1 Introduction

2 The System

Need to introduce some notation for the data, and dose levels and (generic) notation for the

prob model. I will assume we have defined:

2.1 Notation

Let y; denote the final week 13 response for the i-th patient, measured as difference to
baseline SSS (scandinavian stroke score) at the time of admission. Let y;;, j =1,..., M —1,
denote early responses in weeks 1 through M — 1 = 12. We will use y without index to
generically denote a week 13 response, and y; = (v, j =0,..., M) and y(2) = (Y1, ... ,y;)
to denote all data for the i-th patient and for the first ¢ patients, respectively. We will use
D to denote all data collected in the study. Let x; denote a vector of covariates for the i-th
patient. In the current implementation the only covariate is the baseline SSS score at the
time of admission. In general, z; could include any relevant patient-specific information, like
time between stroke and start of treatment, age, etc.

We shall use z to generically refer to a treatment dose, z; to refer to the dose assigned
to patient ¢, and {Z;, j =0,...,J} to refer to the set of allowable doses, including placebo
Zy = 0. We will use Yj;, j = 0,...,J, to denote the response of the k-th patient who is
assigned to dose Z;. Note the convention of using upper case Z and Y to refer to doses
and responses indexed by dose level, and lower case z and y to refer to doses and responses
indexed by patient number 3.

In Sections 5 and 6 we will define a sampling model for y; and y;;. Until then the discus-
sion does not rely on a specific probability model. The approaches to define dose assignment
(Section 3) and stopping time (Section 4) are valid with any underlying probability model.
We will only need generic notation to refer to the dose/response curve for y; and the longitu-
dinal data model for y;;. We shall use f(z,#) to denote the dose/response curve E(y|0) as a

function of dose z, parametrized by an unknown parameter vector 8, i.e., E(y;|0) = f(z;,0).



Given the mean curve f(z,6) we assume normal errors:
y; = f(2:,0) + ¢ with ¢ ~ N(0,07). (1)

Let df (z,0) = f(z,0)— f(0,0) denote the advantage over placebo. For a given parameter vec-
tor § let Zy denote the dose with maximum expected response, i.e., f(2y, ) = max;{f(Z;,0)}.
Denote with 2959 the ED95 of the unknown dose response curve, defined as the minimum
dose Z; with mean improvement greater or equal than the maximum possible improvement
over placebo:

2959 = min{Z, : df(Z;,0) > 0.95 df (3, 0)}

We shall use f(z) for the posterior expected dose/resonse curve, f(z) = E[f(z,0) | D], and
295 for the ED95 of the posterior mean curve f(z). Also, we shall use 295 to denote the
posterior mean of 295, i.e., E(295¢ | D). Of course, due to the non-linear nature of the
ED95 295 # 295. For technical reasons, in the program we sometimes consider conditional
posterior means of 295y, keeping some aspects of the model fixed. We will indicate when

this is the case.

2.2 Dose-Finding Study

The first phase of the trial is a dose-finding study. Details of the dose allocation are discussed
in Section 3. We will use D;; to denote the data up to week ¢ of the dose-finding phase,
and ny; to denote the number of patients enrolled by week ¢. Similarly D; denotes the data
from the complete dose-finding phase, and n; denotes the total number of patients enrolled

in this phase.

2.3 Confirmatory Study

The confirmatory study randomizes patients uniformly to placebo (z = 0), recommended
treatment dose z* and a third dose z** chosen as alternative to z*. As recommended treat-
ment dose we use the ED95 dose z* = 295. As alternative dose z** we use the ED50

2 = 250. We will use D, to denote the data from the confirmatory phase, and n, to denote



the number of patients enrolled in this phase at each of the three doses (i.e., the total sample
size is 3ns).

To decide ny we use an argument of predictive power. Let df* denote the advantage of
treatment df (2*,6) over placebo at the recommended dose z*. Let (m,s) denote posterior
mean, m = E(df* | D;), and standard deviation, s> = Var(df* | D;) at the end of the
dose-finding study. Details of this estimation depend on the underlying probability model
(See Section 5 for a discussion of the probability model in our implementation). Let 62
denote the posterior mean of F(c? | D;) conditional on all current data. Fixing 0% at 62 and
approximating p(df* | D;) ~ N(m,s), we can find the minimum sample size n, which gives
a desired predictive power (90% in our implementation). See the appendix for a definition

of predictive power. !

