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1 Introduction

Basketball games are often decided by momentum swings and decisive scoring runs. A sudden
12-0 run can shift a game’s outcome, and these surges are not always driven by household
superstars. Our project asks: Who are the undervalued NBA players that contribute most
to scoring runs, especially when their team is trailing? This question is important because
many role players or young talents provide critical sparks that go beyond what traditional box
score statistics capture. Identifying these players can help teams recognize hidden strengths
and market inefficiencies.

We tackle this problem by analyzing detailed play-by-play data from the 2024–2025
NBA season. We introduce novel metrics to quantify a player’s impact during scoring runs
and specifically during comeback situations. Using these metrics, we develop predictive
models to evaluate player contributions in context, controlling for factors like team strength,
playing time, and salary. By examining which players consistently outperform expectations
in momentum-shifting moments, we aim to highlight under-the-radar contributors who may
be undervalued relative to their impact. In this report, we describe our data collection and
feature engineering, present exploratory data analysis, outline our modeling approaches, and
discuss results including model performance and identified standout players. In summary, our
team-by-team regression models achieved roughly a 15–20% reduction in RMSE compared
to the baseline, and residual analyses highlighted under-the-radar contributors—such as
Shaedon Sharpe and Jalen Green—who consistently exceed expectations in scoring runs and
comebacks.

2 Data

We constructed a comprehensive dataset from multiple sources covering the entire 2024–2025
NBA regular season. The primary data came from detailed play-by-play logs (sourced via
the cdnnba repository), which provided information on every scoring event and context. We
supplemented this with team statistics from NBA Advanced Stats (team advanced stats) and
player information from Basketball Reference (including advanced metrics and salary data).
After cleaning and merging these sources, our dataset included over 600,000 play-by-play
entries distilled into player and team performance indicators during scoring runs.
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From the play-by-play data, we identified segments corresponding to scoring runs (e.g.,
a 9-0 run or a 13-4 run). We detected scoring runs by scanning play-by-play data to identify
uninterrupted periods where one team accumulated a significant point differential, grouping
plays by a unique runId, and recording team performances during these stretches. For each
run, we computed each player’s contributions: points scored, assists leading to run points,
steals, blocks, and fouls drawn. These contributions were then aggregated by player across
the season to form our key response variables. We engineered two novel metrics to quantify
impact:

• RunImpactScore: A player’s total contribution during all scoring runs, combining
points and high-impact plays. We computed this as

RunImpactScore = RunPoints + 2.3× RunAssists + 1.2× RunSteals

+ 1× RunBlocks + 1.5× RunFoulsDrawn.

essentially a weighted sum of the player’s offensive contributions during runs.

• TrailingImpactScore: A player’s total contribution during scoring runs while their
team was trailing, calculated with the same formula but considering only runs where
the player’s team was behind. This metric highlights a player’s impact in comeback
situations.

In addition to these run-based metrics, we gathered a variety of features for each player
to use in modeling. These included advanced individual metrics like Player Efficiency Rat-
ing (PER), Win Shares (WS), Box Plus/Minus (BPM), Usage Rate (USG), etc. We also
incorporated team-level stats such as team net rating and pace, since team context can in-
fluence opportunities for runs. Each player’s annual salary was included as a proxy for their
market value. The final dataset has one entry per player for the season, containing their
RunImpactScore, TrailingImpactScore, and all aforementioned features. We standardized
all continuous features to have mean 0 and unit variance to ensure fair comparison and to
aid in model training.

Exploratory Data Analysis: Before modeling, we performed exploratory analysis to
understand patterns in scoring runs at both the team and player levels. We visualized three
aspects of the data (Figures 1–3) to glean key insights:

Team runs created vs. runs allowed: Figure 1 plots each team’s average runs created
minus runs allowed per game, showing that every team with a positive net run made the
playoffs.

Player run points vs. usage rate: Figure 2 shows a positive relationship between player
run points and usage rate, with efficient outliers like Mikal Bridges punching above their
usage.

Player performance when trailing: Figure 3 compares run points when trailing, highlight-
ing role players who elevate performance under pressure—often on lower-ranked teams.

These insights confirm that non-superstars drive momentum swings and motivated our
inclusion of usage rate and team-level features in the modeling stage.
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Figure 1: Team Runs created vs. runs allowed

Figure 2: Player usage rate vs. run points

3



Figure 3: Player run points vs. trailing run points

3 Methods

We employed a series of models to predict player impact scores and identify players who
outperform expectations. Our approach progresses from simple linear regression to more
complex methods accounting for feature selection, nonlinearity, and team context. Residual
analysis is the main tool to spot players who contribute more during runs than expected.
Below we outline each model:

1. Baseline Linear Regression. We first fit a multiple linear regression to predict a
player’s RunImpactScore using established metrics: Salary, PER, USG, TS%, TOV%,
WS, BPM, and VORP. This model serves as an interpretable benchmark for expected
contributions based on a player’s overall stats and salary. We applied the same predic-
tors to TrailingImpactScore. After fitting, we computed residuals (Actual−Predicted),
where large positive residuals identify players who exceed conventional expectations
during scoring runs. We assume a linear relationship between the predictors and re-
sponse with independent, homoscedastic, normally distributed errors.

