SIMILARITY METRIC AND NONMETRIC SCORES: A
COMPARISON

SHANNON GALLAGHER AND AUSTIN RUSSELL

ABSTRACT. After presenting some theoretical background about metric and
nonmetric similarity scores, we compare the Jaro-Winkler metric, Levenshtein
Edit Distance Metric, the LCS metric, and the Dice Coefficient nonmetric on
two different date sets. The Dice Coefficient outperforms the metrics with
respect to logistic regression and classification trees but lags behind the others
with respect to Fellegi-Sunter Expected Matching in one of the data sets.

INTRODUCTION

In this project, we aim to present some theory on metric spaces with respect
to similarity scores for record linkage. We provide a concrete example of record
linkage data using four similarity scores: the Jaro-Winkler distance score, the Lev-
enshtein distance, the Longest Common Subsequence (I.CS), and one nonmetric,
the Dice Coefficient. We examine the difference, if any, amongst the metric similar-
ity scores, and the non-metric similarity score with regards to our concrete example,
computational runtimes, and type of data to be compared.

Our project is motivated mathematically by metric spaces, which are briefly
described in Section 2. In matheratics, metric spaces have a nice set of properties,
and we want to see if these nice properties have any carry over to record linkage
similarity scores. Qur aim is to find a reason, if one exists, to choose metric scores
over nonmetric scores or the other way around. We wish to optimize which score
should be used for differing types of data sets.

We present the results of our experiments, which are results from the two data
sets of different record pairs. We examine logistic regression models for each of the
similarity scores as well as trees and the Fellegi-Sunter Expected Matching method.
Along with the results, we provide conclusions on which score we would choose for
these particular data sets and provide some explanations why we select this score.

1. SIMILARITY SCORES

In the context of record linkage, similarity scores give us a context to measure
how different records are from one another. According to Peter Christen in Data
Matching, “Tt is vital for data matching to employ comparison functions that return
some indication of how similar two attributes are.” Such comparison functions need
to be tailored to the type of data that are being compared [2]. For instance, to
borrow an example from Data Matching (2], intuitively, the names Shackelford and
Shackleford should be close, and both of those should be pretty far away from the
name Haverforth.

This leads to a situation in which there is currently no all encompassing metric
that works for all types of data. Some metrics work better for numbers, some for

1

2 SHANNON GALLAGHER AND AUSTIN RUSSELL

single words, and sotme for strings, all depending on what the data set is. Therefore,
it is important to take into consideration all the properties of a similarity score as
well as the data set one is looking to analyze. Notably, scores provide different com-
putational complexities which we describe later in this paper. We briefly analyze
the theory behind metrics and nonmetrics.

2. METRICS V8. NONMETRICS

A metric space M = (X,d) is a set X along with a function d : X — R such
that M satisfies the following properties:
d{z,y) > 0 Vz,y € X (non-negative)
d(z,y) = d(y,z) Yz,y € X (symmetric)
o d(z,y)=0ifand only ifxr =y
o Vz,y,z € X,d(z,z) < d(z,y) + d(y, 2) (triangle inequality)

Metrics are useful in that they allow consistent comparisons among all elements,
or points, in a set, much like the real life concept of distance between two points. -
We aim to analyze whether this perceived usefulness carries over to record linkage
and similarity scores.

Pavel Zezula, et. al in their book, Similarity Search: The Metric Space Approach
describe that using distance functions can be very versatile for problems that are
modeled within a metric space. They write that the use of metrics is “a kind of
sorting, ordering, or ranking of objects, with respect to the query object, where the
ranking criterion is the distance measure” [8].

On the other hand, nonmetric similarity scores are those functions n: X = R
that do not satisfy the properties of a metric. Metrics that do not satisfy the non-
negative property are called pseudo-metrics. According to Zezula, psendo-metrics
can be analyzed in the same way as metrics because these functions can be trans-
formed into metrics by considering all the pairs of objects with distance zero to be
a single entity [8]. Perhaps a more interesting nonmetric is one which is not sym-
metric. In the context of our previcus example, we let n be our assymmetric sim-
ilarity score. Then possibly n(Shackleford, Shackelford) = 0.8 and n{Shackleford,
Shackelford) = 0.6. From an intuitive perspective this seems very strange. How-
ever, there are scores which have applications in fields such as chemocinformatics
where the assymetric Tversky index function is utilized [6]. We do not examine an
assymetric similarity score in this paper.

Perhaps the most commen nonmetric similarity score is one that violates the
triangle inequality. Physically speaking, a metric that does not satisfy the triangle
inequality indicates that the shortest distance between two points is not a straight
line. The nonmetric we examine in this paper, the Dice Coefficient, is one such
example of a nontetric that violates the triangle inequality property.

3. SPECIFIC SIMILARITY SCORES AND METHODS

In this section, we examine at length the theory behind the four similarity scores
we use to analyze our data. The scores are the Jaro-Winkler metric, the Levenshtein
Edit Distance metric, the L.CS metric, and the Dice Coefficient.

3.1. Jaro-Winkler. Developed because of the need to quickly analyze large amounts
of data in the US Census, the Jaro-Winkler similarity score was originally created

SIMILARITY METRIC AND NONMETRIC SCORES: A COMPARISON 3

by Matthew Jaro in 1972 and later updated by Wiliam Winkler. According to Win-
kler, “This metric accounts for the lengths of two strings and partially accounts for
the types of errors...human beings typically make when constructing alphanumeric
strings” [5].

The Jaro Winkler function is defined in Equation 3.2 and employs the use of
weights. The weighting scheme allows some flexibility within this score for trans-
positions of characters, and the ratio of common characters to length of word can
be assigned different values.

Formally, the orignal Jaro distance ®; : § — R is as follows from [5]:

c (c—7)

W.
T, T

(3.1) @J(Sl, Sz) = Wi - _L_C_ + Wy
1

where s; and s, are strings of characters; W;, ¢ = 1,2 is the weight assigned to
the 4t* string; W; is the weight assigned to the transpositions; c¢ is the number
of characters that the two strings have in common; L;, 7 = 1,2 is the length of
the it* string; and T is the number of common characters that are transposed.
Additionally, Wi + W, + Wi = 1 and if ¢ = 0 then ®;(s1, 52} = 0. The metric has
continually been tweaked to allow more weighting for agreement in initial characters
in strings . According to Winkler, this adjustment works better for high quality
data than low quality data [5]. Computational runtime for the Jaro-Winkler metric
is O(|s1| -+ |s2|) where |s;| is the length of the i** string [2]. As a result, the Jaro-
Winkler metric works better for single words than it does for multiple word strings.
The modified Jaro-Winkler function is given below:

(3.2) D yw(s1,52) = (51, 52) + (Ip(L — Bs(s1,52)))

Above, I denotes the length of the common prefix, and p is a scaling factor which
determines how much weight should be given to shared characters at the beginning
of words. We utilize the jerowinkler function supplied in the RecoxrdLinkage
package.

