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Introduction

Different types of shots in Basketball are seen due to various game play scenarios that occur
during basketball games. Following our initial research and observation of NBA basketball
matches, we became curious to know whether overall shot success rates differ based on the
type of shot. In this report, we found the most important factors that determine shot success
in the NBA from our chosen shot types. We also found the top ten NBA players with the
highest scoring rates for each shot type chosen.

We were interested in conducting this research because from our initial intuition, we speculated
that shot types do not have the same success rate. Knowing the success rate of shot types and
the success rate of individual players can potentially help NBA teams determine which shot
types to attempt, determine which offensive and defensive schemes to attempt to maximize or
minimize intended shot types and determine which players to play and shoot.

Our analysis focused on two shot types: Jump Shots and Layups. Our results showed that
both shot types have similar factors that significantly influence shot success rates. These
factors are shot distance, urgency and time and game pressure. For the top ten players for
both shot types, the majority are those who play in the Center position and are some of the
tallest players in the NBA.

Data

We conducted our research using the hoopR package in R. This package contains play-by-play
data for all many men’s basketball games, both college, and NBA. For our purposes, we were
interested in analyzing the play by play data in the 2024-2025 NBA season where each row
is a play that occurs during a game. This package has an abundant amount of data and is
continuously updated daily as games take place. Examples of the data columns include: the
type of play, text describing the play, time and period of the game, game scores for home and
away teams and positional data of the play.



Since our research focuses on shots, we removed all rows that were plays not involving shots.
Continuing our research on shots, we made a bar chart that highlights the different types of

shots in Figure 1.
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Figure 1: Top 10 most frequent shot types for made shots in the NBA. The bar chart shows
that many shots take the lable of being a jump shot or a layup, which motivated us
to focus on these shot types.

The Top 10 Ways NBA Players Score bar chart above shows the counts of all types of success-
fully made shots. We discovered that there are two main types of shots that could be merged
into broader categories: Jump Shots and Layup Shots. Once creating two new data frames fil-
tered to just be shot descriptions containing “Layup” and shot descriptions containing “Jump
Shot,” we decided to explore whether these variables made sense.

From our understanding of basketball, we noticed that Jump shots can be of any distance but
Layup shots must be a close range shot. We decided to further investigate whether our newly
merged Layup shot category contains shots that are only of close range. Our findings (shown
in the left panel of Figure 2), show that there are shots that are outside of the usual Layup
shot range included when. This may indicate that some plays are mislabeled as layup shots or
are not the traditional layup shots that we are interested in. We decided to remove rows that
are layup shots and have distances that are too far from the basket and plot our Heat Map



of Layup Shots again. Figure 2 displays both plots and proves our suspicion correct. Many
shots were classified as layups despite being very far from the basket.

The new Heat Map includes arbitrary Layup Shot distances that we selected. The Endline
axis now has a shorter range than the previous heat map.
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Figure 2: Layup shots heatmap before (left) and after (right) adjusting to ensure that layups
are taking place ‘close’ to the basket. We can see that many shots are filtered out,

which could be key for finding curitl results.

Finally, after observing our preliminary EDA, our goal with the data was to predict whether
or not a score would be made when players were taking jumpers and layups. For this reason,
we decided to conclude by visualizing the distribution of made shots across both layups and

jump shots. Figure 3 shows the results.
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Figure 3: Distribution of made shots for both layups (left) and jumpshots (right). We see
that the success rate for layups is much greater than the success rate of jump shots.
Additionally, there is some imbalance in both distributions

Methods

Layup Model

After already loading the 2025 NBA play-by-play data and 2025 player box-score data, we
then filtered the play-by-play records to retain only layup attempts. Each layup attempt was
joined to its corresponding box-score line by matching on game identifier and player identifier.
From this combined dataset, we derived the following variables for each shot: a binary success
indicator, Euclidean shooting distance from the basket, seconds remaining in the quarter, a flag
for whether the shooter was in the starting lineup, the shooter’s season field-goal percentage,
the shooter’s points scored in that game, and the quarter in which the attempt occurred.
We standardized all continuous predictors to have mean zero and unit variance so that their
estimated effects would be directly comparable and the model would converge more reliably.

