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A Generalized Fellegi–Sunter Framework
for Multiple Record Linkage With Application to

Homicide Record Systems
Mauricio SADINLE and Stephen E. FIENBERG

We present a probabilistic method for linking multiple datafiles. This task is not trivial in the absence of unique identifiers for the individuals
recorded. This is a common scenario when linking census data to coverage measurement surveys for census coverage evaluation, and
in general when multiple record systems need to be integrated for posterior analysis. Our method generalizes the Fellegi–Sunter theory
for linking records from two datafiles and its modern implementations. The goal of multiple record linkage is to classify the record K-
tuples coming from K datafiles according to the different matching patterns. Our method incorporates the transitivity of agreement in the
computation of the data used to model matching probabilities. We use a mixture model to fit matching probabilities via maximum likelihood
using the Expectation–Maximization algorithm. We present a method to decide the record K-tuples membership to the subsets of matching
patterns and we prove its optimality. We apply our method to the integration of the three Colombian homicide record systems and perform
a simulation study to explore the performance of the method under measurement error and different scenarios. The proposed method works
well and opens new directions for future research.

KEY WORDS: Bell number; Census undercount; Data linkage; Data matching; EM algorithm; Mixture model; Multiple systems estima-
tion; Partially ordered set.

1. INTRODUCTION

Record linkage is a widely used technique for identify-
ing records that refer to the same individual across different
datafiles. This task is not trivial when unique identifiers are not
available, and many authors have proposed probabilistic meth-
ods to deal with this problem building upon the seminal work
of Newcombe et al. (1959) and Fellegi and Sunter (1969). Ap-
plications of record linkage include merging post-enumeration
surveys and census data for census coverage evaluation (e.g.,
Winkler 1988; Jaro 1989; Winkler and Thibaudeau 1991), link-
ing health care databases for epidemiological studies (e.g., Bell,
Keesey, and Richards 1994; Méray et al. 2007), and adaptive
name matching in information integration (Bilenko et al. 2003)
among others.

1.1 Linking Multiple Datafiles

To perform record linkage involving more than two datafiles,
some authors have used record linkages for each pair of datafiles
or other ad hoc procedures (see, e.g., Darroch et al. 1993;
Zaslavsky and Wolfgang 1993; Asher and Fienberg 2001; Asher
et al. 2003; Méray et al. 2007). Separate pairwise matchings of
datafiles do not guarantee the transitivity of the linkage deci-
sions and thus require resolving discrepancies (Fienberg and
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Manrique-Vallier 2009). For example, let us suppose we link
the record of the individual a in a first datafile and the record
of an individual b in a second datafile from a bipartite record
linkage (classical record linkage of two datafiles). Then, from
a second bipartite record linkage, we link the record of b to
the record of an individual c in a third datafile. Based on these
two linkages we might conclude that a, b, and c are the same
individual. Unfortunately, had we also linked the first and third
files, a and c may not match. If a, b, and c truly correspond to the
same individual, the nonmatch could occur due to measurement
error or incomplete record information. On the other hand, if
the records of a, b, and c do not refer to the same individual,
we have four possibilities: a and b refer to the same individual
but c refers to another one, a and c refer to the same indi-
vidual but b refers to another one, b and c refer to the same
individual but a refers to another one, or all a, b, and c refer
to different individuals. By using bipartite record linkage for
each pair of files, we cannot resolve the matching pattern for
these three records. While there are various ad hoc approaches
to resolve the results of multiple bipartite matchings, no for-
mal methodology has appeared in the statistical literature (see,
e.g., the recent surveys of Herzog, Scheuren, and Winkler 2007,
2010).

1.2 Census and Record Systems Coverage Evaluation

Implementation of accurate methods for census coverage
evaluation and possibly census adjustment requires the inte-
gration of multiple datafiles. The usual methodology of census
coverage evaluation matches a coverage measurement survey to
the census data to estimate population sizes using dual-system
estimation (Hogan 1992, 1993). This procedure is subject to
“correlation bias” that results when responses to the census and
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survey are dependent or the joint inclusion probabilities are
heterogeneous (Darroch et al. 1993; Zaslavsky and Wolfgang
1993; Anderson and Fienberg 1999). The incorporation of addi-
tional surveys or administrative data into the coverage evaluation
process allows for checking on assumptions regarding indepen-
dence of lists and homogeneity, and for modeling departures
from them. This in turn requires attention to the problem of
multiple record linkage.

Likewise, underregistration is the norm rather than the excep-
tion in record systems of human rights violations and violent
events in general, especially in countries with high levels of vio-
lence. Discrepancies appear whenever there are different record
systems capturing information about the same event of interest.
The diversity of sources provides a useful input for coverage as-
sessment of the different record systems (e.g., Ball 2000; Gohdes
2010; Lum et al. 2010). A clear example of this scenario occurs
in Colombia, where there exist three homicide record systems
that usually differ in the number of recorded casualties. Those
record systems are maintained by the Colombian Census Bu-
reau (Departamento Administrativo Nacional de Estadistica –
DANE, in Spanish), the Colombian National Police (Policia
Nacional de Colombia), and the Colombian Forensics Institute
(Instituto Nacional de Medicina Legal y Ciencias Forenses).
The discrepancies in the numbers recorded by these record sys-
tems are the result of conceptual and methodological differences
among these institutions, as well as problems of geographical
coverage (Restrepo and Aguirre 2007). Whereas the data from
the National Police and Forensics Institute simply record the
information obtained from their daily activities, the objective of
the Colombian Census Bureau is to determine the true number
of deaths occurring in Colombia and its geographical subdivi-
sions (Departamento Administrativo Nacional de Estadisticas,
DANE 2009). Thus, the coverage evaluation of the Colombian
Census Bureau record system is important, and its linkage with
the other two sources can lead to improved estimates of the
number of homicides.

1.3 Overview of the Article

We propose a method for the linkage of multiple datafiles,
generalizing the theory of Fellegi and Sunter (1969) and the
implementations presented by Winkler (1988) and Jaro (1989),
which still represent the mainstream approach for unsupervised
record linkage (see Copas and Hilton 1990 for a supervised ap-
proach). Our method incorporates the transitivity of agreement
in the computation of the data used to model matching probabil-
ities. In Section 2, we generalize the set of record pairs presented
by Fellegi and Sunter (1969) to a K-ary product of the K datafiles
to be linked, and we present this K-ary product as the union of all
the possible subsets that contain the possible patterns of agree-
ment of the record K-tuples. In Section 3, we propose a method
to compute comparison data from record K-tuples, incorporat-
ing transitivity, and we present a way to schematize this kind
of data through simple graphs. To fit matching probabilities, in
Section 4 we generalize the mixture model used by Winkler
(1988) and Jaro (1989), and in Section 5 we present details of
the fitting of this model using the Expectation–Maximization
(EM) algorithm (Dempster, Laird, and Rubin, 1977). In Section
6, we present an optimal method to decide the record K-tuples

membership to the subsets defined in Section 2. Section 7 con-
tains an application of the proposed methods to the integration
of the three Colombian homicide record systems, and Section 8
describes simulation studies where we explore the performance
of the method under different scenarios.