3 Adaptive Dose Allocation: The Allocator
3.1 Introduction

During the dose-finding phase of the trial we need to decide a dose for each newly recruited
patient. Conventional solutions are to randomly assign one out of a fixed set of allowable
doses (reference?); up-down designs (reference?); and designs which are based on balancing
probabilities of adverse otucomes and efficacy (Thall and Russell, 199x).

We consider an alternative, entirely decision theoretic approach. To introduce notation
and to clarify the context, we briefly review the general setup of a Bayesian decision problem.
Decision making under uncertainty is choosing an action d to maximize expected utility
U(d) = [u(d,0,y)pa(6,y). Here, u(d,0,y) is the utility function modeling preferences of
consequences and p4(f,y) is a probability distribution of parameter § and observation y,
possibly influenced by the chosen action d. Typically py(6,y) is specified as a prior p(f) on
the parameters and a sampling model py(y|6). Note that utility u(d, 6, y) needs to be specified

for a specific realization (6,y) of the experiment only. Computing expected U(d) we average

! Alternatively we could use a conventional power calculation based on the likely treatment effect m, or
at a conservative estimate (m — s) for the treatment effect.



over the quantities which are unknown at the time of decision making. Often, some of the
data, say v, is already known at the time of decision making. Assume y = (yo, y1). Then p(6)
and py(y | 0) are replaced by p(f | yo) and pa(y1 | 0,%0). See Chaloner and Verdinelli (1995)
and Verdinelli (1992) for reviews of Bayesian approaches to decision problems traditionally
known as optimal design. Spiegelhalter, Freedman and Parmar (1994), Berry (1993) and
Berry and Stangl (1996) discuss general issues related to the use of Bayesian optimal design

methods in medical decision problems.

3.2 Dose Allocation as a Decision Problem

Central to the proposed approach is a utility function which expresses the relative preferences
over alternative outcomes. The proposed utility function is related to learning about the
unknown dose/response curve. Learning is formalized as minimizing the posterior variance
for some key parameter g(6) of the dose/response curve. In the current implementation we
choose as key parameter g(f) the mean response f(z954,6) at the ED95. Note that the
posterior variance of g(f) includes uncertainty in the unknown ED95 dose, as well as the
unknown response at that dose.

The proposed approach is myoptic in the sense that when we consider the optimal dose
for the next patient we proceed as if he or she was the last patient to be recruited into the
trial. Assume we currently have N patients enrolled in the trial. Let ¥x = ynik, Tk = Tnik
and Z; = zyy denote the response, covariate and assigned dose for the next K patients,
k=1,...,K. Let (k) = (41, .- ,0), 2(k) = (Z1,..., Z), and Z(k) = (Z4,...,Tx), denote
responses, assigned doses and covariates up to the k-th new patient. Let Dy denote the
observed data for the first N patients, and let D denote the still missing final responses for

already enrolled patients. We define the utility function for choosing the dose Z; as
ulZ(k), §(k), Z(k), D, Dy] = =Varlg(6) | Dw, D, §(k), Z(k), 2(k)]-

Of course we have to decide upon %, before observing D, §(k) and Z(k). Thus we choose

the dose Z; by maximizing the utility wu,(-) in expectation, averaging with respect to D,



(k) and Z(k — 1). The relevant distributions for D and §j(k) are the posterior predictive
distributions given the current data. For the covariates Zi,...Zx_1 we use the empiricial
distribution p(z) from the Copenhagen Stroke Study data base, assuming independence,
ie, plz(k—1)] = Hz;i p(Zr). And %y is fixed at “typical” covariate values z°, i.e., we find
the optimal dose for an average next patient. For Zi,...,Z;_; we substitute the optimal

values found by optimizing the expected utilities Uy (+), ..., Ux_1(:).

UrlZ, 2(k — 1), &, Dy] = / url2(k), 5(k), #(k), D, Dy]

x p(D | D) plg(k) | D, 2 (k)] p[#(k — 1)] dD djj(k) di(k — 1). (2)
Maximizing Uy/(-) over Z; we find the optimal action.