2. Lasso Regression. Next, to allow a wider set of features (including team-level met-
rics) and perform automatic variable selection, we employed Lasso regularized regres-
sion. The Lasso optimizes

β̂ = argmin
β

{ n∑
i=1

(yi −Xiβ)
2 + λ

p∑
j=1

|βj|
}
,

which adds an L1 penalty to shrink less informative coefficients to zero. We stan-
dardized all predictors before fitting and used cross-validation to choose λ. The Lasso
model retained a subset of the most predictive features for RunImpactScore, such as
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usage rate, win shares, BPM, and certain team efficiency metrics. We again exam-
ined model residuals to find players with unusually high impact given the features
selected. We assume the underlying linear model assumptions—linearity, independent
and homoscedastic Gaussian errors—hold, with the L1 penalty enforcing sparsity.

3. Generalized Additive Model (GAM). To capture potential nonlinear relation-
ships, we fit a GAM with smooth spline terms for key continuous predictors (e.g.,
Salary, PER, TS%) and included a fixed effect for each player’s team. For example:

RunImpactScore ∼ s(Salary) + s(PER) + s(USG) + s(WS) + s(BPM) + · · ·+ Team ,

where s(·) denotes a spline. The smooth terms allow for effects like diminishing re-
turns (e.g., the marginal impact of an extra point of PER might decrease at higher
PER values). Including Team as a predictor gives each team its own baseline ad-
justment, helping control for team-level differences in playing style and pacing. We
fit analogous GAMs for TrailingImpactScore as well. We assume the response is an
additive combination of smooth functions plus independent, homoscedastic, normally
distributed errors.

4. Team-by-Team Linear Models. As an alternative way to account for team context,
we fit separate linear regressions for each team’s players. These models use the same
form as the baseline (Salary and advanced stats) but are trained on one team at a time,
yielding 30 distinct models. This approach lets the intercept and coefficients vary freely
by team. It highlights which players on a given team exceed that team’s expectations.
However, because each team model is independent, residuals from different teams are
not directly comparable across the league. The team-by-team approach tends to fit
within-team performance very well. We assume that within each team’s data the usual
linear regression conditions hold: linearity, independent and homoscedastic Gaussian
residuals.

5. Multilevel (Hierarchical) Model. Finally, we implemented a multilevel linear
model with a random intercept for each team. For RunImpactScore:

RunImpactScoreij = β0 + β1Salaryij + β2PERij + · · ·+ u0j + ϵij ,

where i indexes players and j indexes teams. The random term u0j ∼ N(0, σ2
u) lets each

team have its own baseline after adjusting for player-level predictors. This approach
“borrows strength” across teams, informing the overall regression while allowing team-
specific deviations. We fitted the model using lme4, aiming for more robust estimates,
especially for teams with fewer players, and more comparable residuals across teams.
(A Bayesian variant was also attempted but failed to converge reliably.) We assume
player-level residuals are independent and normally distributed with constant variance,
and that team-specific random intercepts follow a normal distribution.

Across all models, our primary interest lies in players with large positive residuals, as
these are the individuals performing better in scoring runs than expected.
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After fitting each model, we evaluated the predictive performance using RMSE and MAE
metrics. To assess the stability of these estimates, we applied cross-validation across mul-
tiple data folds. Additionally, we used bootstrapping to generate 95% confidence intervals,
providing a measure of uncertainty around the performance metrics.

Most importantly, we analyzed residuals to compile rankings of players who most ex-
ceeded model expectations, emphasizing multilevel model residuals as the most context-
aware measure. We also examined team-level random effects to identify teams systematically
exceeding or underperforming expectations.

4 Results

We evaluated five models—Baseline, Lasso regression, GAM with team features, Team-
by-Team models, and a Multilevel Team model—on predicting RunImpactScore and
TrailingImpactScore. Performance is summarized using RMSE and MAE (mean ± 95%
CI). Models incorporating team-specific effects and nonlinear terms generally outperformed
simpler baselines, particularly for trailing-run contexts. We now detail model performance
for each target and use residuals to identify players who exceeded or underperformed relative
to expectations.