3.2. Levenshtein Edit Distance. Another metric that is often used for single
word type data is the Levenshtein Edit Distance. This distance counts the number
of edits it takes to “move” from string & = 2;2s...2y to another string ¥ = 11¥2---Ym
where z; and y; are characters. The operations allowed according to Zuzela are the
following:

e insertion: insert(i,c,z) = %1 ... Bi—1CTi-..Tn

o deletion: delete(i,z) =i ... Ti—1Tit1---Tn

o subsitution: sub(i,¢,z) =1 ... T 16T41 - Tn
The operations are given different weights and then combined to create a metric

18].

The formula for the Levenshtein Edit distance is the following as described in
[2]. The variables s; and s, stand for different strings 1 and 2, s;[j] refers to the
4t character in the string 4, and d counts the number of edits or operations.

o If 5 [i] = sq[4], then

dli, f = dli — 1,5 — 1]

4 SHANNON GALLAGHER AND AUSTIN RUSSELL

o If 81[i] # Sz[j], then

di —1,71+1 a deletion
dli,j]=4 d[f,i—1+1 an insertion, or
dli—1,7—11+1 a subsitution

o Finally, distiey(51,52) = d[|51], |sa]

There are some instances where Levenshtein Edit Distance can be modified to
allow for transpositions. Levenshtein Edit Distance can work for the same type
of data that the Jaro-Winkler metric is often used on, single words. The Leven-
shtein Edit Distance is not restricted to words however and can work for strings
of any type. Levenshtein Edit Distance has computational runtime on the order
of O(|s1] x |s2}) because one string needs to be turned into the other [2]. As a
result, the Levenshtein Edit Distance can take significantly longer to run than the
Jaro-Winkler metric for large data sets. We used the stringdist function contained
in the stringdist package, supplying the option method = “lv”.

3.3. Longest Common Subsequence. This is the third metric we analyze in this
paper. The LCS by itself does not satisfy the triangle inequality. The LCS, srcs,
as its name indicates, measures the longest common subsequence of two strings.
According to Skopal and and Bustos in [7}, that “even if modified to dissimilarity
(e.g., 8(z.Y) = Smaz — SLcs (2, y) With Sma. the maximum possible value returned
by srpos), it still does not satisfy the triangle inequality.”

Still, the L.CS can be turned into & metric through the following function. Ac-
cording to Bakkelund in [1], the function in Equation 3.3 does satisfy the properties
of a metric.

_ sieslo1,82)|

max{|sy|, |s2/}

One advantage of this metric is that it works well on both strings and vectors of
numbers. It is versatile in its application. One possible disadvantage to this score
is that does not take into account transpositions and can indicate that probable
matches are nonmatches. Referring back to the example of Shackleford and Shack-
elford, the longest common subsequence length is 4 out of the 11 total letters. This
may not be recorded as a match although we think the two may be. Since the two
strings are being compared to one another, the run time is O(|s;1| x |sz|). We again
used the stringdist function from the stringdist package, supplying the option
method = “les” and modified it to return the metric specified in Equation 3.3.

{3.3) Ics.score(sy,s2) =1

3.4. Dice Coeflicient. According to Leach, the Dice Coefficient is dependent on
the number of bits two strings have in common. This can be extended to characters
in strings. An interesting note about the Dice Coefficient, is that it is used in
chemoinformatics, and “The presence of common molecular features will therefore
tend to increase the values of [the Dice Coefficient]” [6].

The Dice Coeflicient function is given by the following formula:

B 2|S]_ O Sg|

. |s1}+ |s2])

On the left-hand-side, s; and s; refer to strings of characters. On the right-hand-
side, |$1| and |sz| denote the number of bigrams of the strings s; and s; respectively,

dice.co(sy,s2) =1

SIMILARITY METRIC AND NONMETRIC SCORES: A COMPARISON 5

while |s; Ns,| denotes the number of bigrams the two strings have in common. Here,
we create our own function to compute Dice Coeflicient similarity scores. First, we
write 2 helper function that generates a vector containing all of the bigrams for a
string of given length. Then, the number of bigrams in coramon between the two
strings are computed simply by using the built-in R function intersection on the
two sets of bigrams, and then calling the R function length on the resultant set.

The Dice Coefficient is the only nonmetric we analyze in this paper. This similar-
ity score does not satisfy the triangle inequality. An example of this are the strings
$1 = ca, sy = af, sz = cat Then the reader can verify that dice.co(s1,s2) = 1,
dice.co(s1, 83) = %, and dice.co(s1,s2) = §. Thus

dice.co(s1, s2) % dice.co{sy, s3) + dice.co(ss, s2)-

The run time is @(|s1] x |s2|). The call to intersection in our scoring function is
what causes this time complexity, as our bigram helper-function only runs in linear
time.

3.5. Methods for Data Matching. We test our similarity scores using three
data matching techniques: logistic regression, classification trees, and Fellegi-Sunter
Expected Matching,.

For logistic regression, we provide a model for a data set for a computer algo-
rithm, which in turn outputs the log odds of being a match for each record pair.
From these log odds, we assign record pairs as matches and nonmatches and then
analyze our error rate as we know the true matches and nonmatches.

Classification trees work by again providing a model for a computer algorithm
which subsequently splits the data via different cutoff values for the similarity scores
in different fields. The data is split into at most two pieces at each node in the
tree. At the final nodes, the leaves of the tree, the probability of being a match
or nonmatch is calculated. We use these probabilities to assign matches and non
matches and then calculate the error rate to assess the performance.

The method for the Fellegi-Sunter Record Linkage Model can be found in Data
Quality in [5]. In this method, we use a set of training data to calculate two sets
or probabilities, PM = P(FyNFN---NFx|M) and PU = P(ELNFyN---NFe|U)
where F; represents a field in the comparison array and can take a value of O or 1
with 0 being a nonmatch in that field and 1 being a match in that field. The 0 or
1 is determined by cutoff scores for the similarity score used. For example, a Jaro-
Winkler similarity score of 0.90 or greater is deemed a match. The probabilities are
then the likelihood of seeing a certain sequence of Os and 1s in the set of fields, given
a match (M) or a nonmatch). Aratio R = £M is then calculated using the above
probabilities for each sequence of Os and 1s in the fields and then lower and upper
bounds are evaluated. Depending where R falls with respect to the bounds, each
record pair is determined to be a match, nonmatch, or sent to clerical review. After
each record pair is assigned, we analyze the error rate. A variant of this method
is to calculate PM and PU given the assumption of conditional independence. In
this project, the training data is our actual data. In practice, the lower and upper
bounds obtained using training data with unique identifiers can then be used to
assign values of match, nonmatch, or clerical review to record pairs that come from
similar data sets that do not contain unigue identifiers.