3.3 Evaluating Expected Utility

Critical for a successful implementation of the proposed decision theoretic dose allocation
is the availability of analytical or efficient numerical integration to evaluate the integrals in
(2). Key to our implementation strategy is to rewrite the expected utility integral (2) as an

integral with respect to the posterior distribution p(@ | D)

UklZ(k), Zx, Dn| :/{Uk[g(k)’g(k)ﬂj(k):DaDN] X

xp(D | 6, D) plj(k) | 6,5(k)2(k)] pla(k — 1)) dD dji(k) di(k — 1)} p(6 | D) db. (3)

Most models allow efficient random variate generation from the posterior distribution p(é | D)
using Markov chain Monte Carlo (MCMC) simulation. See, for example, Tierney (1994) or
Gilks et al. (1996) for a summary of MCMC methods. Details of implementing the appro-
priate MCMC scheme depend on the specific probability model p(D | #). In Section 5 we
will discuss posterior simulation in the model underlying our implementation. But for the
following discussion we do not need to refer to specific details of the MCMC simulation. We
only assume that by appropriate simulation techniques it is possible to generate an (approx-
imate) posterior Monte Carlo sample © = {#',... 67} with #* ~ p(# | D). Using the Monte

Carlo sample © we can evaluate expected utilities by replacing (3) with a corresponding
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Plot of expected utilities Uk as a function of dose z.

Figure 1: Approximate expected utilities Uy plotted against Zx. The circles show the Monte
Carlo estimates of expected utilities at the allowable doses. The solid curve shows a smooth
fit through the Monte Carlo estimates. For comparison the dashed curve shows a smooth fit
through Monte Carlo estimates of expected utilities using half the Monte Carlo sample size.

Monte Carlo sample average. For each 6" we simulate covariates &}, ~ p(z), h=1,... ,k—1,
responses §4 ~ p(yn|Zn, 74, 0) and missing responses D* of current patients D ~ p(D | 6%), as-
suming that these models are all available for efficient random variate generation. For each
simulated experiment we then evaluate observed utility ul = u(2(k), 5(k)!, #(k)t, D, D),

and replace expected utility by a Monte Carlo average
| M

Evaluating expected utility Uy for a grid of possible choices Z; we find the optimal dose as

the dose with maximum Uk() To reduce numerical error in the approximation of Uy by
U, we use common random numbers, i.e., whenever possible we use the same Monte Carlo
sample © and random variates !, g, D' when we evaluate ﬁk(ék) for alternative choices of
Zg.

Figure 1 shows a typical expected utility curve. Of course, the expected curve changes
from week to week. Assume at one time it is optimal to allocate to high doses. As more
patients are allocated in that part of the dose range it will eventually become more advanta-
geous to allocate new patients in other parts of the dose range to learn about, for example,
the response at placebo. While it is difficult to intuitively understand the expected utility
curve and the dose assignement at a given time, typical patterns of dose allocations over the

course of a clinical trial do seem intuitively meaningful. Figure 2 shows an example of dose

assignments in a simulated trial.



Panel (a): Dose against week. Panel (b): Histogram of assigned
doses

Figure 2: Doses assigned over the course of simulated clinical trial. The left panel plots the
assigned doses against week. The right panel shows a histogram of assigned doses with an
overlaid plot of the true (diamonds) and estimated (solid line) dose/response curve.

3.4 Additional Randomization: The Recommender

Maximization of Uk() delivers the optimal dose Z; to be assigned to the next patients,
k=1,...,K. Assume z; equals Z;- in the list of allowable doses. Before actually assigning
a dose to a new patient we use an additional randomization. First, because of regulatory
constraints we need to keep a given minimum percentage py at placebo. Second, because of
safety concerns we want to avoid unnecessarily high doses. To achieve these two aims we
allocate with probabilties py at placebo and split the remaining probability (1 —pg) uniformly
over all doses Z; within a neighborhood of Z;-, defined as the set of all doses less than or

equal Z;- with estimated mean response within 10% of the estimated mean response at Z;-.

4 Optimal Stopping: The Terminator
4.1 Introduction

The dose-finding phase of the trial involves two important decision problems, dose assignment
and termination. For the first, we already discussed an adaptive dose allocation scheme in
Section 3. In this section we discuss the second problem, i.e., the problem of optimal stopping
in the dose-finding trial. At each period t of the trial, say once a week, we have to decide
(d;) whether to terminate the trial and abandon the drug (d; = A0), continue with the dose-
finding phase (d; = Al), or terminate the dose-finding phase and switch to pivotal mode
(dy = A2).

