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Introduction

Our project explores what factors influence a player’s probability of making a shot, and how we
can model those probabilities to better understand shot selection. Many fans, coaches, and
players debate shot selection. Questions like "Is a layup better than an open mid-range jumper?"
or "Should teams avoid mid-range shots altogether?" are often answered anecdotally. However,
we wanted to analyze these questions empirically.

Understanding what makes a shot more or less likely to go in is important for multiple reasons.
First, shot selection is directly tied to offensive efficiency, and therefore to winning games.
Second, teams are increasingly relying on analytics to guide in-game decision-making, scouting
reports, and player development. Finally, modeling shot probability can also help identify
inefficiencies or tendencies in player behavior, which can be useful for both coaches and analysts
in developing better strategies.

In this project, we aim to model the probability that a shot will be made using predictors such as
shot distance, court location, defender proximity, quarter of the game, score differential (i.e.,
whether the team is leading or trailing), and shot type (e.g., 2-point vs 3-point attempts). We did
Generalized Additive Modeling to flexibly capture nonlinear relationships and spatial effects
while ensuring results are interpretable, and Multilevel Logistic Regression Modeling to account
for team-level variation in shot-making tendencies.

With these models, we looked to analyze both general and team-specific questions, such as how
shot probability varies with distance and location on the court, whether teams differ in their
baseline shooting accuracy or in how distance impacts their shot success, and whether game
context, such as the score or quarter, significantly affects shot probability.

Our analysis confirms that shot distance is the single strongest predictor of shot success, but
court location and shot type also play key roles, with “hot” zones near the corners and around the
basket.

Data

The data we used was from the ‘NBA 2023 Player Shot Dataset from Kaggle. We used three shot
charts from that dataset: one each for LeBron James (1,533 shots), James Harden (1,025 shots),

and Stephen Curry (1,434 shots). Each dataset records detailed shot-level information from the
2022-2023 NBA season.

Each shot entry includes ‘Court location’ (top, left coordinates for shot position), ‘Shot distance’
(in feet), Shot result (a binary variable of ‘made’ or ‘missed’), ‘Game context’ (quarter, whether
the team was leading, and game time remaining), ‘Shot type’ (2-pointer or 3-pointer), Opponent
and team info, Game date, and Scores.



To prepare the data for modeling, we merged all three player datasets into a single dataframe. We
also created a binary response variable (‘result_binary’) to indicate whether a shot was made
(‘1”) or missed (‘0’). We standardized logical variables like ‘lead’(whether the team was leading)
and ‘result’ to ensure consistency across players. We also converted categorical variables like
‘qtr’(the quarter) and ‘shot_type’ (2-pointer or 3-pointer) into factor variables.

During the model setup, we also excluded columns unrelated to prediction (like the date of when
the shot was taken), and we verified that spatial coordinates (top, left) were within the expected
ranges.



EDA

Before we do anything in an attempt to model the data, we first need to consider the types of shots being
made
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Here wee see that a similar amount of 2 point and 3 point shots are attempted, yet we see that 2 point shots
are successful more often then they are missed, while 3 point shots are missed almost twice as much as they
are successful.

Now lets take a look at where shots are being taken from.



Shot Distribution
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As we can see, there is a lot of overlap. Here we can see that using position as a predictor by itself may not
lead to the best results, and our models are going to require other predictors. The location around the hoop
does seem to be a hotspot, with a ring around the the 3 point curve.
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Finally we see that the most shots are being taken around 3 feet from the hoop for 2 pointers. For 3 pointers
we see that most shots are taken around 26 feet away from the hoop. For both of these locations, we also
see that the proportion of shots that are successful is higher around these hotshots as well (where wee see
the green bars for successful shots get larger in comparison to the red bars for unsuccessful shots). This
is showing that these hot spots could possibly exist as making shots from these spots does lead to more
successful shots on average for players, and that players have learned to shoot from there as a response. We
hope to demonstrate this later on through our modeling.