6 SHANNON GALLAGHER AND AUSTIN RUSSELL

4. RECORD COMPARISON WITH DIFFERENT METRICS: DATA SET 1

‘We use the four aforementioned similarity scores and a variety of tests to compare
the scores amongst themselves. The methods we apply are logistic regression, clas-
sification trees, and Fellegi-Sunter Expected Matching with different assumptions
of conditional independnece.

4.1. Data Set 1. Data Set 1 is formed as a subset of the table RLData500 con-
tained in the R package RecordlLinkage. The data set consists of two lists with
the fields first name, last name, birth year, birth month, and birthday as well as
unique identifying number. There are 100 records in each list, and therefore 10000
total record pairs. For each record pair, a similarity score is given to each of the
corresponding non-ID fields and stored in a scoring matrix. As a result, there are
four separate 10000 x 6 matrices, one for each similarity score. There are 75 matches
between the two lists, as identified by the unique ID fields.

4.2. Logistic Regression Models. For each of the four matrices, we create a
logistic regression model based on the following formula

{4.1) match; = first name; + last name; + birth year,; + birth month; + birthday,

where ¢ is the ¢*® record pair in one of the matrices, match takes a value of 0
{nonmatch) or 1 (match} and the variables on the right hand side of Equation 4.1
represent the similarity scores of the fields compared for the 5" record pair. A table
of the logistic regression results for each of the similarity score can be found below
in Figure 9.

As one can see from the results of Figure 9, none of the logistic regression models
converged, meaning we cannot be sure of the accuracy of the resulting models.
Still, the logistic regression models all worked very well on the data. All four
models perfectly predict the true matches and nonmatches. This implies that we
likely overfitted to the data and cannot draw many conclusions from these logistic
regression models.

Score Converged | First Name | Last Name | BY | BM | BD
Jaro-Winkler No 159 104 87.1 | 28.3 | 42.6
Levenshtein No -7.58 -10.87 -6.53 | -7.18 | -18.7

LCS No 175 250 213 | 264 | 561

Dice Coeff. No 44.5 41.8 474 | 16.3 | 38.5

Ficure 1. Table displaying the results of the logistic regression
models for the four similarity scores.

4.3. Classification Trees. Besides using logistic regression, we also predict matches
and nonmatches with our similarity scores using classification trees with the under-
lying idea being to split the data and collect matches and nonmatches at different
leaves of the tree. We run the classification tree algorithim on the same algorithm
found in Equation 4.1.

The trees we found are not perfect in predicting, which makes them more in-
teresting to analyze than the logistic regression models. The different trees can be
found below in Figure 2.

SIMILARITY METRIC AND NONMETRIC SCORES: A COMPARISON 7

Jaro—-Winkler Tree Levenshtein Distance Tree
df$fnm < 0.957778 di$inm < 1.5
df$inm < D.833333 diginn < 1.5
0.0002029 0.00000
df3byear 4 0.791667 diSbysdr < 1.5
0.0000000 ' ! ; 0.01351
01429000 0.9863000 1.00000 0.33330 .
LCS Distance Tree Dice Coefficient Distance Tree
di$finm < 0.9625 di$fnm < 0.720779
di$inm £ 0.9375 df$inm <). 480763
0.0000 0.0003045
df$byea < 0.925 dfghyeat < 0.375
1 o 1
0.0000 0.1667 0.9857 0000000 02500000 1.0000000

FIGURE 2. Classification trees of the four similarity scores. All
split on fitst name, last name, and birth year.

Interestingly, the four similarity scores split on the same fields, in the same order:
first name, last name, and then birth year. This implies that the four classification
trees essentially “picked up” on the same model, just with different cut off values
to accomodate the various similarity scores. This same tree structure implies that
the similarity scores are finding essentially the same scores for each field, possibly
up to a linear transformation. This means that the similarity scores are giving the
same types of scores to the same types of words. One reason for this is that the
data set may be too “nice” in that the data is too generic for the differences in the
similarity scores to be observed.

Another observation is that in Figure 2, we see that the Levenshtein Distance
Tree is flipped around its center, in comparison to the other trees. As we see from
the tree, Levenshtein Distance splits on values greater than 1. Referring back to
the formula for the Levenshtein distance, we see that there is no normalization and
subtracting from 1 for the Levenshtein Distance tree, meaning that the scores can
be greater than 1 and the closer they are to 0, the more similar the strings are. This
is why the Levenshtein Distance tree is flipped, with respect to the other trees.

The ROC curves display 1 sensitivity vs. specificity or the ratio of number of
false negatives out of the number of actual matches against the ratio of the number
of true negatives out of the number of nonmatches using different cutoff values for

8 SHANNON GALLAGHER AND AUSTIN RUSSELL

what constitutes a link for the similarity scores. A false negative is a pair that is
assigned as a nonmatch but actually is a match, and a false positive is a pair that
is assigned as a match and is actually not a match. Good similarity scores have
close to area 1 under the curve, and bad similarity scores have area closer to %
Not shown on the graphs in Figure 3 are the points at (0,0) and (1,1) which belong
to every ROC curve.

ROG far Tree (Jaro-Winkler) ROC for Tree {Levenshtein}
& : 2
o o
z i = i
2 3
£ 3 5 21
g g 4
e T T T T T T T S T T T T T T T
000C10 000020 000030 C.00040 000010 000020 0.00030 0.00040
1-Sensitvity 1-Sensitivity
ROC for Tree (LCS) ROC for Tree {Dice Coefficient)
3 4 8
o o
g P
4
§ 3 5 3
g 8 |
Aol | T T T e T T T T T T T
000006 GDOOOS D000 0.00015 000030 000040 000050 G.O0DSD

T-Sensiivity 1-Sansifivity

Ficurk 3. ROC curves for the classification trees for the four sim-
ilarity scores.

We examine the ROC curves in order to analyze the tree predictions. The ROC
curves for the logistic regression models do not show us anything new since the
logistic regression models have no errors and are not shown here. The ROC curves
in Figure 3 do very well in predicting matches, as they all have close to area 1
under the curve, which indicates that all four similarity scores predict matches and
non matches well. Again, the extensions to (0,0) and (1,1) not show on the graphs.
From the four ROC curves, we see that the Dice Coeflicient actually has the most
area under the curve, by a slim margin. This indicates that the Dice Coefficient
performs the best of the four on this set of data using the classification tree method.
We have a nonmetric performing three metrics.

