
Impact of Load Management on NBA 
Player Performance 

 

Dena Chen, Edison Huang, Clement Ou, Sahil Parikh 
April 28, 2025 

 

I. Introduction 
 
Fatigue is a critical factor in performance when playing any type of sport. In the NBA season, teams play 
82 games in approximately 6 months, with players expected to perform consistently at a high caliber of 
play. While many believe that rest days for NBA basketball players help reduce injury risk and enhance 
performance during high-stakes games, the question remains: Does rest actually lead to improved 
performance in subsequent games, and does it contribute to better team outcomes? The motivation for this 
project is to provide valuable insights for teams and players to optimize their performance as it can 
influence strategic decisions such as minute distribution, game scheduling, as well as player rest 
schedules.  
 
In our analysis, we used different models to explore the relationship between load management factors 
and their effects on player performance. Specifically, Ordinary Least Squares (OLS) and Linear 
Mixed-Effects (LMER) models are used to examine the relationship between rest, workload, opponent 
strength, and plus/minus. In addition, we used Decision Tree-based models (such as XGBoost) and SHAP 
(SHapley Additive exPlanations) analysis to capture the non-linear relationships and interpret the 
influence of individual features. 
 
The results indicate that the number of rest days had little to no impact on player performance. Instead, 
features related to minutes played were more impactful. Interestingly, cumulative minutes played and load 
management (less than 10 minutes of play in the previous game) both had positive effects in the linear 
model. Furthermore, SHAP values confirm that minutes played and previous game minutes have a 
negative relationship with plus/minus, reinforcing the idea that fatigue from heavy usage can reduce a 
player's effectiveness.  
 
II. Data 

 
Our data comes from the hoopR-data repository’s NBA data, accessed with the load_nba_player_box() 
function. The dataset is a table with 6,696 rows of player box scores, with 57 columns of variables 
providing relevant information for each row of data.  
 
Key variables in the dataset include: 

● Player information: athlete_id, athlete_display_name, athlete_position_name 
● Game context: game_date, season, team_name, opponent_team_name, home_away 
● Performance metrics: minutes, plus_minus 
● Team performance: team_score, opponent_team_score, team_winner 

 



 
To better utilize the data in our project, we conducted simple data cleaning. This includes removing rows 
with missing plus/minus or minutes data and calculating rest days between games based on dates. 
Additionally, binary variables for features like home/away games were created, and rolling averages and 
standard deviations of minutes played were computed to capture trends. The final dataset includes 
variables such as rest days, previous game minutes, rolling averages of minutes played, a home/away 
indicator, team, and opponent performance (win percentage), a load management indicator flagging if a 
player was used for fewer than 10 minutes their previous game, player positions, and whether a player is 
in a back-to-back game scenario (i.e., their last game was the previous day). 
 
To explore the data, we conducted some simple exploratory data analysis.  
 

 
 
Based on the chart above, we can see that the distribution of rest days between games for NBA players is 
heavily right-skewed with the peak at 1 rest day. This shows that most NBA players only have 1 rest day 
between games. 
 

 



 
 
Additionally, as we compare the average rest days over time from 2002 to 2024, we can see that despite 
the increase in the average number of rest days, the average is still relatively low at 1.5 rest days in 2024. 
There is a small upward trend in the average number of rest days, but the difference is minimal over the 
12 years.  
 
III. Methods 

 
III. 1. Linear Models 

 
In our methodology, we first fit a baseline ordinary least squares regression of plus/minus on four 
predictors—scaled days since last game, scaled three‐game cumulative minutes, a binary rest indicator, 
and scaled opponent strength—assuming independent, homoskedastic Gaussian errors so that each 
coefficient reflects the change associated with a one‐standard‐deviation shift in its covariate. Because our 
data include repeated observations on the same athletes and teams (violating the OLS independence 
assumption), we next fitted a two‐level linear mixed‐effects model with random intercepts for athlete and 
team, treating both random effects and residuals as draws from zero‐mean normal distributions with 
variances estimated by restricted maximum likelihood. To capture the fact that some players and teams 
may benefit more or less from rest, we then extended this model to include random slopes on the rest 
indicator for both grouping factors. We compared these three nested models using AIC, BIC, and 
likelihood‐ratio tests, and we supplemented those criteria with marginal and conditional R-squared 
statistics to gauge how much variance is explained by fixed effects alone versus the full hierarchical 
structure. We also inspected residual‐versus‐fitted plots and normal quantile-quantile plots to verify that 
homoscedasticity and approximate normality held in each model. Finally, we report all fixed‐effect 
estimates with 95 percent confidence intervals (±1.96 times the standard error), and we compute 
prediction intervals for player-level intercepts to quantify uncertainty in our key rest and workload effects. 
This combination of OLS and mixed‐effects modeling, rigorous model comparison, and thorough 
uncertainty quantification provides a principled framework for answering how rest and recent workload 
influence NBA plus/minus while accounting for athlete and team heterogeneity. 