Methods & Results, Part One

What Will We Do? A Brief Abstract for “Methods & Results, Part
One”

We will fit a generalized additive model (GAM) and a multilevel logistic regression model. We will explain
and analyze both models, provide an example prediction, and conclude with a brief comparison.

Preparation

To begin with, the dataset includes three CSV files, each corresponding to a well-known player with distinct
playing styles and positions — LeBron James (small forward / power forward), James Harden (guard), and
Stephen Curry (point guard). We need to combine these three CSV files to obtain a comprehensive perspective.
However, it is also worth noting that although these three players provide a relatively broad view, bias may
still exist.

Additionally, data cleaning is necessary here and involves two main steps. First, we need to standardize the
values in the lead and result columns by converting all logical values to uppercase, ensuring consistency;
that is, converting True and False to TRUE and FALSE, respectively. Second, we will create a new variable,
result_binary, which will be set to 1 when result = TRUE, and 0 when result = FALSE.

Here are the first five rows of the new dataset shot:

##  top left date qtr time_remaining result shot_type distance_ft
## 1 310 203 Oct 18, 2022 1st Qtr 09:26 FALSE 3 26
## 2 213 259 Oct 18, 2022 1st Qtr 08:38 FALSE 2 16
## 3 143 171 Oct 18, 2022 1st Qtr 08:10 FALSE 2 11
## 4 68 215 Oct 18, 2022 1st Qtr 05:24  TRUE 2 3
## 5 66 470 Oct 18, 2022 1st Qtr 01:02 FALSE 3 23
## lead lebron_team_score opponent_team_score opponent team season color

## 1 FALSE 2 2 GSW LAL 2023 red

## 2 FALSE 4 5 GSW LAL 2023 red

## 3 FALSE 4 7 GSW LAL 2023 red

## 4 FALSE 12 19 GSW LAL 2023 green

## 5 FALSE 22 23 GSW LAL 2023 red

##  result_binary

## 1 0

## 2 0

## 3 0

## 4 1

## 5 0



Methods

Generalized Additive Model, Introduction
The first model I choose to fit is a generalized additive model (GAM).

First, a GAM is a good choice because it flexibly models the nonlinear relationships between predictors and
the probability of a made shot. In other words, unlike a simple linear model, a GAM can capture complex
patterns without manually specifying polynomial / interaction terms. Additionally, since we have a binary
outcome (i.e. made vs. missed shots), the logistic link function in a GAM naturally extends logistic regression
to more flexible shapes.

Second, a GAM can handle both categorical and continuous predictors smoothly, making it well-suited to
incorporate predictors like quarter, shot type, and location within the same model.

Last, the interpretability of the partial response functions plot of GAM is very helpful for understanding how
each predictor or combination of predictors influences the shot probability. In simpler terms, a GAM has a
good balance between flexibility and interpretability.

Generalized Additive Model, Explanation

The formula of the GAM is:

result_binary ~

s(distance_ft) + s(top, left) +

factor(shot_type) + factor(qtr) + factor(lead).

That is, we predict the “Result” from “Distance”, “Court Location”, “Shot Type”, “Quarter”, and “Lead”.
Why these predictors?

1. Distance (distance__ft)

Shot distance is one of the strongest predictors of shooting success. Longer shots are typically more difficult.
The relationship need not be linear, and a smooth term s(distance_ft) can capture this nonlinearity.

2. Court Location [(top, left)]

Shots from different areas have different success rates. For example, “corner three-pointers” differ from “above
the break three-pointers”. A two-dimensional smooth term s(top, left) can capture these spatial patterns.

3. Shot Type (shot__type)

There is a fundamental difference in accuracy and intent between two-point attempts and three-point attempts,
so including it as a factor variable factor (shot_type) is important.

That is, we factor shot_type because it represents two fundamentally different categories. There is a unique
jump in difficulty between two-point and three-point attempts, and players have different intentions on
two-point and three-point attempts.

Moreover, it is also worth noting that leaving shot_type as numeric may confound the effect of distance_ft.

4. Quarter (gtr)

Shooting percentages may differ by quarter (1st, 2nd, 3rd, 4th, OT). That is, late-game tension or fatigue
could matter. Thus, including it as a factor variable factor(qtr) is crucial.