4.4. Fellegi-Sunter Expected Matching. Felligi-Sunter Expected Matching is
used to obtain a measurement of the accuracy of each of the similarity scores. The
table contained in Figure 4 gives a summary of the results we obtained for Data Set
1. A description of the columns is as follows: in the method column, the suffix CI
indicates that the particular row refers to a test in which conditional independence
of events is assumed. The second -and third columns give the numbers of Type
2 errors and Clerical Review cases obtained by running Expected Matching {with
and without conditional independence) with each of our similarity scores on Data
Set 1. A Type 2 error is the same as a false negative, or a pair that is assigned as

SIMILARITY METRIC AND NONMETRIC SCORES: A COMPARISON 9

a nonmatch but is actually a match. There are no Type 1 errors, which are false
positives, pairs that are assigned as a match but actually are not. The reason for
this is that we assigned high cutoff values to each similarity score, meaning that
designating a record pair as a match happens only if each of their components are
very similar, which is highly unlikely if they are not really a match. An assignment
of clerical review indicates that the record pair has differences which a particular
metric is not capable of distinguishing satisfactorily, so the record is marked for
human review.

The assumption of conditional independence is made when one believes that the
individual components of a compound, conditional event occur independently of one
another. In our case, this would mean that the characters contained in one data
field for a particular person, i.e. the characters in a first name, have no statistical
relation to the characters in any other data field, i.e. the person’s last name. The
assumption of conditional independence is not always valid, however it simplifies
the computation of the threshold values needed to complete the Expected Matching
method and assign values of Match, Non-Match, and Clerical Review appropriately.

Method Type 2 | Clerical Review
Jaro-Winkler 38 0
Jaro-Winkler-CI 33 91
Levenshtein 16 24
Levenshtein-C1 16 6
Dice Coeflicient 58 35
Dice Coefficient-CI 73 103
LCS 35 5
LCS-CI 40 0

FIGURE 4. Table displaying the results of the Fellegi-Sunter Ex-
pected Matching tests conducted on Data Set 1.

There are several interesting features to note. First, the Levenshtein metric seems
to have performed the best because of the low number of Type 2 errors and record
pairs sent to clerical review. The second feature to note is that, in every case but
one, namely the Levenshtein metric, the assumption of conditional independence
caused a drop in accuracy. We do not think that this result can be generalized to
all data sets of this kind. We see from Figure 4 that the Dice Coefficient performs
the worst in this scenario, with the highest number of errors and record pairs sent
to clerical review.

4.5. Conclusions about Data Set 1. Data Set 1 is a fairly nice data set in
that it is small and our models fit to it very well. In the case of the logistic
regression models, we likely overfit the data and cannot compare the results of our
similarity scores against one another. For classification trees, the Dice Coefficient
performs the best for Data Set 1, but performs the worst for Fellegi-Sunter Expected
Matching. This large difference in performance is interesting and something we
wish to investigate in further work. We note that conditional independence for
Eexpected Matching is not a good assumption for this data set.

10 SHANNON GALLAGHER AND AUSTIN RUSSELL

Score Converged | First Name | Last Name | Major | Hometown
Jaro-Winkler Yes 16.10 59.6 13.59 10.75
Levenshtein Yes -1.28 -2.17 -0.57 -0.34

LCS Yes 385 564 267 1.23

Dice Coeft. Yes 2e15 4el5 5elb 7elb

FIGure 5. Table displaying the results of the logistic regression
models for the four similarity scores for data set 2.

5. RECORD COMPARISON WITH DIFFERENT METRICS: DATA SET 2

To verify the results of our tests, we run the same tests on another set of data.
This allows us to analyze our similarity scores without the results being attached
to a single data set.

5.1. Data Set 2. Data Set 2 is based on a club roster at Carnegie Mellon Uni-
versity. There are two lists, each with 5 fields, There are 90 records in each list.
The fields are first name, last name, major, hometown, and a unique identifying
number. The first list is the 90 records without typos. The second is a duplicate
of the first, with typos inserted in some of the fields. These lists are interesting
because there are a few sets of siblings, meaning that the records automatically
match on last name and hometown. This implies that last name and hometown are
certainly not independent from one another. Again, each record pair is compared
at each field for each similarity score. The result is four separate 8100 x 5 arrays.
Each array contains 90 matches.

5.2. Logistic Regression Models. We run the logistic regression models for each
array. The model we use is

(5.1) match; = first name; + last name; + major; + hometown;.

In contrast to Data Set 1, all these models converge for logistic regression. The
table of coefficients is shown above in Figure 5. The Dice Coefficient’s logistic model
has very large coefficients. The Jaro-Winkler and LCS models have 0 significant
predictors. The Levenshtein distance model has first name and major as significant
predictors. Al of first name, last name, major, and hometown are significant
predictors for the Dice Coefficient.

The Jaro-Winkler model has false positives or nonmatches that are linked as a
match. These errors are sibling pairs. The Levenshtein Distance model has two
false positives, a different sibling pair than the Jaro-Winkler sibling pairs. The L.CS
model predicts matches very well, only having one false negative where there is a
very large typo in one person’s first name which changed it from James to John.
The Dice Coefficient has the same results as the LCS model with one false positive
on the same record pair. The following ROC curves in Figure 6 reflect the above
analysis. The LCS model and Dice Coefficient have close to area 1 under the curve
(for the Dice Coefficient, there is just a dot), whereas the other two scores perform
less well, but are still impressive.

SIMILARITY METRIC AND NONMETRIC SCORES: A COMPARISON 11

ROGC for GLM (Jaro~Winkler) ROGC for GLM (Levenshtein)
g ; 2
8 F g
o i
3 -
F=] [Z o
A T 3
g gz g < y
& @ I &
= _
§ g
= a4
T T T T T T T T
Qe+00 1e-04 2¢-04 3e-04 0e+00 1e~04 2e-04 304
1-Sensitivity 1-Sensitivity
ROC for GLM (LCS) ROG for GLM {Dice Cosf)
- o+
[:+]
2 |
g ¥ 1
z A =
5 B
T 3 g 2 +
2 27 a
@ ° o>
- o
@
o
o
o]
o o
T T T T 1 e T T T T T
0.00000 000004 DO0O008 0.00012 0.00008 0.00012 0,00016
1-Sensitivity 1-Sensitivity

Ficure 6. ROC curves for the logistic regression models for the
four similarity scores for data set 2.