The following fact significantly complicates the derivation of an optimal decision. When
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we consider not to terminate today (A1), then to evaluate the expected utility of this action
we need to take into account what the optimal termination decision will be next week, and
what the expected worth of this decision will be, i.e., we need to solve a sequential decision
problem. A standard approach to sequential decision problems is backward induction: Con-
sider the optimal solution under every possible scenario going all the way into the future to
the latest possible termination time 7' (determined by some maximum number of patients
in the trial), and record a table of such decisions, starting from 7". Thus, when it comes to
evaluate today’s decision we already have available the optimal actions for tomorrow in the
table. See, for example, Berger (1985, chapter 7).

For the terminator we implemented a numerical solution of the backward induction prob-
lem. The approach is based on a dual strategy of using a reduced action space to constrain
the number of scenarios which we need to consider in backward induction; and forward sim-
ulation to evaluate expected utility integrals under all relevant scenarios. Central to our
approach is a formulation of the problem as a formal decision problem with a probability
model describing all relevant uncertainties and a utility function which describes the relative
preferences of possible outcomes.

Alternative Bayesian approaches to optimal sequential design in similar medical decision
problems are discussed, among other references, in Thall, Simon and Estey (1995) who define
stopping criteria based on posterior probabilities of clinically meaningful events. Similarly,
Thall and Russell (1998) define a sequential procedure based on monitoring posterior proba-
bilities of certain events. Using ad-hoc rules based on these probabilities they define designs
and evaluate their frequentist performance. Vlachos and Gelfand (1998) follow a similar
strategy. Whitehead and Brunier (1995) and Whitehead and Williamson (1998) use what is
essentially a Bayesian m-step look-ahead procedure to find the optimal dose to assign to the

next m patients in a dose-finding study.



s[t]
1.40 1.50 1.60 1.70 1.80 1.90 2.01 2.11 2.21 2.31 2.41 2.51 2.61 |

.80 m[t]
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Figure 3: Terminator. The table shows the optimal decision for each pair (m,s). An entry
of 0,1,2 indicates A0, Al, and A2, respectively.

4.2 The Terminator

Before we discuss the underlying decision theoretic framework, we present the form of the
final implementation and argue why it is intuitively appealing. Let z* = 295 denote the
ED95 dose. Let (my,s;) denote the posterior mean and standard deviation of the ad-
vantage over placebo at the ED95 dose conditional on the data available at time ¢, i.e.,
my = E[df (2*,0) | Dy and s? = Var[df(z*,0) | Dy). The proposed stopping rule is a func-
tion of (my,s;). We define cutoffs for (my, s;) which partition the space into three subsets,
corresponding to decisions A0, A1 and A2. For example, the decision rule could take the
form shown in Figure 3. The overall pattern of the partition is intuitive. For very small,
and very large values of m we recommend A0 and A2, respectively, i.e., the dose-finding

phase is terminated and we make a decision for abandoning the drug or for continuation to

the confirmatory phase. For intermediate values we recommend to continue the dose-finding



trial.

When we have to decide about termination at time ¢, we compute (my,s;) and use the
cutoffs to look up the recommended decision. Note that the decision depends on the current
data only indirectly through (my, s;). The main reason for constraining the decision space
are the resulting computational simplifications. The rationale for choosing this particular
constraint is that the effect at the finally recommended dose and the uncertainty about that
effect are the features of the unknown dose/response curve which are most relevant to the

desired decision.

4.3 A Decision Theoretic Stopping Rule

To fix the boundaries in the (my, s;) table we use a decision theoretic argument. At the core
of the argument is a utility function which for a given outcome of the experiment and a given
decision gives the worth of the observed consequences. Maximizing this utility function in
expectation defines the optimal termination decision. As mentioned, the sequential nature

of the problem significantly complicates this maximization.
4.3.1 The Utility Function

We start the discussion by stating the utility function used in our implementation. Note that
we only need to formalize the utilities assuming that the outcome of the whole experiment
is known, i.e., we define utility as a function of possible outcomes. The expected utility
function will then be derived from this by considering the appropriate expectations over
all unknown random variables. For a given realization the utility includes a sampling cost
for the number of patients recruited into the trial, and a payoff for successfully developing
and marketing the drug. Of course that payoff is only included if the final results of the
experiment are such that the drug can approved by the regulatory authorities.

