=1}^{m} f_i(x) = \sum_{i=1}^{m} \nabla f_i(x)$, gradient descent would repeat:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \frac{1}{m} \sum_{i=1}^{m} \nabla f_i(x^{(k-1)}), \quad k = 1, 2, 3, \dots$$

In comparison, stochastic gradient descent or SGD (or incremental gradient descent) repeats:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \nabla f_{i_k}(x^{(k-1)}), \quad k = 1, 2, 3, \dots$$

where $i_k \in \{1, \ldots, m\}$ is some chosen index at iteration k

Two rules for choosing index i_k at iteration k:

- Randomized rule: choose $i_k \in \{1, \dots, m\}$ uniformly at random
- Cyclic rule: choose $i_k = 1, 2, ..., m, 1, 2, ..., m, ...$

Randomized rule is more common in practice. For randomized rule, note that

$$\mathbb{E}[\nabla f_{i_k}(x)] = \nabla f(x)$$

so we can view SGD as using an unbiased estimate of the gradient at each step

Main appeal of SGD:

- Iteration cost is independent of *m* (number of functions)
- Can also be a big savings in terms of memory useage

Example: stochastic logistic regression

Given $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}$, i = 1, ..., n, recall logistic regression:

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(-y_i x_i^T \beta + \log(1 + \exp(x_i^T \beta))\right)}_{f_i(\beta)}$$

Gradient computation $\nabla f(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - p_i(\beta)) x_i$ is doable when n is moderate, but not when n is huge

Full gradient (also called batch) versus stochastic gradient:

- One batch update costs O(np)
- One stochastic update costs O(p)

Clearly, e.g., 10K stochastic steps are much more affordable

Small example with n = 10, p = 2 to show the "classic picture" for batch versus stochastic methods:

Blue: batch steps, O(np)Red: stochastic steps, O(p)

Rule of thumb for stochastic methods:

- generally thrive far from optimum
- generally struggle close to optimum

Step sizes

Standard in SGD is to use diminishing step sizes, e.g., $t_k = 1/k$

Why not fixed step sizes? Here's some intuition. Suppose we take cyclic rule for simplicity. Set $t_k = t$ for m updates in a row, we get:

$$x^{(k+m)} = x^{(k)} - t \sum_{i=1}^{m} \nabla f_i(x^{(k+i-1)})$$

Meanwhile, full gradient with step size mt would give:

$$x^{(k+1)} = x^{(k)} - t \sum_{i=1}^{m} \nabla f_i(x^{(k)})$$

The difference here: $t \sum_{i=1}^{m} [\nabla f_i(x^{(k+i-1)}) - \nabla f_i(x^{(k)})]$, and if we hold t constant, this difference will not generally be going to zero

Convergence rates

Recall: for convex $f, \ensuremath{\mathsf{gradient}}$ descent with diminishing step sizes satisfies

$$f(x^{(k)}) - f^{\star} = O(1/\sqrt{k})$$

When f is differentiable with Lipschitz gradient, we get for suitable fixed step sizes % f(x) = f(x) + f(x) +

$$f(x^{(k)}) - f^* = O(1/k)$$

What about SGD? For convex $f,\,\mathrm{SGD}$ with diminishing step sizes $\mathrm{satisfies}^1$

$$\mathbb{E}[f(x^{(k)})] - f^{\star} = O(1/\sqrt{k})$$

Unfortunately this does not improve when we further assume f has Lipschitz gradient

¹For example, Nemirosvki et al. (2009), "Robust stochastic optimization approach to stochastic programming"

Even worse is the following discrepancy!

When f is strongly convex and has a Lipschitz gradient, gradient descent satisfies

$$f(x^{(k)}) - f^{\star} = O(\gamma^k)$$

where $0 < \gamma < 1$. But under same conditions, SGD gives us^2

$$\mathbb{E}[f(x^{(k)})] - f^{\star} = O(1/k)$$

So stochastic methods do not enjoy the linear convergence rate of gradient descent under strong convexity

What can we do to improve SGD?

²For example, Nemirosvki et al. (2009), "Robust stochastic optimization approach to stochastic programming"

Mini-batches

Also common is mini-batch stochastic gradient descent, where we choose a random subset $I_k \subseteq \{1, \ldots, m\}$, $|I_k| = b \ll m$, repeat:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \frac{1}{b} \sum_{i \in I_k} \nabla f_i(x^{(k-1)}), \quad k = 1, 2, 3, \dots$$

Again, we are approximating full gradient by an unbiased estimate:

$$\mathbb{E}\left[\frac{1}{b}\sum_{i\in I_k}\nabla f_i(x)\right] = \nabla f(x)$$

Using mini-batches reduces variance by a factor 1/b, but is also b times more expensive. Theory is not convincing: under Lipschitz gradient, rate goes from $O(1/\sqrt{k})$ to $O(1/\sqrt{bk}+1/k)^3$