2. COVERED SUBPOPULATIONS AND RECORD
K -TUPLES

We follow the exposition of Fellegi and Sunter (1969)
and suppose some population is recorded by K datafiles.
Let A1, A2, . . . , AK denote the K overlapping subpopulations
recorded in those K datafiles. Now, suppose that for each datafile
there exists one different record generating process αk , which
produces a set of records denoted by

αk(Ak) = {αk(ak); ak ∈ Ak}, k = 1, . . . , K,

where the member αk(ak) represents a vector of information of
the member ak ∈ Ak . This information could be subject to mea-
surement error or incomplete. Let us define the K-ary Cartesian
product

K⊗
k=1

αk(Ak) = {(α1(a1), α2(a2), . . . , αK (aK )); ak ∈ Ak,

k = 1, . . . , K},
which is composed by all the possible record K-tuples in which
the kth entry corresponds to the information recorded for some
ak in the subpopulation k. Now we describe the possible match-
ing patterns of the record K-tuples in terms of the members
of the subpopulations Ak . First, it is possible that a record K-
tuple includes information on K different individuals, that is,
for some (α1(a1), α2(a2), . . . , αK (aK )), ak �= ak′ , for all k �= k′.
At the other extreme, if an individual appears in all K datafiles,
then in the record K-tuple (α1(a1), α2(a2), . . . , αK (aK )) actually
a1 = a2 = . . . = aK . In general, we can classify the entries of
each record K-tuple into subsets that record information on the
same individual.

To establish this idea formally, let PK denote the set of parti-
tions of the set NK = {1, 2, . . . , K}. If we associate each num-
ber in NK with an entry in a record K-tuple, then the matching
pattern of each record K-tuple corresponds to a partition of NK ,
where the elements of the partition group the entries of the K-
tuple that represent the same individual. Now, let Sp denote the
set of record K-tuples corresponding to the matching pattern
p ∈ PK . It is clear that

K⊗
k=1

αk(Ak) =
⋃

p∈PK

Sp (1)

since each record K-tuple has a unique matching pattern.
The number of ways we can partition a set of K elements
into nonempty subsets is called the Kth Bell number, de-
noted BK , which can be found using the recurrence relation
BK = ∑K−1

k=0 Bk( K − 1
k ), with B0 = 1 by convention (see Rota

1964 for further details). Thus, there are BK subsets Sp of record
K-tuples.

Let n denote the cardinality of the set in Equation (1). Also,
for j = 1, . . . , n, let rj = (α1(a1), . . . , αK (aK )) for some ak ∈
Ak, k = 1, . . . , K , be the jth record K-tuple of the K-ary product
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Table 1. Each matching pattern of a record triplet can be associated
with a partition of the set {1, 2, 3}

Notation P3 (α1(a1), α2(a2), α3(a3))

1/2/3 {{1}, {2}, {3}} a1 �= a2 �= a3 �= a1

12/3 {{1, 2}, {3}} a1 = a2; a3 �= a1, a2

13/2 {{1, 3}, {2}} a1 = a3; a2 �= a1, a3

1/23 {{1}, {2, 3}} a2 = a3; a1 �= a2, a3

123 {{1, 2, 3}} a1 = a2 = a3

in Equation (1). When the datafiles do not contain common iden-
tifiers, we cannot identify the subset Sp to which the record K-
tuple rj belongs. If the datafiles record the same F fields of infor-
mation, however, we can obtain a comparison vector γ j for each
K-tuple rj . We can use this information to estimate the proba-
bility that each record K-tuple belongs to each subset Sp, given
the comparison vector γ j . Multiple record linkage’s goal is to
classify all the record K-tuples in the appropriate subsets Sp.

Example 1. If we have K = 3 datafiles, for each triplet of
records we have the matching patterns in Table 1, which can
be represented using undirected graphs as in Figure 1. In this
case, we also have B3 = 5 and the Cartesian product of the three
datafiles can be written as

3⊗
k=1

αk(Ak) = S1/2/3 ∪ S12/3 ∪ S13/2 ∪ S1/23 ∪ S123. (2)

2.1 Blocking

Note that the dimension of the K-ary product grows exponen-
tially as a function of K. Thus, considering the complete set of
record K-tuples is highly inefficient in most applications. A com-
mon way to deal with this problem in bipartite record linkage is
to partition each datafile into a common set of blocks, thereby
eliminating the need to match records in different blocks. The
idea is that reliable categorical fields such as zip code or gender
may be used to quickly label some of the nonlinks. For example,
if we are matching datafiles with geographic information, we
could assign those records that differ in zip code (or a similar
field) as nonlinks. See Herzog, Scheuren, and Winkler (2007,
2010) and Christen (2012) for a discussion of blocking.

In multiple record linkage, we can apply the same idea to
assign nonlinks between pairs of records within every record K-
tuple. If a certain blocking variable assigns a nonlink between
records k and k′ in the record K-tuple rj , this implies that rj

cannot be assigned to subsets Sp where the pattern of agreement
p involves a link between files k and k′. Consequently, the record
linkage process has to decide among the remaining possibilities.

If a nonlink is assigned to every pair of records within a record
K-tuple, then this K-tuple can be assigned directly to the subset
S1/2/.../K (see notation in Table 1). In practice this last step
tremendously reduces the number of K-tuples to be classified.

Using the natural partial order in PK , we provide a way to
determine the subsets to which a record K-tuple can be assigned
after blocking. We say that p′ � p if p′ is a partition finer than
or equal to p. Note that the blocking process provides a maximal
pattern of agreement pb for each record K-tuple rj . Thus, the
subsets to which rj can be potentially assigned are those Sp such
that p � pb.