Utility under d; = A2. If we were to decide d; = A2 then the resulting utility will include
the sampling cost (negative utility) for the confirmatory phase of the study plus the payoff

if the confirmatory study eventually concludes a significant treatment effect.
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Let B denote the event of observing data in the confirmatory phase which in the end lets
us reject the null hypothesis of no treatment effect at some fixed significance level a.. Let yq
and §* denote the sample average in the confirmatory phase of the responses under placebo

and treatment (z*), respectively. B is the event

B ={(y" — %0)/v/26%/n2 > qa}

where g, is the (1 — «) standard normal quantile. Remember from Section 2.3 that n, is
the sample size in the confirmatory study, and 62 is the posterior mean of the measurement
variance.

Let c¢; denote the sampling cost per patient, and let c; denote the payoff for a successful
drug. Assuming that this payoff is proportional to the size of the effect we specify c, as
payoff per point advantage over placebo. Let mqy = E(df* | Dy, Ds).

—3n9 if not B
—37L2 C1 + Coy Mo if B

u(dy = A2, Dy, Dy) = {
Note that the data enters into the definition of u(-) only implicitely, through ny which
depends on Dy, my which is a statistic of Dy and By which is an event in Dy. The sampling
cost includes only the patients for the confirmatory study, but omits the sampling cost for
the first n; patients in the dose-finding phase. Including it would add the same term to
the utility under all three alternative actions (A0, A1 and A2) and would thus not change

the decision. Of course, decision d; needs to be decided before observing D,. The relevant

expected utility averages over Dy
U(dy = A2, Dy) = / u(d, = A2, D1, Dy) dp(Ds | D). (4)

Recall from Section 2.3 that ns is a function of (m, s), leaving only P(B | D) and E(ms | D1, B)
to be computed. Approximating p(df* | D;) &~ N(m, s), both can be computed analytically.

Utility under d; = A0. If we were to decide d; = A0 then the trial is over and thus
U(dt - AO) == 0,
again omitting the sampling cost for the first n; patients.
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Utility under d; = Al. Finally, if we were to decide d; = A1, then the utility depends on
what we will decide in the next period ¢ + 1. Let nt denote the number of patients enrolled

in week (¢t + 1) and let Dt denote the data collected in week (¢ + 1).
U(dt = Al, Dlt; D+) = —’fl+ cCq -+ Ut*_|_1(D1t U D+),

where U (Dy;) is the expected utility under the optimal action at time (¢ + 1). By taking

the expectation with respect to D' we obtain
U(dt = A]_, D]_t) = /’U,(dt = Al, D1t7 D+) dp(D+ ‘ Dlt)- (5)

We are assuming here that n* is fixed or known. Extension to random n* is straightforward.
Evaluation of the integral (5) is discussed below in Section 4.5.

The optimal decision d}(D;;) at time ¢ can, in principle, be derived as

Ui (Du) = U(dy = di, D) = pe hax AQ}{U(dt, D)} (6)

There are at least two impediments to a straightforward implementation of (6). First,
the definition of U(d; = Al,...) requires the solution to (6) for period (¢t + 1), i.e., we
need backward induction. Second, the definition of U(d; = A2,...) as well as U(d; =
Al,...) involve typically analtyically intractable integrals. In the following two subsections
we outline an implementation strategy based on constrainied backward induction and forward

simulation. See Miiller, Berry, Grieve, Smith and Krams (1999) for a detailed discussion.
4.3.2 Constrained Backward Induction

To allow a practical solution to the backward induction problem we constrain the decisions
d; to depend on the current data only indirectly through (my,s;), with (my,s;) reported
on a finite grid, i.e., we report d*(my,s;). We will use U*(m,s) to denote the expected
utility of the optimal decision d*(m, s). Effectively this amounts to constraining our action
space. Instead of allowing decisions to depend on the full information set D;; they are only
allowed to depend on the current data indirectly through (my,s;). How much we loose by

this constraint depends upon how important the abandoned information in the data is, i.e.,
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how important for the desired decision is the information beyond what is summarized by
(my, s¢). Note that U(d; = A2, Dy;) (and U(d; = A0), trivially) depend on D;; only indirectly
through (m, s). We will write U(d = A2,m, s) to emphasize this. Only the computation of
U(d, = Al,...) depends on D;; beyond the summary statistic (m, s). See Section 4.5 for
the definition and evaluation of U(d; = Al,m,s). We will use U*(m, s) = U (d;(m, s),m, s)
for the expected utility under the optimal decision.