The LCS and Dice Coefficient Models perform the best with logistic regression
and do a better job of identifying siblings as unique people. Siblings seem to be
identified as the same person if there are a few letters in common within the majors
for both the Jaro-Winkler and Levenshtein Edit Distance metrics.

5.3. Classification Trees. The classification trees for this data set for the different
similarity scores are very similar to one another. We again run the same model for
the classification trees algorithm as Equation 5.1. The trees are shown in Figure
7. The trees all split on last name and then first. Major is not used in the trees,
whereas major does seem to have been an important factor in the regression models.

Again, the LCS and Dice Coeflicient outperform the other two similarity scores.
The ROC curves for the classification trees for data set 2 are displayed in Figure 8,
In Figure 8, the ROC curves for the classification trees have only dots for the LCS
and Dice Coefficient scores, meaning they perform well with low error rate.

12

SHANNON GALLAGHER AND AUSTIN RUSSELL

Jaro-Winkler Tree Levenshtein Distance Tree
df$inm < 0.909881 di$inm < 1.5
df$fnm < .682407 dfSfory < 4.5
0.000125 | | 0.000125
0.125000 1.000000 4.000000 0.125000
LCS Distanco Tree Dice Coefficient Distance Tree
cf§inm < 0.9375 df$inm < 0.720779
dfffnm ¢ 0.8125 df$tnm < §.0714286
0.00000 0.0002501
0.05882 1.00000 0.0588200 1.0000000

Ficure 7. Classification Trees for the four similarity scores for
data set 2.

ROG for Tree (Jaro~Winkler} ROC for Tree {Levenshtein)
© -]
o - o
(=] (=]
= =+] = ~ i
& a : -
£ s 53
o o
o 3 o “I
o (=] “u (=
(- &
o <
@ w
@ o
o T T T T T = T T T T T
0.00015 0.00025 000035 0.00015 0.00025 4.00035
1-Sensitivity 1-Sensitivity
ROC for Logistic Regression (LCS) RQG for Tree (Dice Coefficient)
4 4
o o
2 - 2 -
5 =
g 2 - -1 2 2 4 [
o o
£ [=}
o 7]
o _| o]
(=1 o
e a
° T T T T T e T 7 T T T T
0.00008 0.000%2 0.00018 000025 0.00035 0.00045
1-Sensitivity 1-Sensilivity

Ficure 8. ROC Curves for the classification trees for the four
similarity scores for data set 2.

SIMILARITY METRIC AND NONMETRIC SCORES: A COMPARISON i3

5.4. Expected Matching. The summary results of our Expected Matching test-
ing for Data Set 2 are presented below. Again, there are no Type 1 Errors.

Method Type 2 | Clerical Review
Jaro-Winkler 34 0
Jaro-Winkler-CI 47 52
Levenshtein 213 0
Levenshtein-CI 213 0
Dice Coefficient 32 0
Dice Coefficient-CI 50 47
LCS 25 0
LCS-CI 71 0

Ficure 9. Table displaying the results of the Fellegi-Sunter Ex-
pected Matching tests conducted on Data Set 2.

Here we see a sharp contrast between the performance of the Levenshtein metric
on Data Set 1 and on Data Set 2. This result is surprising, as the two data sets
we use are of similar size and contain the same datatypes. Again, we see that
the assumption of conditional independence is not beneficial. It should be noted
that the similarity scores perform approximately equally as well on both data sets,
taking into account the ratio of their sizes, with the exception being the Levenshtein
metric, which performs drastically worse on the second data set.

5.5. Conclusions about Data Set 2. Data Set 2 turns out to be a more informa-
tive set than Data Set 1 in that the models clearly have differences amongst them.
The logistic regression models perform better than the classification trees, but the
LCS and Dice Coefficient both outperform the Jaro-Winkler and Levenshtein Edit
Distance with respect to accuracy of matching. For Expected Matching, Leven-
shtein Edit Distance performs far worse than in Data Set 1, and Dice Coefficient
has the second lowest error rate in contrast to Data Set 1 where it is by far the
worst score. This seems to indicate that the Jaro-Winkler and Levenshtein Edit
distance do not work as well on pairs of people who have the same last name. This
is of note because the Jaro-Winkler function is used on Census data where there
are presumably instances of different people with the same last name living in the
same household.

One reason for the disperity in scores across the two data sets is that Data Set
1 has three numerical fields of short numbers whereas Data Set 2 has more text
fields and ¢ numerical fields. The Dice Coefficient and LCS are the best choices
here for all the methods with Jaro-Winkler and Levenshtein Edit Distance lagging
far behind.

6. RunN TIME

We briefly analyze the average run time of creating the arrays for the different
similarity scores. We calculate the average time to create an array. The results are
displayed in Figure 10.

14 SHANNON GALLAGHER AND AUSTIN RUSSELL

Awverage Time Elapsed for Scores

Tene o)

Ficure 10. Average time to compute arrays for each similarity score.

The Jaro-Winkler score is the fastest, narrowly beating the Levenshtein Edit
Distance. Slowest by a fair margin is the LCS, which is recursive in nature, and
also significantly slower than the Jaro-Winkler and the Levenshtein Edit Distance
is the Dice Coeflicient. Surprisingly, the Levenshtein Edit Distance seems to have
a similar run time to the Jaro-Winkler Edit distance, even though theoretically has
a larger run time. Perhaps this indicates we are running a more optimized version
of the Levenshtein Edit Distance than its base formulation. Not surprisingly, we
completely implemented the Dice Coefficient, and it is not optimized and slower
than Jaro-Winkler and Levenshtein Edit Distance. If running on large data sets,
then running the LCS takes more than half the time it takes to run Jaro-Winkler
on the data. This can be a very significant factor. The Dice Coefficient takes about
70% more time to run than Jaro-Winkler, meaning it also does not scale very well
to large data sets.

7. SuMMARY, CONCLUSIONS, AND FURTHER WORK

We provide an introduction and theory behind metric and nonmetric functions.
Specifically we go into detail about four similarity scores: the Jaro-Winkler metric,
the Levenshtein Edit Distance metric, and LCS metric, and the Dice Coeflicient
nonmetric. We provide theoretical run times for each of the similarity scores and
discuss the implementation of the LCS and Dice Coefficient, which are not initially
provided in R. We then perform tests on two different data sets using different
techniques of record linkage, including logistic regression, classification trees, and
Fellegi-Sunter Expected Matching.