Example 2. In Figure 2, we present the Cartesian product
of two pairs of files after blocking. We illustrate using homi-
cide data from the Armenia, Montenegro, and Quimbaya towns
in the Colombian province of Quindio. In this example, only
the gray elements of the Cartesian product become part of the
record linkage process, whereas the white elements become a
priori nonmatches. The left-hand side of Figure 2 represents the
Cartesian product of two Census and Police data subsets after
blocking by town. The right-hand side represents the Carte-
sian product of the same Census data subset and a Forensics
data subset after blocking by gender. Note that in this example
we assign the pair (α1(a), α2(b)) as a nonlink since these two
records refer to homicides in different towns. We also assign
the pair (α1(a), α3(c)) as a nonlink since these two records refer
to different genders. Assuming that there are no nonlink block-
ing assignments for (α2(b), α3(c)), the multiple record linkage
decision process has to classify the triplet (α1(a), α2(b), α3(c))
as either belonging to S1/2/3 or S1/23. On the other hand, the
two blocking processes illustrated in Figure 2 have no direct
implications on the possible resolution of (α1(d), α2(b), α3(c)).

3. COMPARISON DATA

To obtain appropriate data to model the probability that a
certain record K-tuple belongs to some subset Sp, let us deter-
mine the matching pattern for each common field of recorded
information. If for a certain record K-tuple we search for agree-
ment among the information recorded for a certain field, we
can associate each entry of the record K-tuple with a number
in {1, 2, . . . , K} and a certain partition of this set would de-
scribe the matching pattern of the record K-tuple for the field
in consideration, grouping in the same element of the partition
all the K-tuple entries that agree in the field being compared
(similar to Section 2). An alternative way to explain this idea is
as follows. For some record K-tuple, let us compare the infor-
mation of the records from the datafiles k, k′, and k′′ for a certain
common field. Due to transitivity of agreement, if records k and
k′ agree and k′ and k′′ agree, then k and k′′ agree necessarily.

Figure 1. Undirected graphs giving B3 = 5 possible patterns of agreement using three datafiles. The vertices appear connected if the value
that each one represents agree, otherwise, the vertices appear unconnected.
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Figure 2. Cartesian products of Census and Police homicide data after blocking by town (left), and Census and Forensics homicide data after
blocking by gender (right) for three towns in Colombia. Only elements in gray blocks are potentially linked. Black elements are discussed in the
example of Section 2.1.

Thus, since agreement is an equivalence relation, each matching
pattern for each field for each record K-tuple is a partition of K
points, because for any equivalence relation on a set, the set of
its equivalence classes (sets of records agreeing) is a partition
of the set.

Now, let γ
jf

p = 1 if the record K-tuple rj has the match-
ing pattern p in the field f . Then, for each field f =
1, . . . , F , of each record K-tuple rj , we obtain a vector γ jf =
(γ

jf

1/2/.../K, . . . , γ
jf

p , . . . , γ
jf

12...K ), where only one entry is equal
to one and the rest are equal to zero. Note the length of the vec-
tor γ jf is BK , since this is the number of patterns of agreement
for each field. Finally, the comparison data for rj contains the
comparison vectors for all the F fields, and can be written as
γ j = (γ j1 , . . . , γ jf , . . . , γ jF ), which takes values over (BK )F

possible matching patterns.
Similarly as in Section 2, we can represent the patterns of

agreement presented in this section by unions of complete undi-
rected graphs (see Rosen 2006, p. 448) as in Figure 1. In those
graphs, each vertex represents the value of certain field in certain
record that belongs to certain datafile k = 1, . . . , K . The ver-
tices k′ and k appear connected if the values that they represent
agree, otherwise, the vertices appear disconnected.

Example 3. Let us expose how the comparison data work
when we need to link three datafiles. In this case, we can rep-
resent the patterns of agreement as five unions of complete
undirected graphs, as presented in Figure 1. For K = 3, γ jf =
(γ

jf

1/2/3, γ
jf

12/3, γ
jf

13/2, γ
jf

1/23, γ
jf

123) represents the comparison data
for the field f (say age, ethnicity, etc.) of the record triplet rj ,
and the length of the full comparison data for each record triplet
is 5F , if the datafiles have F common fields.

4. MODEL FOR MATCHING PROBABILITIES

The probabilities P (Sp|γ j )
.= P (rj ∈ Sp|γ j ), p ∈ PK , can

be found using P (γ j |Sp)
.= P (γ j |rj ∈ Sp) and P (Sp)

.=

P (rj ∈ Sp), as P (Sp|γ j ) = P (γ j |Sp)P (Sp)/P (γ j ), where

P (γ j ) =
∑
p∈PK

P (γ j |Sp)P (Sp).

Let gj = (gj

1/2/.../K, . . . , g
j

12...K ) be the vector that indicates
the subset Sp that contains the record K-tuple rj , such that
g

j
p = 1 if rj ∈ Sp and g

j
p = 0 otherwise. Thus, it is clear that∑

PK
g

j
p = 1. Now, let xj = (gj , γ j ) be the (partially observed)

complete data vector for rj . Note that after blocking, some en-
tries of gj are fixed as zeroes for some record K-tuples.

Winkler (1988), Jaro (1989), and Larsen and Rubin (2001)
proposed to model the corresponding complete data xj for bi-
partite record linkage, where gj is taken as a latent variable. For
multiple record linkage, the model for xj is stated as

P (xj |�) =
∏

p∈PK

[P (γ j |Sp)P (Sp)]g
j
p .

Under the conditional independence assumption of the compar-
ison data fields, we obtain

P (γ j |Sp) =
F∏

f =1

P (γ jf |Sp). (3)

Each γ jf represents the matching pattern of rj in the field f ,
which corresponds to categorical information that can be mod-
eled by using a categorical distribution (or multinomial with just
one trial) as

P (γ jf |Sp) =
∏

p′∈PK

(
π

f

p′ |p
)γ

jf

p′ , (4)

where π
f

p′|p
.= P (γ

jf

p′ = 1|Sp), and p′ is just another indicator
of the patterns of agreement in PK . Defining ¯sp

.= P (Sp), under
independence of the complete data, the complete log-likelihood
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for the sample x = {xj ; j = 1, . . . , n} is obtained as

L =
n∑

j=1

∑
p∈PK

gj
p

⎡
⎣log ¯sp +

F∑
f =1

∑
p′∈PK

γ
jf

p′ log π
f

p′ |p

⎤
⎦ .

The set of parameters in the log-likelihood above is � =
(s,�), where s is a vector of length BK given by s =
(¯s1/2/.../K, . . . , ¯s12...K ) and � can be arranged in a set of F
matrices of size BK × BK , each one given by

�f

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π
f

1/2/.../K|1/2/.../K . . . π
f

1/2/.../K|p . . . π
f

1/2/.../K|12...K

...
. . .

...
. . .

...

π
f

p′ |1/2/.../K . . . π
f

p′ |p . . . π
f

p′ |12...K

...
. . .

...
. . .

...