Starting with some initial guess for d*(my, s;) and U*(m, s) we update the tables using
(4) through (6). We continue updating until the table remains unchanged over a complete

cycle of updates.
4.3.3 Forward Simulation

There still remains the problem of evaluating the expected utility integral in (5). We use
forward simulation (Carlin, Kadane and Gelfand, 1998). The idea is to simulate many, say
T, trials all the way into the future until the maximum number 7n; of possible patients in
the dose-finding phase.

Figure 4 illustrates how these forward simulations are used to compute posterior integrals.
Assume we need a posterior integral conditional on data D;;. We first compute the corre-
sponding summary statistic (my, s;), and then approximate the desired posterior integral by
a sample average over all simulated trials whose trajectories pass through (my, s;). If (my, s;)
was in fact a sufficient statistic for the unknown parameter vector then the sample average
would provide a (simulation) consistent and unbiased estimate of the desired expectation.
Carlin et al. (1998) use forward simulation in such a setup. In general, some approximation
is involved.

Let Dy; and ny; denote the data and number of enrolled patients at the time of making
the decision d;. Let D denote the future data, including the remaining n; — ny; patients, as
well as still missing final measurements on current patients who have been recruited during
the last 13 weeks. The 7" trials for the forward simulation are generated by simulating from

the posterior predictive distribution p(D|Dy;). Denote the simulated values as DY. For
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(m,s) trajectories for a some simulated trials

Figure 4: Forward simulation. The figure shows trajectories in the (my, s;) space for some
simulated trials. To compute a posterior integral for ....

each week of each simulation we record the moments (m,gj ), sgj )).

Assume in the constrained backward induction we have current estimates d*(m, s) and
U*(m,s). Assume we are considering to update a specific cell (m,s) and want to find
the optimal decision. Expected utility U(d = A2,m, s) is easily computed using (4), and
U(d = A0,m,s) = 0 is fixed. To compute integral (6) for U(d = Al,...) we consider the

the subset A of simulations which pass through cell (m, s) at some time, i.e., for all j € A

we find (my;,s;;) = (m, s) in some week ¢;. Approximate (6) by the sample average

Uld=Al,m,s) = —nt ¢, + %ZU*(mgll, sgll),

jeA
plugging in the current estimates for U*(m,s). Note that the approximation for U(d =
Al,...) is the same for all Dy; with the same summary statistic (m,s). Thus we write
U(d = Al,m,s). Compare with U(d = A2, m,s) and U(d = A0, m, s) to find the optimal
decision d*(m, s) and it’s value U*(m,s). Repeating the same process for all cells (m,s)

updates the currently imputed values for d*(m,s) and U*(m, s). We repeat updating until

nothing changes in one cycle of updates.

4.4 From the Decision Theoretic Stopping Rule to the Terminator

The process described in the last two sections is very comutation intensive. It is impractical
to repeat that same computation each week, each time with slightly different data D;.
Instead we build one static decision table like in Figure 3 by combining estimated utilities

U(dy = a,m,s), a € {A0, A1, A2}, computed under a set of typical dose/response curves.

In the current implmentation we use four dose/response curves. For each cell in the (m, s)
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four figures showing the four d/r curves
four figures showing the ‘‘dynamic’’ term’s

Figure 5: The four “typical” dose/response curves used to construct the terminator. The
four panels in the first row show the true curves, the four panels in the bottom row show
the derived decision rules d*(m, s). Combining these four decision rules results in the rule
shown in Figure 3

table we compute the average expected utility approximation under the four curves. For
A2 we use equal weights. For Al we use weights proportional to the number of simulated

trajectories in each experiment which did pass through the specific (m, s) cell.