 



III. 2. Decision Tree 
 
We were interested in exploring how more complex approaches, such as Gradient Boosted Decision Trees 
(GBDT), might benefit from incorporating load management features. Specifically, we utilized XGBoost, 
which implements GBDTs in R very efficiently and is easy to use. We chose this approach for its ability 
to model potentially non-linear relationships between predictor variables (like rest days, minutes played, 
rolling averages) and the target variable (plus/minus) without requiring pre-defined interaction terms. 
GBDTs build an ensemble of decision trees sequentially, where each new tree attempts to correct the 
errors made by the previous ones. This allows the model to capture complex patterns and interactions in 
the data that might be missed by linear models. Furthermore, XGBoost includes built-in regularization 
techniques to prevent overfitting. To interpret the results of this complex model and understand the 
contribution of each feature to the prediction for individual games, we used SHAP (SHapley Additive 
exPlanations). SHAP values provide a way to decompose a prediction into the contribution of each 
feature, offering both local (per-game) and global (overall) insights into feature importance and impact 
direction, thereby complementing the coefficient-based interpretation of the linear models. Model 
performance was evaluated using standard regression metrics like Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), and R-squared on a held-out test set. 
 
 
IV. Results 
 

IV. 1. Linear Model Results 
 
We first evaluated fit and predictive performance across our three linear models. The OLS regression 
explains about 4% of the variation in plus/minus (R^2 = 0.0417, residual SD = 11.18). Introducing player- 
and team-level random intercepts in the mixed-effects model (LMER) reduces the residual SD slightly to 
10.99 and lowers AIC by roughly 1500 points. Allowing the rest-effect to vary by athlete and team 
(random slopes) yields a further AIC drop of ~320 and a highly significant likelihood-ratio test 
(ΔX^2(6)=331, p < 0.001), confirming that both baseline ability and the benefit of rest differ 
meaningfully across players and teams (see figure below). Despite these improvements, the residual SD 
of ~11 points highlights that a large share of game-to-game variability remains unmodeled. 
 
 
 

 



 
 
In our final random-slopes model, cumulative minutes over the past three games remains a robust positive 
predictor: a one-SD increase in workload corresponds to a +0.57-point gain in plus/minus (95% CI 
0.46-0.68), compared with +1.04 under OLS and +0.56 in the intercept-only model. Over a typical 
48-game season, this effect would accumulate to a swing of roughly 27 points—enough to flip several 
close outcomes and impact overall team success. The flatter slope under LMER illustrates how partial 
pooling tempers extreme OLS estimates (see figure below). 
 

 

 



Turning to rest, the load_mgmt indicator (“Rested” vs. “No Rest”) delivers a +1.21-point boost in 
plus/minus (95% CI 0.73-1.69) in the random-slopes model, down from +1.44 in OLS and +1.07 in the 
intercept-only model. This shrinkage again shows that OLS slightly overstates the rest effect when failing 
to account for which player and team are resting (see figure below). A consistent +1-point lift from rest, if 
applied strategically, could translate into improved rotation decisions and marginal win gains in tight 
contests. 
 

 
 
Finally, variance‐component estimates from the intercept‐only LMER reveal athlete‐level standard 
deviation ~1.60 points and team‐level SD ~1.18 points, compared with a residual SD of ~10.99. In 
practical terms, individual baselines vary by roughly ±1.6 points, teams by ±1.2, while most 
game‐to‐game variation remains driven by unmodeled factors. Overall, our linear and hierarchical 
analyses demonstrate that both moderate workloads and deliberate rest yield reliable, actionable gains in 
player plus/minus, even as substantial unexplained variability underscores the need to combine these 
insights with game-specific context and other performance factors. 
 
 

IV. 2. Decision Tree Results 
 
The XGBoost model was trained on the engineered features to predict player plus/minus. Evaluation on 
the test set yielded RMSE of 10.21, MAE of 7.87, and R^2 of 0.11. These metrics indicate somewhat low 
performance, but still non-trivial predictive power.  
To understand the contribution of each feature to the model's predictions, we employed SHAP analysis. 
The SHAP summary plot below reveals the global feature importance. 
 