In other words, similarly to shot_type, qtr is best treated as a discrete category because each quarter can
have unique conditions.



5. Lead (lead)

Players may face different defensive pressure and change their shot selection strategy, so including it as a
factor variable factor(lead) is useful.

Why s(top, left), not s(top) + s(left)?

s(top, left) creates a two-dimensional smooth surface that captures how shot probability varies across
the combined values of top and left. In contrast, s(top) + s(left) only models separate effects for each
coordinate and cannot represent interactions.

In other words, s(top, left) allows the model to learn how different combinations of top and left positions
affect shot outcomes. This is very crucial since specific court locations often have unique shooting patterns
that cannot be explained by simply adding the two coordinates.

Therefore, s(top, left) is more reasonable for modeling basketball shot data, and if we only used s(top)
+ s(left), we may miss critical hot spots or cold spots where players shoot differently.

Additionally, the answer to this question can also explain why we can have both s(distance_ft) and s(top,
left) in the model. Distance and (top, left) capture different aspects of shot location — distance only
measures how far away the shooter is, while (top, left) provides the spatial context on the court — so the
model can benefit from both simultaneously without redundancy.



Multilevel Logistic Regression Model, Introduction
The second model I choose to fit is a logistic regression model with varying intercepts and slopes.

Varying Intercepts: Different teams may have different baseline probabilities of making a shot. Allowing
each team to have its own intercept captures variations in overall shooting skill.

Varying Slopes: Teams may also differ in how shot distance affects their probability of success. For example,
some teams may be less impacted by taking longer shots, while others may have a sharp decline in accuracy.
Hence, we allow the coeflicient of distance_ft to vary by team.

And again, we include shot_type because two-point and three-point shots typically have different success
probabilities, so it captures a key difference in shot difficulty and player intention; we include lead because
whether a team is ahead or behind can influence shot selection and player performance, reflecting both
situational and psychological factors.

However, it is worth noting that this model would face some limitations, as the shot dataset is derived from
the performance of a few players (as previously mentioned) — each associated with a limited number of teams.
And thus, to some extent, we may understand teams as roughly equivalent to players in this context.

Multilevel Logistic Regression Model, Explanation
The formula of the multilevel model is:

result_binary -~

factor(shot_type) + factor(lead) + distance_ft +

(1 | team) + (0 + distance_ft | team),

or:

result_binary ~

1 + factor(shot_type) + factor(lead) + distance_ft +

(1 | team) + (0 + distance_ft | team).

(The two specifications above are functionally the same in R since, by default, R includes an intercept in the
model.)

Response of the Model & What Probability Distribution It Follows
Let Y;; represent the outcome (shot i by team j):

1 (shot made)

Y;; = result _binary =
Y - y {O (shot missed)

We assume:

Yi; ~ Bernoulli(p;;).



All of the Relevant Levels
Level One:

log : Py _ a;j + fjdistance_ft;; + 11 shot_type;; + 72 lead;;.
— Dij

Where:

a; is team j’s intercept (random intercept);

B; is team j’s slope on distance_ft (random slope);
v1 is the fixed effect for shot_type;

o is the fixed effect for lead.

Level Two:

Olj:a0+Uj

Bj = Bo +v;

The Composite Model

% = (ao + Bo distance_ft;; + 71 shot_typeij + Y2 1eadij) + (uj + v distance_ft,;j) .

fixed effects random effects

How many parameters are we estimating?

We need to estimate six parameters: ag, (o, 02, 02, 71, Yo

We do not estimate the covariance between the random intercept and slope terms since our model assumes it
equals 0.