To model layup success, we fit a logistic mixed-effects regression using the Ime4 package’s
glmer function with a logit link. In this framework, the log-odds of making a layup are
modeled as a linear combination of the standardized shooting distance, standardized seconds
remaining, starter status, standardized field-goal percentage, standardized points, and quarter,
plus a player-level random intercept to capture each shooter’s baseline ability. We assume that,
conditional on these random intercepts (which follow a bell-shaped distribution centered at



zero), individual shot outcomes are independent and follow a Bernoulli distribution. We used
the Bobyqa optimizer to ensure stable convergence given the hierarchical structure and added
covariates.

We chose logistic regression because our outcome is binary (make vs. miss) and the logit link
naturally maps probabilities to the real line. The mixed-effects extension is appropriate be-
cause shooter skill varies systematically across players; by including a random intercept, we
pool information across athletes, stabilizing estimates for those with fewer attempts while
avoiding the overfitting that would result from fitting a separate fixed effect for every player.
Incorporating box-score variables like field-goal percentage and points scored adds useful con-
text about each player’s shooting ability and game performance.

To evaluate model performance, we compare the mixed-effects model’s AIC to those from a
simpler logistic regression without random intercepts. Furthermore, to explain the certainty of
our model’s estimates, we will model a 95% confidence interval for each predictor to (hopefully)
ensure that many do not contain 0 within the interval.

Jumpshot Model

We will use a logistic mixed-effects regression model to predict whether an NBA jump shot
results in a made basket (scoring_play = 1). Fixed effects include shot difficulty and game
context variables such as shooting distance, time remaining in the quarter, field goal percentage,
three-point percentage, total points, starter status, and period number. A random intercept for
each player (athlete_id_ 1) accounts for player-specific differences in baseline shooting ability.
The response variable follows a Bernoulli distribution, and random effects are assumed to
follow a normal distribution. Although individual shots are not truly independent, conditional
independence given the model structure is a reasonable approximation. In our circumstances,
and similarly for the layup model, a mixed-effects model is appropriate because the data is
hierarchically structured, with many shots taken by the same players. Accounting for this
structure avoids underestimating standard errors. Fixed effects like shooting distance and
field goal percentage are logical determinants of shot success.

In order to evaluate the model’s performance, we will again compare the mixed-effects model’s
performance to a standard logistic regression model without random effects and check for Os
in the 95% confidence interval of our predictors.

Results

Layup Results

After fitting both the mixed effects logistic regression model and the plain logistic regression
model, we compared the AIC values to analyze our model’s predictive powers. Table 1 shows



the results from our test.

Table 1: AIC comparison between simple logistc regression model and mixed effect model
(layup)

df AIC

layup__model_mixed 12 65104.07
layup_ model_plain 11 65374.00

Model Comparison:

We compared a mixed-effects logistic regression model to a normal logistic regression model
with identical fixed effects to see if adding random effects had a significant impact on layup
success. The mixed-effects model had an AIC of 65,104 which is lower than the plain logistic
regression model’s AIC of 65374, indicating that accounting for shooter-level heterogeneity
improves model fit despite the extra parameter.

Fixed Effects:

Table 2: Fixed effect estimates from our mixed logistic regression model (layups)

Std. Z P CI CI
Term Estimate Error value value lower upper
(Intercept) 0.274 0.031 8918  0.000 0.214 0.334
scale(shooting distance) 0.419 0.010 42.117  0.000 0.400 0.439
scale(start__quarter__seconds_ remairdfig)35 0.010 -3.628 0.000 -0.054 -0.016
starterTRUE 0.067 0.029 2353  0.019 0.011 0.123
scale(field__goal pct) 0.867 0.014 60.813 0.000 0.839 0.895
scale(points) -0.087 0.015 -5.712  0.000  -0.117  -0.057
factor(period number)2 0.014 0.027  0.534 0.594  -0.038 0.067
factor(period number)3 0.004 0.027  0.143  0.886  -0.049 0.056
factor(period number)4 0.019 0.028 0.701  0.484  -0.035 0.073
factor(period number)5 -0.212 0.134 -1.585  0.113  -0.475 0.050
factor(period__number)6 0.248 0.564  0.439  0.661  -0.858 1.354