π
f

12...K|1/2/.../K . . . π
f

12...K|p . . . π
f

12...K|12...K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for f = 1, . . . , F . Hence, the length of � is BK (BKF + 1). To
estimate these probabilities, since the gj vectors are only par-
tially observed, the estimation is made via maximum likelihood
using the EM algorithm (Dempster, Laird, and Rubin 1977).
The model presented in this section generalizes the one used by
Winkler (1988) and Jaro (1989), and uses the strong assumption
that the comparison data fields are conditionally independent
given the K-tuples’ membership to the subsets Sp. In Section
7, we show that this baseline model produces good results for
the Colombian homicide data, but the modeling of the fields’
dependencies may be a key factor in obtaining good linkage
results in other contexts (see Larsen and Rubin 2001). This is
part of our ongoing work.

Example 4. For the particular case where K = 3, the
length of � is 5 + 25F , which is given by s =
(¯s1/2/3, ¯s12/3, ¯s13/2, ¯s1/23, ¯s123) and �, which is composed by
F matrices of size 5 × 5, as

�f

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π
f

1/2/3|1/2/3 π
f

1/2/3|12/3 π
f

1/2/3|13/2 π
f

1/2/3|1/23 π
f

1/2/3|123

π
f

12/3|1/2/3 π
f

12/3|12/3 π
f

12/3|13/2 π
f

12/3|1/23 π
f

12/3|123

π
f

13/2|1/2/3 π
f

13/2|12/3 π
f

13/2|13/2 π
f

13/2|1/23 π
f

13/2|123

π
f

1/23|1/2/3 π
f

1/23|12/3 π
f

1/23|13/2 π
f

1/23|1/23 π
f

1/23|123

π
f

123|1/2/3 π
f

123|12/3 π
f

123|13/2 π
f

123|1/23 π
f

123|123

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5. EM ESTIMATION

The EM algorithm can be used to fit the parameters of a
mixture model via maximum likelihood estimation (see Demp-
ster, Laird, and Rubin 1977; McLachlan and Peel 2000, p. 47)
and has been applied to record linkage problems (e.g., Winkler
1988; Jaro 1989; Larsen and Rubin 2001). Following the model
presented in Section 4, let us find the equations of an EM algo-

rithm to estimate �. First, for the Expectation step, let us find
the conditional distribution of gj

P (gj |γ j ) = P (xj )

P (γ j )

=
∏

p∈PK

[
P (γ j |Sp)P (Sp)

P (γ j )

]g
j
p

=
∏

p∈PK

[P (Sp|γ j )]g
j
p ,

that is, gj |γ j ∼ Multinomial (1, P |γ j ), where P |γ j =
(P (S1/2/.../K |γ j ), . . . , P (S12...K |γ j )).

Thus, using the estimation �̂ from a previous M step of the
algorithm, for the E step, the expectation of the unknown part
of gj is composed by

P̂ (Sp|γ j ) =
ˆ¯sp

∏F
f =1

∏
p′∈PK

(
π̂

f

p′ |p
)γ

jf

p′

P̂ (γ j )
(5)

for p � pbj
, where pbj

represents the blocking pattern for rj .
The term P̂ (γ j ) above is given by

P̂ (γ j ) =
∑

p�pbj

ˆ¯sp

F∏
f =1

∏
p′∈PK

(
π̂

f

p′ |p
)γ

jf

p′ .

Let g̃j be equal to gj for the entries that are known to be
zeroes, and let the remaining entries of g̃j be filled with the
values given in Equation (5). For the Maximization step, we
replace gj with g̃j in the log-likelihood L and estimate � via
maximum likelihood. We obtain for �̂

π̂
f

p′|p =
∑(BK )F

j=1 nγ j γ
jf

p′ g̃
j
p∑(BK )F

j=1 nγ j g̃
j
p

,

and for ŝ we obtain

ˆ¯sp =
∑(BK )F

j=1 nγ j g̃
j
p

n
,

where nγ j represents the frequency counts of each pattern γ j ,
as in Jaro (1989). Note that in this case we have (BK )F different
patterns of γ j . As usual, the algorithm stops when the values
of �̂ converge, which can be assessed measuring the distance
between �̂ in two consecutive iterations. To start this algorithm,
we choose initial values taking into account the fact that some
probabilities must be greater than others.

5.1 Starting Values

Note that the parameters in each �f should hold certain
restrictions. In record linkage these constraints are taken into
account to start the EM algorithm (Winkler 1993; Lahiri and
Larsen 2005). For instance, it is clear that π

f

12...K|12...K should
be greater than π

f

1/2/.../K|12...K , that is, given that in a record
K-tuple all the entries refer to the same individual, the prob-
ability that their information agree should be larger than the
probability that all their information disagree. However, note
that π

f

1/2/.../K|1/2/.../K should not necessarily be greater than
π

f

12...K|1/2/.../K , that is, for a record K-tuple in which all the
entries refer to different individuals, the probability that all
their information disagree is not necessarily larger than the
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Figure 3. Hasse diagram to determine the set of inequalities between probabilities π
f

p′ |p and ¯s(0)
p . The possible inequalities are established

from sources to targets in the arrows, for example, ¯s(0)
123 < ¯s(0)

12/3.

probability that all their information agree (this is the case for a
field with a very common value).

Thus, given the high number of parameters it is not easy to
determine which constraints should be taken into account. To
determine the set of constraints to start the algorithm, we present
a method that uses the natural partial order in PK . Remember
that we say p′ � p if p′ is a partition finer than or equal to
p. To determine if π

f

p′|p should be greater or lower than π
f

p′′ |p
for p, p′, p′′ ∈ PK , we fix the partition p and for all partitions
p′, p′′, such that p′′ � p′ � p we set πf

p′′|p ≤ π
f

p′|p. In any other
case we do not have a criterion to order π

f

p′|p with respect to
π

f

p′′ |p.
Note that this procedure can be visualized using a directed

graph in the following way:

1. Construct the Hasse diagram of the partitions p′ ∈ PK

writing in each node π
f

p′|p, where p is a generic partition.
2. Assign a specific partition to the generic p.
3. Search for the node where p′ = p.
4. For all the branches under this node, set an inequality ≥

between each “father” node and each “son” node.
5. Repeat Steps 2–4 until exhausting the possible partitions.