We notice that the logistic regression models differ between the two data sets,
and that the LCS and Dice Coefficient are better at identifying siblings as unique
individuals than the Jaro-Winkler and Levenshtein Edit Distance are. The clas-
sification trees all seem to have the same structure, except the Levenshtein Edit
Distance is flipped around the center. This indicates that the similarity scores have
the same type of scores for the same type of words. Again, the L.CS and especially
the Dice Coeflicient perform very well in both data sets. Overall, the Dice Coef-
ficient score seems to outperform the metrics because it has the lowest error rate.
Although we have no indication that a nonmetric always outperforms a nonmetric.

SIMILARITY METRIC AND NONMETRIC SCORES: A COMFPARISON 15

‘We note that mathematically, we do not have a reason to use a metric score over
a nonmetric score or the other way around. We would like to further examine the
mathematical basis behind these similarity scores.

We observe that the behavior of the Levenshtein metric is sensitive to the data
set. We also note that the assumption of conditional independence, although it
eases computational aspects involved in our project, does not provide an increase
in accuracy. All of the similarity scores exhibit similar behavior on both data sets,
with the exception of the Levenshtein metric, which perforims significantly worse
on Data Set 2. This similar behavior on the data sets is not surprising as the data
sets have similar structure in fields.

Examining the run time, we notice that Jaro-Winkler and Levenshtein Edit
Distance are significantly faster than the LCS and Jaro-Winkler. In fact, if working
with very large data, it may be a bad idea to run the LCS or Dice Coefficient even
though they seem to perform better as the time cost may not be worth the gain in
matching performance.

For further work, we would like to analyze combining metrics and nonmetrics
as done by Cohen, Ravikumar, and Fienberg in [3]. We would also like to run the
model on more complicated and different type data sets in order to be able to tests
different sorts of metrics. Because of the significant difference in scoring for the
Dice Coefficient in Data Set 1 amongst the classification trees, regression models,
and Expected Matching, we would like to investigate the reason for the disparity.
Looking into optimizing the run time of Dice Coefficient and LCS are of inferest
since they perform well but are slow to compute large data sets. With respect to
Expected Matching, it would be beneficial to optimize the match cutoff values used
for each test in order to maximize the performance of the similarity scores.

REFERENCES

[1] D. Bakkelund. An LCS-based string metric. University of Oslo. September 23, 2009.

[2] P. Christen Date Matching: Coneepts and Techniques for Record Linkage, Entity Resolution,
end Duplicate Detection. Springer. (2012).

[3] W. Cohen, P. Ravikumar, and S. Fienberg. A Comparison of String Distance Metrics for
Name-Matching Tasks. Proceedings of IJCAFE-03 Workshop on Information Integration, page
73-78. (August 2003)

[4] A. Dholakia. Ftroduction to Convolutional Codes with Applications. Kluwer Academic Pub-
lishers. (1994).

[5] T. Herzog, F. Scheuren, and W. Winkler. Date Quality and Record Linkage Technigques.
Springer. (2007).

[6] A Leach and V.J. Gillet. An Introduction to Chemoinformatics. Springer. (2007).

[7] T. Skopal and B. Bustos. On Nonmetric Similarity Search Problems in Compler Domains.
ACM Computing Surveys (2010).

[8] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric Space Ap-
proach. Springer. (2006).

16 SHANNON GALLAGHER AND AUSTIN RUSSELL

ArPENDIX A, CODE

$FUNCTIONS fR¥ddidifodespiisdapidadenid

les <- function(strl, str2){
s <~ 1 -~ stringdist{strl, str2, method="lcs"}/max{ncharic(str, str2}})
return{s}

)
#0LD RECURSIVE VERSION

les2 <- functioni{xs, ys) [
if (nchar(xs) > 0 && ncharlys) > 0) { #2 check that
#we aren’t in the base case
xbag <- substring(xs,l,nchar(xs)-1) # everything but last letter of xs
xend <- substring(xs,nchar(xs)) §# last letter of xa
ybeg <~ substring(ys,l,nchar(ys)-1)
yend <- substring(ys,nchar(ys})

if (xend == yend) {
return{paste{lcs (xbeg, ybeq), xend, sep="")) #¥ recursive call o
#n xbeg & ybeg $#paste(™a®,"b",sep="") would output "ab"
1
else {
rl <- lecs(xs,ybeq)
##in the event that ocur twe strings
#do not have the same last cheracter, we make two
r2 <- les(xbeg,ys)
##recursive calls. Both calls are made
#with one of the original strings, and the beginning of
if {nchar (rl) >= nchar(r2)}{
##the other string (since we know iks
#last letter isn’t in common. Then a check is made to
return(ri)
##see which recursive call gave the longer substring.
}
else { ## the base case
returnic2)
}
}
}
else {
return{"")
}
}

#for dice coeff
bigrams <- function(string, num.bigrams}{
vec <- vector(length=num.bigrams)
for {i in l:num.bigrams){
vec[i] <- substringistring, i, i+l)
}
return{vec)
H
#dice co similarity score
dice.co <- functien{u,v}{
xX.bigrams <- nchar{u)
y.bigrams <- nchar{v)
X.vec <~ bigrams(u, x.bigrams)
y.vec <- bigrams(v, y.bigrams}
s <- 2«length{intersect (x.vec, y.vec))/(x_ bigrams + y._bigrams}
return(s}
}
#function to do loglstic regression for first data set
#second data set is similar
do.logreg<-function [df) {
reg<-glm(df$id dfsfnm+df$InmidfSbyear+df $bm+df$bd, family=binomial, data=df)
return (reg)

}

¥creates tree model for first data set

#second data set is similar

do.tree<—function{df) {

reg<-tree {df5id " df$fnm+df$inm+dfSbyear+df$bm+df$bd, data=df)
return(reg)

}

#function to create ROC table
rocVecs<—function{thresh, df, prob)

{

match.model<~ifelse (prob>=thresh, 1,0)
match.table<-table (df$id, match.model)
a<~match.table{l,1]

SIMILARITY METRIC AND NONMETRIC SCORES: A COMPARISON

b<-match.table[1,2}
c<~match.table[2,1]
d<-match.table(2,2}
sens<-a/ {atc}

spec<-d/ (d+bh}
return(c(l-sens, spec})
1

$makes matrix of ROC values for different thresholds
plotMatrix<-function{thresh,df, prob)

{

mat<-array (dim=c (length(thresh},2))

for (i in (l:length(thresh}))

{

mat[%,]<-rocVecs (thresh[i],df, proh)
}

return{mat}

}

#puts everything into an array, takes in different similarity scores
makeComparisons<-function(listh, listB, fxn, ...J{

rows<—length{listaA[,1])
cols<-length{lista(l,])
comparisons.array<—array{(dim=c{rows"2, ceols))