 



 
 
We found that minutes (current game minutes) showed the highest overall importance, followed by 
opponent_strength_win_pct, team_strength_win_pct, minutes_roll_avg (5 game rolling average minutes), 
and prev_game_minutes (previous game minutes). Notably, the raw rest_days feature itself ranked 
relatively low in importance. 
 
SHAP dependence plots further illuminated the nature of these relationships. As shown in these figures, 
higher values for minutes_roll_avg and prev_game_minutes generally corresponded to negative SHAP 
values. 
 

 
 
This indicates that sustained high playing time or high minutes in the immediately preceding game tended 
to decrease a player's predicted plus/minus, quantitatively supporting the idea that fatigue or heavy usage 
can negatively impact performance within this model's framework. Conversely, the SHAP values for the 

 



features representing discrete rest day counts were clustered near zero across their range, reinforcing the 
finding that the number of rest days had minimal predictive power in the XGBoost model compared to 
workload and game context variables. 
 
V. Discussion 

 
The results of the linear models and the decision tree allow us to examine the relationship between rest 
and player performance as measured by plus/minus. We observe that rest days as a predictor variable are 
not shown to have a significant impact on plus/minus by player, as rest days was found to not be 
statistically significant throughout the linear models in addition to its low feature importance in the 
decision tree. Instead, player statistics related to minutes had greater predictive power in relation to a 
player’s plus/minus. Our findings suggest that NBA teams should focus on managing their player 
workload through considering the minutes that players play as opposed to rest days between player 
appearances. 
 
The linear mixed effects model shows a positive relationship between a player’s plus/minus from their 
cumulative minutes over their past three games as well as from their rested load management indicator. 
The XGBoost decision tree model suggests that high minutes in previous games can negatively impact 
player plus/minus, as measured through a player’s three game minutes rolling average and their previous 
game’s minutes. This difference in findings can be due to the different modeling techniques. The linear 
models assume a more straightforward relationship between the variables, while the decision tree may be 
capturing more complex, non-linear relationships in the variables. Additionally, where cumulative 
minutes can be correlated with star players in the linear model, the decision tree’s inclusion of current 
minutes in its features may help control for the effect of star player usage, providing insight into how 
excessive minutes in recent games can negatively impact performance. This apparent contradiction 
highlights the complex relationship between playing time, rest, and performance that may not be fully 
explained in linear models.  
 
Our approaches have several limitations that provide opportunities for additional research. One limitation 
in the implementation of the linear models is the focused variable selection in rest related metrics. The 
features used in the linear models relate primarily to player usage, with an additional variable considering 
the opposing team strength. Including additional player performance metrics that relate to their offensive 
or defensive abilities could provide further explanation for variability in plus/minus that is not currently 
explained. This may also enable a more-focused analysis that stratifies the player pool into buckets, 
allowing insight into how rest may affect performance differently for players with different roles.  
 
Another potential limitation across the various models used to perform this analysis is the response 
variable of plus/minus. Player plus/minus values can include noise from teammate and opponent 
contributions, and it may not capture a complete image of a player’s performance. Further analysis could 
be conducted on specific performance metrics such as true shooting percentage or player efficiency rating 
to assess whether rest affects specific elements of a player’s abilities. In this sense, while rest days may 
not affect player plus/minus as a whole, it may have an impact on player abilities and can be utilized in 
strategic circumstances where specialized types of play are emphasized.  
 

 



Our analysis provides insights into the relationship between rest and NBA player performance. Future 
research should expand on this work in a few directions. Firstly, stratifying players by age, position, and 
usage patterns could likely reveal more nuanced rest effects, as veterans or starting lineup players may 
benefit differently from workload management. Secondly, examining different performance metrics 
beyond plus/minus, such as shooting efficiency, clutch-time performances, and defensive metrics, could 
identify specific basketball skills that react differently to fatigue. Analysis in these areas could build on 
our findings and work towards developing practical load-management strategies, usable by NBA players 
and teams for better performances and winning outcomes. 
 
 
 
 

 


	Impact of Load Management on NBA Player Performance 
	I.Introduction 
	II.Data 
	III.Methods 
	III. 1. Linear Models 
	III. 2. Decision Tree 

	IV.Results 
	IV. 1. Linear Model Results 
	IV. 2. Decision Tree Results 

	V.Discussion 