Results

Generalized Additive Model, Summary

##
## Family: binomial
## Link function: logit

##

## Formula:

## result_binary ~ s(distance_ft) + s(top, left) + factor(shot_type) +
## factor(qtr) + factor(lead)

##

## Parametric coefficients:

#it Estimate Std. Error z value Pr(>|zl)

## (Intercept) -0.90697 0.34051 -2.664 0.00773 *x*

## factor(shot_type)3 0.27020 0.32645 0.828 0.40784

## factor(qtr)lst Qtr 0.51898 0.31493 1.648 0.09937 .

## factor(qtr)2nd 0T -0.76866 1.13056 -0.680 0.49657

## factor(qtr)2nd Qtr 0.47598 0.31377 1.517 0.12927

## factor(qtr)3rd Qtr 0.47591 0.31435 1.514 0.13004

## factor(qtr)4th Qtr 0.42430 0.31396 1.351 0.17655

## factor(lead)TRUE 0.49034 0.06685  7.335 2.21e-13 *xx

## ——-

## Signif. codes: O '**%xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Approximate significance of smooth terms:

## edf Ref.df Chi.sq p-value

## s(distance_ft) 5.251 6.405 113.147 <2e-16 ***

## s(top,left) 2.002 2.003 3.706 0.157

## -—-

## Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

First, let’s take a look at the summary. Here is the interpretation:
1. Parametric Coefficients:

— The “Intercept” is negative (-0.90697), indicating that, at the reference categories (shot_type = 2, qtr =
1st 0T, and lead = FALSE), the log-odds of making a shot is below 0.

— shot_type(3) has a positive estimate (0.27020) but a high p-value (0.40784), so there is no strong evidence
that three-point shots differ from two-point shots in odds of success, controlling for the other terms in the
model. In other words, after accounting for the effects of other predictors, the adjusted odds suggest a
non-significant advantage for three-pointers.

— The qtr coefficients are all positive except for 2nd 0T (-0.76866), but none are statistically significant (p >
0.05). This suggests that there is no distinct difference in shot-making probability by quarter.

— The lead factor shows that having a lead yields a significantly positive coefficient (0.49034 with p =
2.21e-13 < 0.05), suggesting higher odds of making a shot when the team is leading.

2. Smooth Terms:

— s(distance_ft) has an EDF of 5.251, a highly significant p-value (p < 2e-16 < 0.05), and a large chi-
square (113.147). This implies that distance from the hoop is a very important predictor of whether a shot
goes in.

— s(top, left) has an EDF of 2.002 and a p-value of 0.157, indicating that the two-dimensional location on
the court does not have a statistically strong effect beyond distance in this model.



3. Conclusion

Overall, the summary shows that distance from the hoop is by far the most crucial predictor, the effect of
leading is significantly positive, and the 2D location does not appear strongly predictive once the distance is
considered.

Generalized Additive Model, Visualization
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Next, let’s take a look at the partial response functions.

The panel on the left shows the partial effect of distance on the log-odds of making the shot, while the panel
on the right is a visualization of (top, left).

1. In the left plot:

The solid line is the estimated smooth effect of distance_ft on the log-odds of a made shot, and the dashed
lines represent the approximate confidence interval.

The odds of making the shot decrease fairly rapidly with a distance from about 0 to 7 feet, then become
stable until about 20 feet, and the decline becomes a bit steeper again to the end (though not as steep as the
initial drop, and with wide error margins).

2. In the right plot:

This is a slice of the surface s(top, left) along with the raw shot locations. Since this term is not highly
significant, the estimated partial effect is relatively flat; this also means that once the distance is accounted
for, there is no strong additional pattern in the (top, left) coordinates.



Generalized Additive Model, Application & Uncertainty

Table 1: Predicted Probability of Making a Shot with 95% CI

Probability Lower_ 95 CI  Upper_95_ CI
0.4361842 0.3850354 0.487333

The last part accounts for the uncertainty estimates and the application of the GAM model.
We want to predict the probability of making a shot, with a 95% confidence interval, that:
1. Distance from the hoop = 25 feet;

2. Shot location = (top = 200, left = 100);

3. Three-pointer in the 4th quarter, leading when the shot was attempted.

Table 1 shows the results. The probability of making a shot is 0.4361842, the lower bound of the 95% CI is
0.3850354, and the upper bound is 0.487333.