#non clever way to make comparison matrix
comparison.fullmat<-array (dim=c{rows, rows, cols)}
for (k in l:icoels)i

for (i in l:i:rows}{

for (j in l:i:rows){

if (k!l=cols){

comparison. fullmat [i,], k)<-£fxn(as.character (listAa[i, k], ...},
as.character (listB[]j, k]))}

}

else|

comparison, fullmat [i,j,k]<-ifelse(listA[i,k]==1istB{], k], 1.0)
¥

)]

}

¥

index=0

for (i in l:rows){

for (j in l:rows)(

index=index+l

for (k in l:cels)i

comparisons.array{index, k] <-comparison.fullmat (i, 3. k]
}

}

}

return{data.frame (comparisons.array))

)

$LOGISTIC REGRESSION AND TREES,
#ROC CURVES, TIME ELAPSED CODE
#FOR DATA SET 1; DATA Set 2 very similar, not included

library (RecordLinkage)
library {stringdist)
library(tree}

source ("reportFunctions.r"™)
listhA<-read.table("listl.txt™})

1istB<- read.table("list2.txt™}

listhA<-subset{listA, select=-c(fname_c2, lname_c2))
1istB<-subset {1istB, select=-c{fname_c2, lname_c2)})

#JARO WINKLER
comparisens.jaro<-makeComparisens{lista, 1listB, jarowinkler)
colnames {comparisons.jaro}<-c{"fnm", *lnm*, "byear", "bm", "hbd", "id"}

#logistic regression
reg.jaro<-do.logreg (comparisons.jaro)
summary (reg.jaro) #DID NOT CONVERGE
tree._jaro<-do.tree(compariscns. jara)

#LEVENSHTEIN DISTANCE
compariscens.lev<-makeComparisons {listA, listB, levenshteinDist)

17

18 SHANNON GALLAGHER AND AUSTIN RUSSELL

colnames (comparisons.lev)<-c{"fnm”, "lom", "byear", "bm", "bd", "id")

flogistic regression

reg.lev<-do.logreg(ccmparisons.lev}
summary (reg.lev) 2DID NOT CONVERGE
tree.lev<-do.tree{comparisons.lev)}

#Dice coefficient
comparisons.dice<-makeComparisens{lista, listB, dice.co}
colnames {comparisons.dice}<-¢c("fnm", *"lom", "byear®, "bm*, "bd*, "id")

#logistic regression
reg.dice<-de.logreglcomparisens.dice} #DID NOT CONVERGE
summary (reg.dice)

tree.dice<—do.tree{comparisons.dice)

#LCS

comparisens.lcs<-makeComparisens{listA, listB, lcs)

colnames {comparisons.les}<—c(*fnm", "lnm", "byear®, "bm"*, "bd", "id™
reg.lecs<-do.logreg{comparisons.lcs)

summary{reg.lcs) #DID NOT CONVERGE

tree.lcs<—do.tree (comparisons.les)

#ROC CURVE

reg.jaro.p<-reqg. jaro§$fit

tree.jaro.p<-predict (tree.jaro, comparisons.jaro)

prob.thresh<-seg(.1,.9, by=.1)

plot.jarc.glm<-plotMatrix(prob._thresh, df=comparisons.jaro, prob=req.jarc.p)
plot.jarc.tree<-plotMat rix (prob, thresh, df=comparigens.jare, prob=tree.jaro.p)

#LEVENSHTEIN

reg.lev.p<-reg.levsfit

tree.lev.p<-predict ltree.lev, comparisons,lev)

plot.lev.gim<-plotMatrix (prob.thresh, df=cemparisons.lev, prob=reg.lev.p)
plot.lev.tree<-plotMatrix(prob.thresh, df=comparisons.lev, prob=tree.lev.p)

#DICE COEEF

reg.dice.p<-reg.dice$fit

tree.dice,p<-predict {tree.dice, comparisons.dice)
plot.dice.glm<-plotMatrix{prob.thresh, df=comparisens.dice, prob=reg.dice.p)
plot .dice.tree<-plotMatrix (prob.thresh, df=comparisons.dice, prob=tree.dice.p)

#I.CS

reg.les.p<-reqg.lcs$fit

tree.les.p<-predict {(tree.lcs, comparisons.les)

plot.les.glm<-plotMatrix (prob.thresh, df=comparisons.lcs, prob=reg.lcs.p)
plot.les.tree<—plotMatrix (prob.thresh, df=comparisens.lecs, prob=tree.lcs.p)

#TIME RUN
system.time (compariscons. jaro<-makeComparisons(listh, listB, jarowinkler})
user system elapsed
11.98 0.02 12.12
system.time (comparisons.lev<-makeComparisons{listA, listB, levenshteinDist))
user system elapsed
12.4 0.0 12.5
system.time {¢omparisons,dice<-makeComparisens (listh, listB, dice.co))
user system elapsed
¥ 17.69 0.02 17.83
systen.bime (comparisons.les<~-makeComparisons (lista, 1istB, les))
user system elapsed
4 25.46 0.00 25.65

times<-c(11.98, 12.4,25.46, 17.69 }
namas (Limes) <-c("Jaro-Winkler", "Levenshtein Dist.”, "LCS", "Dice Coeff.")

pdf {"reportTime ,pdf™)

barplot (times, main="Time Elapsed for Scores", xlab="Similarity Scores™,
ylab="Time (s}", col=c({%green®”, "blue", "purple®, *red"))

dev.off()

#TREE PLOTS
pdf (*treesReportl.pdf™)
parc{mfrow=c(2,2)}
#jaro
plct (tree. jaro, cex=0.5}
text {tree. jaro)
title ("Jaro-Winkler Tree™
#lev
plot (tree.lev, cex=0.5)

SIMILARITY METRIC AND NONMETRIC SCORES: A COMPARISON

text (tree.lev)

title{"Levenshtein Distance Tree")

¥lcs

plot {tree.lcs, cex=0.5)}

text {tree.lcs)

title("LCS Distance Tree")

#dice

plot (kree.dice, cex=0.5)

text (tree.dice)

title ("Bice Coefficient Distance Tree™)

dev.off ()

#ROC CURVES

#TREES

pdf ("treesROCReportl.pdf”)

par (mfrow=c(2,2})

#jaro

plot (plot.jaro.tree{,1}, plot.jaroc.treel,2], xlab="1-Sensitivity",

ylab="Specicifity®, main="ROC for Tree (Jaro-Winkler)”, xlim=c(, 0001, .0004), ylim=c{.30, 1))
lines(plot.jaro.tree(,1}, plot.jaro.tzeef,2], col="red”, 1lw=2)

flev

plot {plot.lev.tree[,1], plot.lev.tree[.2], xlab="1-Sensitivity",

ylab="Specicifity”, main="ROC fer Tree (Levenshtein)®, xlim=c| L0001, .0004), ylim=c(.90, 1))
lines(plot.lev.tree[,1], plot.lev.tree[,2], col="red"”, lw=2)