We can use similar ideas to identify the constraints for
¯s1/2/.../K, . . . , ¯s12...K . We simply have that ¯sp′ ≥ ¯sp whenever
p′ � p. Naturally, the set of inequalities among the probabili-
ties ¯sp can also be represented in a Hasse diagram. Furthermore,
if the datafiles being linked have no duplicates, the size of the
complete links set S12...K should be smaller than or equal to the
smaller datafile size, from which is reasonable to take starting
values for ¯s12...K smaller than min{mk; k = 1, . . . , K}/n, where
mk represents the number of records in datafile k. In general,
we can determine the maximum size of any set Sp if we assume
no duplicates into each datafile. Denote qp as a generic element
of the partition p ∈ PK , that is, qp is a subset of NK . Thus,
the maximum size of Sp is

∏
qp∈p min{mk; k ∈ qp}, from which

is reasonable to start the algorithm taking values lower than∏
qp∈p min{mk; k ∈ qp}/n for a generic ¯sp. The starting value

for ¯s1/2/.../K is determined as one minus the other ¯sp. Notice
that since duplicates are rather common in practice, the above
values are merely a guide to start the EM algorithm. Finally,
since latent class models have multiple solutions corresponding
to local maxima of the marginal likelihood, in practice we would
take different starting values holding the above constraints, and
we would choose the parameters with the maximum marginal
likelihood for the observed data γ j (see, e.g., McLachlan and
Peel 2000).

Example 5. We illustrate this procedure for K = 3 us-
ing the left-hand side of Figure 3. Go to the left panel
of Figure 3 and replace p with 123. Since π

f

123|123
is in the top of the graph, we take the set of con-
straints π

f

123|123 ≥ π
f

12/3|123 ≥ π
f

1/2/3|123; π
f

123|123 ≥ π
f

13/2|123 ≥
π

f

1/2/3|123; π
f

123|123 ≥ π
f

1/23|123 ≥ π
f

1/2/3|123, which correspond to

the three different branches under π
f

123|123. Now, replace p with

12/3. Since in this case the node π
f

12/3|12/3 has only one descen-

dent, we only get the constraint π
f

12/3|12/3 ≥ π
f

1/2/3|12/3. This
step is similar for 13/2 and 1/23. Finally, if we replace p with
1/2/3, we can see that the node π

f

1/2/3|1/2/3 does not have de-
scendants, so we do not set constraints for the probabilities
π

f

p′|1/2/3, p′ ∈ P3.

For K = 3, the right-hand side of Figure 3 represents the
set of inequalities for the starting values ¯s(0)

p . We obtain for in-

stance ¯s(0)
1/2/3 > ¯s(0)

1/23 > ¯s(0)
123. Also, for this particular case we

take ¯s(0)
123 < min{m1,m2,m3}/n, ¯s(0)

1/23 < m1 min{m2,m3}/n,

and similar inequalities for ¯s(0)
13/2 and ¯s(0)

12/3, whereas ¯s(0)
1/2/3 =

1 − ¯s(0)
1/23 − ¯s(0)

13/2 − ¯s(0)
12/3 − ¯s(0)

123.

6. LINKAGE ASSIGNMENT: GENERALIZED
FELLEGI–SUNTER DECISION RULE

The goal of multiple record linkage is to classify each record
K-tuple to the appropriate subset Sp. For bipartite record link-
age, Fellegi and Sunter (1969) proposed the computation of
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likelihood ratios as weights for the assignment of record pairs
as matched or unmatched pairs. Their procedure is equivalent to
test the hypothesis that each record pair belongs to the subset of
unmatched record pairs, against the hypothesis that it belongs
to the subset of matched pairs, and vice versa.

6.1 Likelihood Ratios and Weights

In multiple record linkage, there are several subsets of records
denoting all the possibilities of matching between records from
different datafiles. Following Fellegi and Sunter’s idea, for each
record K-tuple and for each subset, we propose to compute
weights following a hypothesis test, where the null hypothesis
is the record K-tuple membership to a certain subset, that is,
rj ∈ Sp, against the hypothesis that this record K-tuple does not
belong to the subset, that is, rj ∈ Sc

p, where the superscript c
denotes the complement of the set. By using a log-likelihood
ratio, we obtain

wj
p = log

P (γ j |Sp)

P (γ j |Sc
p)

.

The informal idea of the use of the weights w
j
p is that we would

order the record K-tuples according to their respective weights
and we would assign K-tuples with large w

j
p to the subset Sp.

However, the ordering obtained from w
j
p can be obtained in a

simpler way, regardless of the model for P (γ j |Sp).

Proposition 1. The ordering obtained from w
j
p,

logit[P (Sp|γ j )], and P (Sp|γ j ) is the same.

Thus, for ordering and decision purposes we can simply use
P (Sp|γ j ) (see proofs in the appendix). We still need to de-
termine, however, the cutoffs from which we declare record
K-tuples’ memberships.

6.2 Cutoff Values

In bipartite record linkage, to declare a record pair as matched
or unmatched, the Fellegi–Sunter method orders the possible
values of γ j by their weights in nonincreasing order, deter-
mines two cutoff values of the weights, and, according to them,
declares matches and nonmatches. For multiple record linkage,
we extend this procedure and prove its optimality.

Theorem 1. The decision procedure described below maxi-
mizes the probability of assigning each record K-tuple to the
right subset, subject to a set of admissible error levels μp.

1. Each record K-tuple is potentially declared to belong to the
subset Sp if and only if p is the pattern for which P (Sp|γ j )
is maximum among all possible patterns in PK . Thus,
the set of record K-tuples is partitioned into BK subsets,
and for each record K-tuple in one of these partitions we
consider only two possibilities, whether to declare it to
belong to the subset Sp or to keep it undeclared.

2. For the record K-tuples in each partition, we order the
possible values of γ j by their weights (or equivalently
by P (Sp|γ j )) in nonincreasing order indexing by the sub-
script (j )p.

3. We find one value (j ′)p for each set of weights related to
each subset, to determine the record K-tuple memberships.

The value (j ′)p is found such that

μp =
(j ′)p−1∑
(j )p=1

P
(
γ (j )p |Sc

p

)
,

where μp = P (assign rj the membership of Sp|rj ∈ Sc
p)

is an admissible error level. Each P (γ (j )|Sc
p) can be com-

puted as

P
(
γ (j )p |Sc

p

) =
∑

p′∈PK,p′ �=p P
(
γ (j )p |Sp′

) ¯sp′

1 − ¯sp

.

4. Finally, for those record K-tuples with configurations of
γ (j )p , (j )p = 1, . . . , (j ′)p − 1, we decide that they be-
long to the subset Sp. For those record K-tuples with
configurations γ (j )p with (j )p ≥ (j ′)p, we keep them
undeclared.