Multilevel Logistic Regression Model, Summary

## Generalized linear mixed model fit by maximum likelihood (Laplace

##  Approximation) [glmerMod]

## Family: binomial ( logit )

## Formula: result_binary ~ factor(shot_type) + factor(lead) + distance_ft +

#t (1 | team) + (0 + distance_ft | team)

## Data: shot

##

## AIC BIC 1loglLik deviance df.resid
## 5212.8 5250.6 -2600.4 5200.8 3986
##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -1.8578 -0.8833 -0.5649 0.9472 2.2250

##

## Random effects:

## Groups Name Variance Std.Dev.

## team  (Intercept) 0.098717 0.31419
## team.l distance_ft 0.000301 0.01735
## Number of obs: 3992, groups: team, 3

##

## Fixed effects:

#it Estimate Std. Error z value Pr(>lz])
## (Intercept) 0.45776 0.19644 2.330 0.0198 =*

## factor(shot_type)3 0.59303 0.15081 3.932 8.41e-05 *x*x
## factor(lead)TRUE 0.50396 0.06659  7.568 3.79e-14 *x*x*

## distance_ft -0.06966  0.01226 ~-5.684 1.32e-08 %k
# -
## Signif. codes: O 'kkx' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

1. Random Effects:

— The random intercept for teams has a variance of 0.098717, corresponding to a standard deviation of 0.31419,
which indicates that baseline log-odds of making a shot vary by 0.31419 across teams.

— The random slope for distance_ft shows a variance of 0.000301, corresponding to a standard deviation of
0.01735, suggesting that there is only a small difference across teams in how distance from the hoop affects
the log-odds of making a shot.

2. Fixed Effects:

— The “Intercept” is 0.45776, implying that at zero distance, with a two-point shot and not in the lead, the
log-odds of making a shot is 0.45776.

— For shot_type, the estimate for factor (shot_type) 3 is 0.59303, meaning given distance and other variables,
three-point shots have 0.59303 higher log-odds of success compared to two-point shots. Moreover, this is
statistically significant since p-value = 8.41e-05 < 0.05.

— Regarding lead, the estimate for factor (lead) TRUE is 0.50396, indicating that being ahead increases the
log-odds of making a shot by 0.50396. Additionally, this is statistically significant since p-value = 3.79e-14
< 0.05.

— Finally, the distance_ft effect is -0.06966, meaning each additional foot from the hoop reduces the log-odds
of success by 0.06966, which is a 1 - exp(-0.06966) = 0.06728911 decrease in odds per foot. This is also
statistically significant since p-value = 1.32e-08 < 0.05.



3. Overall, from the summary, we find:
— Being in the lead increases the likelihood of a successful shot.

— After controlling for other factors in the model, three-point shots appear to be more accurate than two-point
shots. Moreover, it is important to note that I state “controlling for other variables” when explaining the
shot_type variable in both models. It is because in practice, a three-pointer is almost always taken farther
from the hoop. If we compare predicted probabilities at typical real distances for each shot type, the overall
probability for the three-pointer is likely to be lower.

— Increased distance lowers the odds of success.

— There is a measurable variation across teams in their baseline shooting (random intercept), and a very small
variation in how distance affects each team (random slope).

What Did We Learn? A Brief Conclusion for “Methods & Results,
Part One”

We fitted two models, a generalized additive model (GAM) and a multilevel logistic regression model. Each
of these models has its strengths and weaknesses. The generalized additive model is more broadly applicable
but less accurate, primarily because many predictor estimates are not statistically significant. In contrast, the
multilevel logistic regression model is more accurate, with statistically significant estimates for all predictors.
However, as we mentioned before, this model faces limitations, since the data are derived from the performance
of only a few players / teams.

Moreover, both models indicate that “being in the lead” and “distance from the hoop” are critical factors
influencing shot success, as these two variables are statistically significant in both models.
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Visualizing Both Models

In order to better understand these models, lets make some contour plots. To make this contour plot, we
simply got the predicted output of the models, and then interpolated them into a grid which we could plot.