5 The Dose/Response Curve

5.1 The Probability Model

The choice of the probability model for f(z) is guided by the following considerations. First,
we need a model which allows analytic posterior inference to facilitate efficient computation of
expected utilities when solving the decision problem. Second, we want a flexible model which
includes a priori a wide range of dose/reponse curves. Although an increasing curve with
asymptotes is a priori likely, the model should allow for possible lack of monotonicity and
other irregular features. Based on these considerations we chose a normal dynamic linear
model (NDLM). See, for example, West and Harrison (1997) for a formal definition and
discussion of NDLM’s. Before we describe details of the model, we outline some important
features. Denote with Z;, j = 1,...,J, the range of allowable doses, and with 8, = f(Z},6),
j=1,...,J, the vector of mean responses at the allowable doses. The underlying idea is
to formalize a model which locally, for z close to Z;, fits a straight line 0; + (z — Z;)0,
with level §; and slope §;. This is illustrated in Figure 6. When moving from dose Z;_;

to Z; the parameters a; = (6;,0,) change by adding a (small) so-called evolution noise e;
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Figure 6: The NDLM (xyz) fits a smooth curve to the data by defining for each dose j,
j=1,...,J, alocal straight line, parametried by «;. The plot shows the local lines fit at
doses z; = ryz and zy = zyz. The triangle marks the point (z;, 0;;), and a solid line segment
indicates the locally fit line. Between doses level and slope of the line change by adding an
evolution noise e;.

and adjusting the level 6; = 6;_1 + J,_1. Let Y, £ = 1,...,v;, denote the k-th response
observed at dose Zj, i.e., Y; = (Yj, k =1,...,v;) is the vector of responses y; of all patients

with assigned dose z; = Z;. The resulting model is
Y}'k:0j+€jka j=1,...,n,k=1,...,l/j

and

<

(5) = (50 ) e i

with independent errors €; ~ N(0,Vo?) and e; ~ Ny(wj, W;0?). Here Ny(m,S) denotes
a bivariate normal distribution with moments m and S. The first equation describes the
distribution of Y} conditional on the state parameters o;; = (6}, ;) and is referred to as the
“observation equation”; the second equation formalizes the change of o;; between doses and
is referred to as the “evolution equation”. For a given specification of {V, W}, j=1,... ,n}
and a prior p(ag) = N(mg, Cy), p(c?) = Gamma(ng/2, So/2) with given moments mq, Cy
and Sy, and degrees of freedom ny, there exists a straightforward recursive algorithm to com-
pute posterior distributions p(c;|Y1, ... ,Y;) and any other desired posterior inference. It can
be shown that p(c;|Y1,...,Y;) is bivariate normal N(m;,C;) with some moments m;, C;.
For later reference we note also that the predictive distributions p(Y;|Y3,...,Y;_1) are nor-

mal distributions with moments f;, Q);, and the posterior distributions p(c;|Y1,. .., y,) are
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bivariate normal N(mj, C}). West and Harrison (1997) give the recursive equations to com-
pute m;, Cy, fj, Qj, m;, C; and other posterior moments. An algorithm, known as Forward
Filtering Backward Sampling (FFBS) allows efficient random variate generation from the full
posterior distribution. It is described in Friithwirt-Schnatter (1994) and Carter and Kohn
(1994).

In many applications, specification of the evolution variances W; is not easy. As an
alternative to specifying W, a priori, West and Harrison (1997) propose to define W; as a
scalar multiple of the posterior variance Cj, i.e., W; = (1—r)/r C; for some scalar r € (0, 1).
This corresponds to thinking of the evolution noise e; as discounting some of the current
information on «; as represented by the posterior variance C;. The scalar factor r is known
as “discount factor”. A large discount factor implies a small variance W; and thus small
change e; between times, i.e., strong smoothing. On the other hand, a small discount factor

implies large e; and thus allows for a big change between doses Z; ; and Z;.

5.2 Prior Specification for the NDLM

A minor shortcoming of the NDLM in the present application is that the prior specification

with the hyperparameters mg, Cy and r does not naturally allow to fix arbitrary desired prior

moments for §; = f(Z;). Only E(6) and Var(6) are fixed as my and Cy. Prior expectation

and variance for 6;, j > 0, are then implied by the evolution equation. To increase the

number of prior parameters and allow for essentially arbitrary prior moments E(6;) and

Var(;) we augment the model by introducing dummy observations Y, j = 0,... ,J, with
2

associated observation variance 6;. When going through the FFBS scheme for posterior

inference in the NDLM we proceed then as if }7] were data sampled from }73 ~ N (6, 6’?-). By
appropriate choice of 17; and 6]2- we can achieve any prior moments for 6;, subject only to
technical constraints (for example, the marginal prior variances Var(6;) can not be larger

than those implied without the dummy observations).

6 The Longitudinal Data Model
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