In the Appendix, we show that the above decision rule is
optimal under the availability of the true matching probabilities.
We show that this decision rule minimizes the probability of
assigning each record K-tuple to the wrong subset Sp or keeping
it undeclared, subject to a set of admissible error levels μp, or
namely, it maximizes the probability of assigning each record
K-tuple to the right subset, subject to a set of admissible error
levels μp. The Fellegi–Sunter decision rule for bipartite record
linkage can be obtained as a corollary of Theorem 1. In practice
the optimality of this decision rule depends on the quality of the
estimation of the matching probabilities. Belin and Rubin (1995)
and Larsen and Rubin (2001) provided evidence that nominal
and actual error levels disagree in different applications. Belin
and Rubin (1995) proposed a method to calibrate error rates as
a function of cutoff values for bipartite record linkage. This is
an important problem that we expect to address in our ongoing
work for the multiple record linkage context.

7. LINKING HOMICIDE RECORD SYSTEMS IN
COLOMBIA

The Colombian homicide data described in Section 1.2 were
provided by the Conflict Analysis Resource Center (CERAC)
where a linkage by hand was performed for a subset of the
data, corresponding to the province of Quindio for the last three
months of 2004. In this section, we present an application to the
integration of these three datafiles. In this period, 67, 62, and 33
homicides were recorded by the Census Bureau, the National
Police, and the Forensics Institute, respectively. The common
fields of these three datafiles are town and date of the homicide,
gender, and age of the victim.

An outline of the implementation of the method is as follows:

1. Find the set of record triplets that are suitable for clas-
sification into the different matching patterns. This set is
obtained after blocking.

2. Compute the comparison data according to the possible
patterns of agreement for all the triplets to be classified
and for every common field.

3. Train the mixture model of the distribution of the compar-
ison data.

4. Divide the set of triplets according to the subsets Sp for
which P̂ (Sp|γ j ) is maximum.
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Table 2. Error rates of multiple record linkage assignments for Census (1)–Forensics (2)–Police (3) record triplets. Three comparison data
options for age of the victim and date of the homicide. OME: overall misclassification error, MWGE: mean within group error

Misclassification error

Age and date data 1/2/3 12/3 13/2 1/23 123 OME MWGE

1. Exact comparisons 0.6203 0.2216 0.3915 0.0079 0.4444 0.5977 0.3371
2. Three comparison categories 0.0470 0.0109 0.0803 0.0510 0.0370 0.0471 0.0453
3. Three comparison 0.0365 0.0079 0.0598 0.0082 0.0370 0.0359 0.0299

categories + blocking
Kid–Young–Elderly

5. Within each subset, sort the triplets by P̂ (Sp|γ j ) and use
an admissible error level to either declare the triplets as
belonging to the subset Sp or keep them undeclared.

To implement the method, we used town of the homicide and
gender of the victim for blocking. We assigned the member-
ship to the subset S1/2/3 to the triplets with blocking pattern
1/2/3. We used the proposed method to classify the remain-
ing triplets. To use date of the homicide and age of the victim,
we explored several options, but we only report the results of
using three of them (Table 2). The first option only includes
exact comparison data for both variables. The second option
constructs three categorical variables from each variable age
and date, and creates comparison data using these new categor-
ical variables. These variables are constructed in the following
fashion: the categories of the variable AgeA are 0–2, 3–5, and
so on; the categories of the variable AgeB are 0, 1–3, 4–6, and
so on; and finally, the categories of the variable AgeC are 0–1,
2–4, and so on. A similar procedure is used for date of the
homicide, starting from the first day of the period of the data.
The third approach uses the previous categorical variables and
in addition exploits a specific structure of the age recorded in
these datasets to create an additional blocking variable. The ages
recorded in these three datafiles present two gaps, this is, there
are no homicides recorded in the 5–11 and 56–65 age intervals.
Thus, we create a new blocking variable that classifies “kids,”
“young,” and “elderly” individuals. We think it is safe to use
this variable for blocking since no records with similar ages are
assigned to different blocks. Also, to help the EM algorithm
to identify the appropriate clusters, we replaced P̂ (Sp|γ j ) by

1 for those triplets with γ
jf

p = 1 for all the fields f and for
p ∈ {12/3, 13/2, 1/23, 123}. This semisupervised approach is
a missing data problem under multinomial sampling (Dempster,
Laird, and Rubin 1977). We made the final assignments using
nominal error levels μp = 0.01 for all p.

In Table 2, we present different measures of the performance
of the multiple record linkage decisions using the three differ-
ent options for the inclusion of the information about age of the
victim and date of the homicide. These measures were obtained
after comparing with the results of the hand matching proce-
dure, which is thought to be more reliable. Besides the usual
misclassification errors, we present the mean within group error
(MWGE) rate (Qiao and Liu 2009), which controls the different
sizes of the clusters Sp by taking the average of the error rates for
each Sp. From the first age and date comparison data, we can see
that the multiple record linkage procedure can produce catas-

trophic results if it is not used carefully. For this scenario all the
misclassification errors are very high, which indicates that the
multiple record linkage process did not find the appropriate clus-
ters. For the first comparison data, only exact comparisons were
included, hence small differences in age and date were treated
the same as large differences. For the second age and date com-
parison data, the results improved significantly. The way these
comparison variables were created is such that if there is exact
agreement in age or in date, the three corresponding comparison
variables agree. If there is a difference of one unit, two of them
agree, and if there is a difference of two units, only one of the
variables agree. This approach is more flexible to capture small
measurement error in age and date. The final approach addition-
ally blocks three categories of age, which helps to reduce the
number of misclassified triplets. For this final approach, all the
measures of misclassification error are very close to zero, which
indicates that multiple record linkage can provide good results
if used properly. Naturally, the good performance of the method
depends on the specific datafiles to be linked and the models
implemented.

We performed a bipartite record linkage for each of the three
pairs of datafiles using the same blocking variables and the
same comparison data as the third approach in Table 2. The
assignments were also made using nominal error levels of 0.01.
For the triplets on which a decision could be made, the overall
misclassification error was 0.0435 and the MWGE was 0.0311.
When trying to combine the decisions of the three independent
procedures, however, we obtained a set of 43 record triplets
on which we could not assign a decision. Among this set of
record triplets, the multiple record linkage procedure coincided
with the hand matching procedure in 32 cases (74%). Of course
the performance of the method for those record triplets is not
as good as the general performance, since these record triplets
are usually the ones that are more difficult to classify. How-
ever, multiple record linkage provides a decision along with a
measure of uncertainty for that decision (namely, the matching
probabilities), something that is not available from reconciling
bipartite record linkages.