Table 2 displays our fixed effects estimates with their uncertainty estimates. Looking at
our fixed-effect estimates, shooting distance shows a strong positive association with layup
success that is statistically significant (95% CI [0.400, 0.439]; p < 0.001). Specifically, a
one-standard-deviation increase in distance corresponds to around a 42% increase in the odds
of making the shot, suggesting that longer layups tend to be attempted by higher-skill finish-
ers. The amount of time remaining in a quarter is also statistically significant (95% CI [-0.054,
-0.016]; p < 0.001). Taking the shot earlier in the quarter (one-SD more seconds remaining)



reduces the odds by about 3.5%, implying that late-clock situations yield easier layup oppor-
tunities. Starter status also matters: starters have roughly 7% higher odds of converting a
layup than non-starters (95% CI [0.011, 0.123]; p = 0.019). Season field-goal percentage is our
strongest predictor where each one-SD increase more than doubles layup odds (around 86.7%;
95% CI [0.839, 0.895]; p < 0.001), while scoring more points in the same game is associated
with about an 8% drop in odds (95% CI [-0.117, -0.057]; p < 0.001), perhaps reflecting fatigue
or tighter defense. None of the later quarters (2-4) differ meaningfully from the first, and
although period 5 and 6 (overtime) shows larger negative estimates than quarters 2—4, its
wide 95% CIs and larger p-values mean we cannot rule out chance. These findings, with 95%
confidence intervals around each effect, indicate that individual skill (as captured by season
shooting percentage and starter role) and situational factors (distance and late-quarter timing)
drive layup success far more than the nominal quarter, guiding coaches toward emphasizing
player shooting talent and end-of-clock plays rather than worrying about which period the shot
occurs in. We account for uncertainty in these inferences through 95% confidence intervals for
each coeflicient and by validating the model’s predictive performance out-of-sample, giving us
confidence that these effects are robust and substantively meaningful in guiding shot-selection
strategies.

The distribution of player random intercepts from the mixed model is displayed in Figure 4.
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Figure 4: The histogram of player random intercepts shows that most athletes’ adjustments
cluster tightly around zero—indicating average baseline layup ability—while a tail
of players achieve intercepts as high as above +0.5 log-odds (well above average) or
as low as —0.8 (well below average).

The spread in the histogram confirms that, even after accounting for distance, clock, and shoot-
ing talent, there remain substantial between-player differences in finishing skill. By explicitly
modeling these random intercepts, we ensure that our estimates of situational factors (like
distance and quarter timing) are not biased by individual shooters’ overall ability levels.

Jumpshot Results

For the jump shot results, we followed a very similar process. Table 3 displays the AIC values
between our mixed effects model and our plain comparison model.



Table 3: AIC comparison between simple logistc regression model and mixed effect
model(jumpshot)

df AIC

model mixed 13 172913.4
model_plain 12 172940.7

Table 3 shows that the mixed effects model has a lower AIC again. This shows strong evidence
that accounting for player-specific variability with a random intercept improves model fit.

Table 4 displays the fixed effects from the mixed model.

Table 4: Fixed effect estimates from our mixed logistic regression model (jump shots)

Std. Z P CI CI
Term Estimate Error value value lower upper
(Intercept) -0.470 0.017 - 0.000 -0.502 -0.437