¥lcs

plot (plot.lcs.tree[,11, plot.les.tree[,2], xlab="l-Sensitivity”,

ylab="Specicifity", main="ROC for Tree (LCS)", xlim=c (0, .00015), ylim=c{.90, 1))
lines{plot.lecs.tree[,1}, plot.lcs.tree[,2], cel="red", lw=2)

#dice

plot (plot.dice.tree[,1], plot.dice.treel(,2], xlab="1-Sensitivity",

ylab="Specicifity®, main="ROC for Tree {Dice Coefficient)”, xlim=c{.0003, .C006). ylim=c{.%0, 1)}
lines (plet.dice.tree(,1), plot.dice.tree[,2]), col="red", Iw=2) :

dev.off ()
FH4EMBEI SR MAHD
lv.thresh.compare.2 <- functien(a){
if fa==11la==2|]a==31[la==5]}as==6]{
return{0)
}
else {
return{l)

t
¥

> les.thresh.compare.2 <- functioni{a){
if la == 1l am==21{] a== 1) a == 6}{
return (0}
|
else {
retuen(l)
}
}
> jw.thresh.compare.2 <- functienf{al{
if {(a==1 || a == 2){
return{Q)
H
else if {a == 5){

return (0.5}
}
else {
return(l)
I
}
> dc.thresh.compare.2 <- function{a){
if {(a == Il a==2){
return{0}

}

else if {a == 5}
return{0.5)

}

else {
returnil)

I

)

- ##Scripts for 4 scores
#40nly one included below

pl.count <- 0

19

20 SHANNON GALLAGHER AND AUSTIN RUSSELL

pl.count <-
p3.count <-
pi.count <~
pPS.count <-
pb.count <-
pT.count, <-
p8.count <-
p9.count, <-
pld.count <- @
pli.count <- @
pl2.count <- 0
count <- 0

coooocaoeo

for (i in 1:90}{
for (3 in 1:90){
count <- count + 1
if (is.match{i,j1) {
ifelse (LV.Score._Matrix{count,1] < 0.%0, pl.count <- pl.count + 1, pZ.count <- pZ.count + 1)
ifelse(LV.Score.Matrix{count,2] < 0.90, p3.count <- p3.count + 1, pi.count <- pi.count + 1)
ifelse(LV.Score.Matrix{count, 3] < 0.90, p5.count <- pS.count + 1, pé.count <—- p6.count + 1)
1
eise {
ifelse(LV.Score.Matrix[count,1] < 0.90, p7.count <- p7.count + 1, pB.count <- p8.count + 1)
ifelse(LV.Score.Matrix[count,2] < 0.90, p9.count <- p%.count + 1, pld.count <- plld.count + 1)
ifelse (LV.Score.Matrix[count, 3] < 0.90, pll.count <- pll.count + 1, plZ,count <- pl2.gount + 1}
1
}
1

LV.R1.2 <~ {{pl.count * p3.count * p5.count)/f(match.count”3)}/({p7.count » p%.count = pil.count)/(nonmatch.count”3})
LV,R2.2 <~ ({pl.count » p3.count » p&.count)/(match.count”3)}/({p7.count » p%.count * pl2.count)/(ncnmatch,count"3})
LV.R3.2 <~ ({pl.count * pd.count * p5.count)/(match.count*3)}/({p7.count = pll.count » pll.count}/(nonmatch.count"3))
IV,R4.2 <~ ({pl.count * pd.count « p6.count)/{match.count”3)}/{(p7.count » pl0.count » pl2.count}/{nonmatch.count”3))
LV.R5.2 <~ ({p2.count =« p3.count » p5.count)/{match.count*3)}/{(p8.count » p%.count = pll.count)/(nonmatch.count”3})
LV,R6.2 <— ({pZ.count * p3.count * p6.count)/(match.count™3)}/{(p8.count » p%.count » pl2.count}/(ncnmatch,count"3})
LV.R7.2 <— ({pZ.count * pd.count * pS.count)/{match.count"3})/{(p8.count * plO.count * pll.count)/{nonmatch.count~3))
LV.RE.2 <- ({p2.count * pd.count » pé.count)/{match.count"3}}/{{p8.count » pl0.count * pPl2.count}/{nonmatch.count"3)}

Lv.Clerical .Score.Vector.2 <- cl)

for (count in 1:8100){
X <— LV.Score.Matrix[count,1
v <— LV.Scere.Matrix[count, 2]
Zz <- LV.S5core.Matrix[count, 3]
LV.Clerical.Score.Vector.2[count] <- lv.thresh.compare.2(lv.pattern.discern(x, ¥, 2))}
}
lv.discrepancy.indices,.2 <- c()
for {count in 1:8100}{
if (IV.Clerical.Score.Vector,2[¢ount] != LV.Score.Matrix([count,4])|
lv.discrepancy.indices.2 <- ¢{lv.discrepancy.indices.2, count)
¥
}
lv.error.type.vector.2 <- cf)
for (i in lv.discrepancy.indices.2){
if (LV.Score.Matrix[i,4] == 1 && LV.Clerical.Score.Vector.,2[i} == 0}{
lv.error.type.vector,?2 <— c(lv.error.type.vector.2, "Type 1"}
H
else if (IV.Score.Matrix[i,4] == 0 && LV.Clerigal.Score.Vector.2[i] == 1}{
lv.error.type.vector.?2 <- c(lv.error.type.vector.2, "Type 2"}
t
glse if {LV.Clerical.Score.Vector.2[i] == 0.5}{
lv.error.type.vector.2 <- c(lv.erzor.type.vector.2, "Clerical Review"}
}
else {
lv.error.type.vector.2 <- c(lv.error._type.vector.2, "272?7")
I
}

lv.tl.2.count <= 0
lv.t2.2.count <- 0
for (xs in lv.error.type.vector.2) |{
if {xs == "Type 1"} {
lv.tl.Z.count <- lv.tl.2.count + 1
}
if (%5 == "Type 2"} {
iv.tZ2.2.count <- lv.t2.2.count + 1
1
1
lv.cr.2.count <- length{lv.errox.type.vector.2) = lv.tl.Z.count - Iv.t2.2.count

SIMILARITY METRIC AND NONMETRIC SCORES
CARNEGIE MELLON UNIVERSITY
E-mail address: sgatlagh@andrew.cmu.edu

CARNEGIE MELLON UNIVERSITY
E-mail address: grussell@andrew.cmu.edu

: A COMPARISON

21