Multilevel Logistic Contour Plot
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For the Multilevel Logistic Regression Model, we can see there are not strict cut offs. There is much overlap
for what areas are for each range of probabilities. We see that like earlier EDA results concluded, there is a
hot spot around the hoop. We can also see the curve of the 3 point line represented with the curve near the
top of the chart, where we couldn’t interplate the data (due to there being insufficient observations there).
We then continue and repeat this process with the GAM to get a better understanding of the model.



GAM Contour Plot
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Here we see that once that once again there is much overlap with the levels, but less so than with the
Logistic Regression Model. However, we see that around the hoop, our predictions seem to be much more
uniform and consistent, while also being predicted as being more successful than with the Multilevel Logistic
Regression Model. We also see that there seems to be a bit off a preference to the right side short corner,
with a higher contour level being seen there.



Discussion

According to the statistical methods applied in this study, namely the generalized additive model
(GAM) and the multilevel logistic regression model, we have constructed a framework to
examine the factors that influence the probability of a successful basketball shot. These models
allow for a detailed analysis of how various contextual variables, such as shot distance, spatial
court location, game quarter, and whether the team was leading at the time of the shot, interact to
shape outcomes.

The models were trained on shot-level data from three prominent National Basketball
Association players, each with a distinct playing style and positional role: Stephen Curry, James
Harden, and LeBron James. This sample captures a wide range of offensive strategies, including
high-volume three-point shooting, midrange isolation play, and physical interior scoring. While
this diversity in play style offers valuable variety in shot types and court zones, it also introduces
several limitations in the generalizability of our conclusions.

We agree the dataset is inherently biased toward elite players whose shot selection and skill
levels differ meaningfully from the average NBA player. The players represented are often
tasked with taking high-difficulty or late-clock shots and they operate with a high degree of
offense. As such, shot success probabilities derived from this dataset may be skewed toward
scenarios involving elevated decision-making autonomy. This limitation poses a challenge in
extending our findings to broader populations, such as defense-role players, developmental
athletes, or amateur participants in training.

From a statistical perspective, the use of the GAM allowed us to model nonlinear relationships
between predictors and the log odds of a made shot. The inclusion of smooth terms for shot
distance and two-dimensional court location enabled the identification of curvature in the shot
success function, which would not be detectable under a standard logistic model with linear
effects. The estimated degrees of freedom for the distance-based smooth term was over five,
indicating a relatively non-monotonic effect that aligns with basketball intuition: success
probability falls sharply within the first few feet from the basket, levels off in the midrange, and
decreases again with longer three-point attempts. However, the smooth term for spatial location
did not yield statistical significance, suggesting that the information contained in exact court
coordinates may be mostly captured by distance alone in the absence of defender data.

In parallel, the multilevel logistic regression model was deployed to incorporate group-level
variability across teams. By introducing random intercepts and random slopes for shot distance at
the team level, we aimed to account for systematic differences in team offensive systems and
player-shot selection behavior. Although the model revealed modest variation in baseline shot
success rates across teams, the random slope component for distance exhibited very low



variance. This suggests that across the few teams present in the dataset, the way distance impacts
success probability is relatively uniform. The limited random effect observed also reinforces the
importance of expanding the dataset in future analyses, as more variability may become apparent
with a wider sample of teams.

To deepen our understanding of the dataset, EDA was also performed at the beginning. We
examined shot types, distances, and positional trends visually through bar plots and scatterplots.
This initial analysis reaffirmed several intuitive observations: two-point shots had a higher
overall success rate compared to three-point attempts, and made shots clustered more densely
near the basket. Binning the court into segments along the left and top dimensions also revealed
that the raw location of shots, when not adjusted for distance, displays clear density patterns of
made and missed shots.

In addition to fitting the two models, we used their outputs to generate shot prediction plots
across the court. By mapping predicted probabilities spatially, we were able to visualize how the
GAM and multilevel logistic regression models differ in their predictive focus. The GAM
prediction map appeared smoother due to the nonlinear terms, while the multilevel model
produced a slightly more rigid probability surface reflecting its reliance on fixed and random
linear effects. Bar plots comparing predicted success by shot type further highlighted the models'
practical implications, showing that both models captured the known difficulty gap between
two-point and three-point shots.