8. SIMULATION STUDIES

In practice, the performance of our method will depend on
several factors: (a) the amount of measurement error of the
datafiles, (b) the number of common variables and their num-
ber of categories/variability, (c) the sizes of the datafiles and
their overlaps, (d) the dependence structure among the recorded
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fields, and (e) the existence of replicate records in the datafiles,
etc. Here, we explore the performance of the proposed method
under some simple scenarios, emphasizing how measurement
error affects our results. We used the R language to perform our
simulations (R Development Core Team 2010).

8.1 Generating Measurement Error

Tancredi and Liseo (2011) used a simplified version of the
hit-miss model (Copas and Hilton 1990) to generate measure-
ment error. This model for categorical information on records
measured with error is given by

P
(
Y obs

f = yco

f |Yf = yc
f

) = (1 − βf )I
(
yco

f = yc
f

) + βf /Cf ,

(6)

where Y obs
f represents the observed field f and Yf represents

the true value of the field f . Both Y obs
f and Yf have support

{y1
f , . . . , yc

f , . . . , y
Cf

f }, where Cf represents the number of cat-
egories of the field f . Equation (6) includes a measurement error
parameter βf that represents the probability of measurement er-
ror for the field f . This model establishes that conditioning on the
unobserved true values, we can model each single record field
as a mixture of two components: the first component is con-
centrated on the true value while the second one is uniformly

distributed over the support of the field (Tancredi and Liseo
2011). In our simulation studies, we do not generate error for
the blocking variable. For the numerical variables, we generate
error using the following model:

P
(
Y obs

f = yco

f |Yf = yc
f

) = (1 − βf )I
(
yco

f = yc
f

)
+βf

2

5
2−|yco

f −yc
f |I

(|yco

f − yc
f | < 3

)
,

(7)

which allows measurement error around the true value. For our
simulation study, we consider the same value of βf for all the
fields subject to error (so we drop the subindex f ).

8.2 To Block or Not to Block?

Blocking is usually an important component of record link-
age since working with the complete Cartesian product of the
datafiles is computationally inefficient. In this section, we show
that we need blocking to obtain good classification results. Thus,
we may want to block even in the presence of adequate com-
putational power to handle the record linkage process on the
complete Cartesian product.

We take the Census homicide data as the true population
information and we generate three equal size datafiles subject to
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Figure 4. Measures of misclassification error for nonblocking (solid line) and blocking (dashed line) scenarios.
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measurement error. We generate measurement error according
to the model (7) for date of the homicide and age of the victim.
We do not generate measurement error for sex of the victim and
city of the homicide since we use these variables for blocking.
We simulate 100 triplets of datafiles and for each triplet, we
perform multiple record linkage using the second option of
comparison data presented in Section 7. In Figure 4, we present
the performance results for three values of the measurement
error parameter: 0.05, 0.10, and 0.15. We compare the results
of our method without blocking (solid line) and after blocking
by gender of the victim and city of the homicide (dashed line).
In panel (a) of Figure 4, we average over all the simulations
the MWGE as a measure of the general performance of the
method (or in other words, a measure of the performance of our
method on

⋃
p Sp). In panels (b)–(f), we present the average

misclassification error for each specific subset Sp.

We can see that, for this example, the effect of blocking is
huge. In general, the error rates are very large when we use no
blocking, but they decay to values close to zero under blocking.
Note also that the larger the measurement error, the larger the
error recovering the subsets S123 and S1/2/3, which indicates that
measurement error causes true triple links to be missed and false
links to be created.

8.3 Number of Blocks and Low-Quality Fields

In certain applications, there are different blocking options
and the possibility to include low-quality fields in the linkage
process. In this section, we explore these scenarios. We gener-
ate three databases containing five independent common fields
across the different scenarios. These first five fields contain 3,
5, 10, 10, and 15 categories, respectively, and each category is
generated with equal probability. We also use one additional
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Figure 5. Measures of misclassification error for different number of blocks and inclusion/exclusion of low-quality fields. The blocking
scenarios are 5 blocks (solid line), 10 blocks (dashed line), and 15 blocks (dot-dashed line). The gray lines represent the performance of the
method including the low-quality extra field. Note the different scale of panel (f).
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independent blocking variable to check the performance of the
method under blocking. We consider three different blocking
scenarios that correspond to 5, 10, and 15 categories of the
blocking variable, where the categories are generated with equal
probability. For all the simulation scenarios, the sizes of the
databases and their overlaps are the same as in the Colombian
homicide data.

For one of the fields with 10 categories, we use β = 0.7 to
simulate a scenario where a common variable is available, but it
is known that its quality is low. We keep β = 0.7 for the previous
variable across three different measurement error scenarios for
the remaining four fields. These three scenarios correspond to
three different values of β: 0.05, 0.10, and 0.15, and in each sce-
nario the same β is used to generate error for the remaining four
fields. Given the three true databases, we generate 100 triplets of
observed databases using the hit-miss model (6). For each triplet
of databases, we performed six implementations of the proposed
methodology for multiple record linkage. The six implemen-
tations correspond to the combination of including/excluding
the low-quality field and the three blocking options. We made
the final assignments using nominal error levels μp = 0.01 for
all p.

To evaluate the performance of the method in terms of recov-
ering the classes Sp, we report the misclassification error rate for
each class Sp and the MWGE rate (Qiao and Liu 2009) for the
triplets that were assigned to a certain group. The MWGE rate
is more meaningful than the overall misclassification error for
record linkage since the groups Sp are extremely unbalanced, for
example, the subset S1/2/3 is massive whereas the subset S123 is
extremely small. We present the results in Figure 5, where panel
(a) shows the average over all the simulations of the MWGE
and panels (b)–(f) show the average misclassification error for
each class Sp. All the panels show the performance measures
as a function of the measurement error parameter. The solid,
dashed, and dot-dashed lines represent the error values for the
method with 5, 10, and 15 blocks, respectively. The gray lines
represent the method including the low-quality extra field. Note
that the scale of the vertical axes is the same for panels (a)–(e),
but we present panel (f) with a different scale since the errors for
the subset S123 are significantly larger compared with the other
subsets.

We can see that, in general, the larger the measurement error,
the larger the error rates, which is something that one would
expect. We can also see that under all the scenarios, increasing
the amount of blocking decreases the error rates. In particular,
note in panel (f) that blocking has a huge impact on the reduction
of the misclassification for the class S123. Finally, we note that
for each blocking scenario, the inclusion of the low-quality extra
field increases the error rates.