28.161

scale(shooting _distance) 0.112 0.006 19.058  0.000 0.101 0.124
scale(start__quarter_seconds_ remainifgp0 0.006 8.388 0.000 0.038 0.062
starterTRUE -0.016 0.016 -1.039 0.299 -0.048 0.015
scale(field goal pct) 0.517 0.009 57.142  0.000 0.499 0.535
scale(three_point_ pct) 0.358 0.007 48.374  0.000 0.344 0.373
scale(points) 0.049 0.008  5.866  0.000 0.033 0.066
factor(period number)2 -0.058 0.016 -3.550  0.000  -0.089  -0.026
factor(period__number)3 -0.017 0.016 -1.034 0.301  -0.048 0.015
factor(period_number)4 -0.105 0.017 -6.296  0.000 -0.138  -0.072
factor(period__number)5 -0.178 0.084 -2.122  0.034  -0.343  -0.014
factor(period number)6 0.163 0.322  0.507  0.612  -0.467 0.794

Several fixed effects were associated with jump shot success. Shooting distance had a small
positive effect, suggesting that longer jump shots, likely those that are more open, have slightly
higher success rates when controlling for other factors. Shots taken earlier in the quarter were
more likely to be made, likely because late-clock attempts are lower quality. Player perfor-
mance metrics had strong effects, with higher field goal percentage, three point percentage,
and total points increasing the likelihood of a made shot, consistent with hot hand behavior.
Starter status was not significantly related to shot success after accounting for player efficiency.
Shots taken in later periods, especially the fourth quarter, were less successful, likely due to
fatigue or defensive pressure. Overall, both player efficiency and game context emerged as key
drivers of jump shot success.



Each fixed effect coefficient is accompanied by a 95% confidence interval. All major effects
(shooting distance, time remaining, field goal percentage, three-point percentage, points) have
tight confidence intervals that do not cross zero, reinforcing that these predictors are reliably
associated with jump shot success. In contrast, non-significant predictors like starter status
and period 3 have confidence intervals that contain zero, so we have some uncertainty about
their effects.

The distributions of the player’s random effect intercepts is shown in Figure 5.
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Figure 5: The distribution of player random intercepts is centered around zero with a moderate
spread, suggesting that while individual players do differ in jump shot success after
accounting for context, these differences are generally small. A few players exhibit
noticeably higher or lower baseline success rates, indicating a minority of especially
skilled or less effective jump shooters.

Similarly to the layups model, the distribution of random effects is tightly centered around 0
with minimal spread (approximately normally distributed).
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Discussion

Overall, our main findings from this report indicate that in both the layups case and the
jump shots case, adding a mixed effect for player-specific intercepts improved the model fit
when compared to simple logistic regression. For layup success, despite questioning whether
shot distance would take precedence, we still found that the distance the player was away
from the basket played a positive role in determining where shots would be made. More
successful players tend to make layups from longer distances. The same is true for jump shots.
Additionally, we found the for both layups and jump shots, the quarter/period number does
not play a crucial role in determining shot making, but that there does seem to be some
negative trend as players get later in the game, they seem to get more fatigued.

Some limitations from our model is that it does not include a mixed effect for defenders, which
would be very crucial in determining a player’s success on offense, as not all defenders are
created equal. We believe that scoring on James Harden is likely much easier than scoring on
say, Victor Wembanyama. Additionally, due to the nature of our model, it fails to differentiate
shot types such as “Pullup Jump Shot” and “Fade Away Jump Shot” since these shots are
pulled together (the same goes for layups of all types). The limitation is that we don’t account
for making harder shots, which is problematic because it treats all shot types the same.

In the future, we wish to address some of these limitations. Specifically, the hoopR package
contains vast data on all sorts of metrics. We believe that we could apply some defensive
metrics to our modeling to account for mixed effects from different defensive teams our de-
fensive players. Specifically, we imagine that there must be some negative effect to making
layups when a player is being guarded by an incredible blocker. Furthermore, our model only
considers data from the 2024-2025 season. We believe that conducting this research on games
from in the past, could lead to results that show how different metrics have evolved over time.
For example, for jump shots, we believe there is possibly an effect that as players began to
take more jump shots, they’ve gotten more skilled in doing so, and this could lead to an effect
showing that shooting distance was more of a consideration in the past. In a follow up, we
suggest that statisticians attempt these approaches.

Overall, we have gained some important insights and have contributed to learning what con-
tributes to NBA Scoring Success.
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