However, several challenges were identified when attempting to build alternative models. The
dataset lacked detailed play-by-play context, including identifiers for specific players involved
during each play, which prevented the construction of more lineup-level effects. This limitation
suggests that more detailed data sources would be necessary for future extensions involving
player-specific evaluation.

Both models consistently confirmed the statistical significance of two key variables: shot
distance and whether the player’s team was leading at the time of the attempt. The positive
coefficient associated with the lead variable suggests that performance may be modulated by
psychological or strategic conditions. Teams that are ahead may face less defensive pressure or
may take better shots, while players may also be more confident. This finding could be explored
more rigorously using causal inference frameworks in future work.

Despite the usefulness of the dataset, additional variables not currently present would greatly
enhance the robustness and scope of the models. Defender proximity, player fatigue, assist
origin, and shot clock context are all potential features that could refine the analysis substantially.
These features could allow for hierarchical modeling not only at the team level but also nested
within player-defender pairings, offering deeper insight into matchup-based efficiencies.



Moreover, resampling strategies such as the bootstrap could be implemented to assess model
stability across random draws of shot attempts. For Bayesian extensions, incorporating prior
distributions on team-level effects could help stabilize inference in small-sample or
high-variance contexts. Hierarchical shrinkage estimators may also reduce overfitting in random
slopes when the number of levels is limited. In addition, assessing model calibration through
log-loss or Brier score could provide insight into predictive accuracy beyond traditional
classification metrics.

Finally, an extension of this study could involve the application of time-varying coefficients to
account for within-player correlation over time. Such frameworks are particularly appropriate if
longitudinal data over multiple seasons becomes available. Generalized estimating equations
would allow for population-averaged estimates while accommodating repeated measures,
thereby enabling the examination of changes in player behavior or efficiency over a career.

Conclusion

This study has examined the factors contributing to the success of basketball shots through the
application of statistical models capable of capturing both nonlinearity and hierarchical structure.
The analysis successfully addressed the original question of interest by identifying key drivers of
shot success and by quantifying the role of contextual factors.

The key findings of this research include the following listed below.

First, shot distance remains the most consistent and influential predictor of success probability.
The decline in shooting efficiency is steepest within the first several feet of the basket and
continues more gradually over longer distances. This confirms longstanding basketball heuristics
regarding shot quality. Second, being in the lead at the time of the shot attempt is associated with
increased shot success, a pattern that may reflect reduced defensive intensity, psychological
confidence, or optimized shot selection when playing with a scoring cushion. Third, spatial court
location, while intuitively important, does not demonstrate statistical significance in our
generalized additive model once shot distance is included. This may be due to the high
correlation between distance and location, or the absence of other variables such as defensive
alignment.

Looking forward, there are numerous ways this analysis can be expanded. With more
comprehensive data, researchers could examine how shot success varies across defender
matchups, team tactics, or pace of play. Exploring temporal effects such as changes in player
behavior during close fourth quarters or in transition versus half-court sets could provide further
clarity. Additionally, modeling interdependencies between teammates on the floor could reveal
synergistic effects that influence shot quality.



From a practical standpoint, the insights derived from this study are relevant for a wide range of
basketball players, professional and recreational. Professional teams can use similar models to
inform shot selection guidelines, simulate game scenarios, or develop targeted player
development programs. Coaches at the collegiate and high school levels could implement
efficiency-driven training practices informed by data on high-probability zones and situational
shooting trends. For recreational players, adopting a data-informed perspective could translate
into improved decision-making during competitive or casual play. Understanding which factors
significantly increase shot success may allow non-professional athletes to adjust their shot
selection and practice habits more intelligently.

Ultimately, this research report underscores the value of statistical modeling in sports analytics
and highlights the potential for data to inform not only professional competition but also the
broader basketball community. By quantifying performance drivers and embedding them into a
flexible modeling framework, we open the door to ongoing innovation in how basketball
gameplay is taught and understood.
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