9. CONCLUSIONS AND FUTURE WORK

Our method provides a framework for the integration of more
than two datafiles without common identifiers. The ideas are an
extension of the theory proposed by Fellegi and Sunter (1969)
and its more modern implementations, as in Winkler (1988) and
Jaro (1989). The method solves the problem of obtaining non-
transitive decisions, as it is common when reconciling bipartite

record linkages. Our method also provides matching probabili-
ties for the record K-tuples, something that is not available from
reconciling bipartite record linkages, but that is necessary to in-
corporate the uncertainty of the linkage procedure in posterior
analysis such as regression (Lahiri and Larsen 2005). We pro-
posed a decision rule that is optimal under the availability of the
true matching probabilities. In practice, however, the optimality
of the decision rule hinges on the availability of well-calibrated
probability models, that is, good estimates of the probability of a
particular K-tuple belonging to the subsets Sp. Thus, we need to
consider models that go beyond the present one and that capture
dependencies between fields (see, e.g., Larsen and Rubin 2001).
Nevertheless, even using a naive model, our method performed
well both in the integration of the Colombian homicide datafiles
and in our simulations.

We believe our method holds promise in the context of record
linkage for census coverage measurement evaluation. For ex-
ample, the U.S. Census Bureau has for several decades done a
two-sample linkage between the actual enumeration and data
from a post-enumeration survey based on data from a nation-
wide sample of census blocks (Hogan 1992, 1993). Additional
sources of data that could be used to improve coverage esti-
mation include the American Community Survey and various
administrative record files. Incorporation of them would require
linkage of K ≥ 3 datafiles, using methods that could build upon
the work described here that would take into account multiple
sampling designs and census adjustments such as imputations
and erroneous enumerations.

APPENDIX: PROOFS

In the proofs presented below, we use the notation introduced in
Section 4, where for instance, P (Sc

p) means P (rj ∈ Sc
p), and so on. Also,

for functions f (x) and g(x) we denote f (x) ∝ g(x) if f (x) = g(x) + t ,
for some constant t .

Proof of Proposition 1. The ordering of wj
p is the same as the

ordering of logit[P (Sp|γ j )] since

wj
p = log

P (Sp|γ j )/P (Sp)

P
(
Sc

p|γ j
)
/P

(
Sc

p

)

∝ log
P (Sp|γ j )

P
(
Sc

p|γ j
)

= logit[P (Sp|γ j )].

Finally, the logit function is a monotonic increasing function of its ar-
gument, thus the ordering of logit[P (Sp|γ j )] is the same as the ordering
of P (Sp|γ j ).

Proof of Theorem 1. Optimality of the Generalized Fellegi–Sunter
Linkage Rule.

Let us define the set of possible decisions for a record K-tuple. Let
us call Dp the decision of assigning a record K-tuple to the subset Sp

and Du the decision to keep the record K-tuple undeclared. Thus, a
decision function d is a (BK + 1)-tuple given by

d(γ j ) = (P (D1/2/.../K |γ j ), . . . , P (Dp|γ j ), . . . , P (D12...K |γ j ),

P (Du|γ j )),

where

P (Du|γ j ) +
∑

p∈PK

P (Dp|γ j ) = 1.
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The proposed decision rule L0 is such that

P0(Dp|γ j ) = 1, if (j )p ≤ (j ′)p − 1;
P0(Du|γ j ) = 1, if (j )p ≥ (j ′)p;

for (j )p in the subset of record K-tuples for which P (Sp|γ j ) is max-
imum and (j ′)p is obtained as in the statement of Theorem 1. This
decision rule minimizes the probability of assigning each record K-
tuple to the wrong subset Sp or keeping it undeclared, subject to a set
of admissible error levels μp = P (Dp|Sc

p), p ∈ PK . For decision rules
L0 and L1

μp = P
(
Dp|Sc

p

) =
∑
(j )p

P0

(
Dp|γ (j )p

)
P

(
γ (j )p |Sc

p

)

=
∑
(j )p

P1

(
Dp|γ (j )p

)
P

(
γ (j )p |Sc

p

)
.

From the construction of L0, we obtain∑
(j )p≤(j ′)p−1

P
(
γ (j )p |Sc

p

) =
∑
(j )p

P1

(
Dp|γ (j )p

)
P

(
γ (j )p |Sc

p

)

or ∑
(j )p≤(j ′)p−1

P
(
γ (j )p |Sc

p

) [
1 − P1

(
Dp|γ (j )p

)]

=
∑

(j )p≥(j ′)p

P1

(
Dp|γ (j )p

)
P

(
γ (j )p |Sc

p

)
. (A.1)

Since

P
(
γ (i)p |Sp

)
P

(
γ (j )p |Sc

p

) ≤ P
(
γ (j )p |Sp

)
P

(
γ (i)p |Sc

p

)
whenever (j )p < (i)p, we have

⎡
⎣ ∑

(j )p≥(j ′)p

P1

(
Dp|γ (j )p

)
P

(
γ (j )p |Sp

)⎤⎦

×
⎡
⎣ ∑

(j )p≤(j ′)p−1

P
(
γ (j )p |Sc

p

) [
1 − P1

(
Dp|γ (j )p

)]⎤⎦

≤
⎡
⎣ ∑

(j )p≥(j ′)p

P1

(
Dp|γ (j )p

)
P

(
γ (j )p |Sc

p

)
⎤
⎦

×
⎡
⎣ ∑

(j )p≤(j ′)p−1

P
(
γ (j )p |Sp

) [
1 − P1

(
Dp|γ (j )p

)]⎤⎦ ; (A.2)

dividing (A.2) by (A.1), we obtain⎡
⎣ ∑

(j )p≥(j ′)p

P
(
γ (j )p |Sp

)
P1

(
Dp|γ (j )p

)
⎤
⎦

≤
⎡
⎣ ∑

(j )p≤(j ′)p−1

P
(
γ (j )p |Sp

) [
1 − P1

(
Dp|γ (j )p

)]
⎤
⎦

from which⎡
⎣∑

(j )p

P
(
γ (j )p |Sp

)
P1

(
Dp|γ (j )p

)⎤⎦≤
⎡
⎣∑

(j )p

P
(
γ (j )p |Sp

)
P0

(
Dp|γ (j )p

)⎤⎦ ,

which is the same as

P1(Dp|Sp) ≤ P0(Dp|Sp),

which implies

P1

(
Dc

p|Sp

) ≥ P0

(
Dc

p|Sp

)
(A.3)

for all p ∈ PK . Note that the probability of taking a wrong decision or
not deciding can be written as

∑
p∈PK

P
(
Dc

p ∩ Sp

) =
∑

p∈PK

P
(
Dc

p|Sp

)
P (Sp),

which is minimized by the generalized Fellegi–Sunter linkage rule L0,
as we can see using (A.3).

[Received April 2012. Revised September 2012.]
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