 $^{^3\}mathsf{For}$ example, Dekel et al. (2012), "Optimal distributed online prediction using mini-batches"

Back to logistic regression, let's now consider a regularized version:

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left(-y_i x_i^T \beta + \log(1 + e^{x_i^T \beta}) \right) + \frac{\lambda}{2} \|\beta\|_2^2$$

Write the criterion as

$$f(\beta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\beta), \quad f_i(\beta) = -y_i x_i^T \beta + \log(1 + e^{x_i^T \beta}) + \frac{\lambda}{2} \|\beta\|_2^2$$

Full gradient computation is $\nabla f(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - p_i(\beta)) x_i + \lambda \beta$. Comparison between methods:

- One batch update costs O(np)
- One mini-batch update costs O(bp)
- One stochastic update costs O(p)

Example with n = 10,000, p = 20, all methods use fixed step sizes:

Iteration number k

What's happening? Now let's parametrize by flops:

Finally, looking at suboptimality gap (on log scale):

Iteration number k

End of the story?

Short story:

- SGD can be super effective in terms of iteration cost, memory
- But SGD is slow to converge, can't adapt to strong convexity
- And mini-batches seem to be a wash in terms of flops (though they can still be useful in practice)

Is this the end of the story for SGD?

For a while, the answer was believed to be yes. Slow convergence for strongly convex functions was believed inevitable, as Nemirovski and others established matching lower bounds ... but this was for a more general stochastic problem, where $f(x) = \int F(x,\xi) dP(\xi)$

New wave of "variance reduction" work shows we can modify SGD to converge much faster for finite sums (more later?)

SGD in large-scale ML

SGD has really taken off in large-scale machine learning

- In many ML problems we don't care about optimizing to high accuracy, it doesn't pay off in terms of statistical performance
- Thus (in contrast to what classic theory says) fixed step sizes are commonly used in ML applications
- One trick is to experiment with step sizes using small fraction of training before running SGD on full data set⁴
- Momentum/acceleration, averaging, adaptive step sizes are all popular variants in practice
- SGD is especially popular in large-scale, continous, nonconvex optimization, but it is still not particular well-understood there (a big open issue is that of implicit regularization)

⁴For example, Bottou (2012), "Stochastic gradient descent tricks"

Early stopping

Suppose p is large and we wanted to fit (say) a logistic regression model to data $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}$, $i = 1, \ldots, n$

We could solve (say) ℓ_2 regularized logistic regression:

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left(-y_i x_i^T \beta + \log(1 + e^{x_i^T \beta}) \right) \text{ subject to } \|\beta\|_2 \le t$$

We could also run gradient descent on the unregularized problem:

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left(-y_i x_i^T \beta + \log(1 + e^{x_i^T \beta}) \right)$$

and stop early, i.e., terminate gradient descent well-short of the global minimum

Consider the following, for a very small constant step size ϵ :

- Start at $\beta^{(0)} = 0$, solution to regularized problem at t = 0
- Perform gradient descent on unregularized criterion

$$\beta^{(k)} = \beta^{(k-1)} - \epsilon \cdot \frac{1}{n} \sum_{i=1}^{n} (y_i - p_i(\beta^{(k-1)})) x_i, \quad k = 1, 2, 3, \dots$$

(we could equally well consider SGD)

• Treat $\beta^{(k)}$ as an approximate solution to regularized problem with $t = \|\beta^{(k)}\|_2$

This is known as early stopping for gradient descent. Why do this? It's both more convenient and potentially much more efficient than using explicit regularization

An intruiging connection

When we plot gradient descent iterates ... it resembles the solution path of the ℓ_2 regularized problem for varying t!

Logistic example with p = 8, solution path and grad descent path:

What's the connection?

The intuitive connection comes from the steepest descent view of gradient descent. Let $\|\cdot\|$ and $\|\cdot\|_*$ be dual norms (e.g., ℓ_p and ℓ_q norms with 1/p + 1/q = 1)

Steepest descent updates are $x^+ = x + t \cdot \Delta x$, where

$$\Delta x = \|\nabla f(x)\|_* \cdot u$$
$$u = \underset{\|v\| \le 1}{\operatorname{argmin}} \nabla f(x)^T v$$

If p=2, then $\Delta x=-\nabla f(x),$ and so this is just gradient descent (check this!)

Thus at each iteration, gradient descent moves in a direction that balances decreasing f with increasing the ℓ_2 norm, same as in the regularized problem

References and further reading

- D. Bertsekas (2010), "Incremental gradient, subgradient, and proximal methods for convex optimization: a survey"
- A. Nemirovski and A. Juditsky and G. Lan and A. Shapiro (2009), "Robust stochastic optimization approach to stochastic programming"