Table 1: Model performance metrics (RMSE and MAE) with 95% CIs for predicting RunIm-
pactScore

Model RMSE MAE

Baseline 59.4± 7.8 42.9± 3.6
Lasso 68.7± 7.5 50.8± 4.5
GAM + Team 64.7± 7.2 46.6± 4.0
Team-by-Team 50.0± 4.7 37.5± 3.0
Multilevel Team 67.1± 7.2 49.1± 4.1

RunImpactScore Model Performance: For predicting RunImpactScore, the Team-
by-Team approach achieved the best accuracy. It obtained an RMSE of 50.0 ± 4.7 and
an MAE of 37.5 ± 3.0, substantially outperforming the Baseline model (RMSE 59.4 ± 7.8,
MAE 42.9 ± 3.6). This indicates that accounting for team-specific dynamics reduces error
by roughly 15–20% relative to a generic approach. By contrast, the Lasso model performed
worse than the baseline (RMSE 68.7±7.5, MAE 50.8±4.5), suggesting that a strictly linear
fit with heavy regularization failed to capture important features of run performance. The
GAM + Team model (which allows nonlinear effects and includes team as a predictor)
showed moderate improvement over Lasso, with RMSE 64.7 ± 7.2 and MAE 46.6 ± 4.0.
However, even this GAM did not match the baseline’s accuracy for RunImpactScore. The
Multilevel Team model also underperformed (RMSE 67.1±7.2, MAE 49.1±4.1), possibly
due to oversmoothing or limited data per team. In summary, for RunImpactScore the only
method that clearly improved on the baseline was the Team-by-Team model, implying that
individual team contexts have a large impact on a player’s run contributions. The 95%
confidence intervals for Team-by-Team’s error metrics did not overlap with those of the
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Figure 4: Top 20 overperformers by RunImpactScore

weaker models, indicating a statistically significant gain in predictive power. For example,
Team-by-Team’s MAE (37.5± 3.0) is noticeably lower than the baseline’s (42.9± 3.6), while
other models’ intervals overlap with or even exceed the baseline error, reinforcing the benefit
of the team-specific approach.

Table 2: Model performance metrics (RMSE and MAE) with 95% CIs for predicting
TrailingImpactScore

Model RMSE MAE

Baseline 21.5± 1.8 16.3± 1.3
Lasso 21.1± 1.6 16.4± 1.2
GAM + Team 19.6± 1.7 15.1± 1.2
Team-by-Team 14.9± 1.3 11.3± 0.9
Multilevel Team 20.5± 1.7 15.8± 1.2

TrailingImpactScore Model Performance: A similar pattern was observed for the
TrailingImpactScore, with even more pronounced differences. The Baseline model had an
RMSE of 21.5± 1.8 and MAE of 16.3± 1.3. The Team-by-Team model again yielded by far
the lowest error (RMSE 14.9± 1.3, MAE 11.3± 0.9), representing roughly a 30% reduction
in RMSE compared to baseline. The advantage of incorporating team-specific models is evi-
dent: the Team-by-Team 95% CI ranges (e.g., RMSE 13.6–16.2) do not overlap with those of
the Baseline (19.7–23.3), confirming a significant improvement. The GAM + Team model
also improved on the baseline, achieving RMSE 19.6± 1.7 and MAE 15.1± 1.2. In contrast
to the RunImpactScore case, even the GAM’s performance here is meaningfully better than
Baseline (CIs barely overlap). The Lasso model for TrailingImpactScore was on par with
baseline (RMSE 21.1±1.6, MAE 16.4±1.2), underscoring that without allowing nonlinearity
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Figure 5: Top 20 overperformers by TrailingImpactScore

or team factors, the model cannot gain predictive accuracy in this context. The Multilevel
Team model (RMSE 20.5± 1.7, MAE 15.8± 1.2) showed a slight improvement over baseline
but was still far worse than the Team-by-Team approach. These results demonstrate that
players’ performance when their team is trailing is highly dependent on team context and
possibly nonlinear interactions – a one-size-fits-all model struggles to capture these patterns.
Including team-specific effects (either via separate team models or as features in GAM) sub-
stantially tightened the error bounds and increased accuracy for the trailing scenario.

Residual Analysis of Player Impact: To understand which players the models strug-
gled with, we analyzed the residuals. Positive residuals indicate players who overperformed
relative to model expectations. The Team-by-Team model’s residuals were examined since
it was the best predictor – any remaining large residuals highlight exceptional cases.

In Figure 4, the top residuals from the multilevel model based on RunImpactScore –
how players perform during scoring runs. These players, ranked by decreasing residuals,
exceeded the model’s expectations the most. While you’ll definitely spot superstars like
Stephen Curry, we also see rising young talents like Shaedon Sharpe, Stephon Castle,
and Keyonte George. Veterans like Russell Westbrook still offer steady momentum-
driving contributions, as he always does.

In Figure 5, the lollipop plot for TrailingImpactScore highlights players who shine when
their team is behind and under high pressure. Some names reappear, like Jalen Green,
Jonathan Kuminga, andMalik Beasley, showing that they’re reliable in both momentum
and adversity. Expanding this list beyond the top 20, even more under-the-radar talents
emerge as consistent momentum shifters for their teams. Again, by focusing on residuals
from a multilevel model, we reveal underappreciated contributors – often overlooked by
standard evaluations – that teams might be undervaluing.
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5 Discussion

This study introduced a new way to evaluate NBA players by focusing on their impact
during scoring runs and comebacks. By moving beyond traditional box score stats, we
identified undervalued players who consistently spark momentum shifts. Our results showed
that accounting for context—both non-linear effects and team adjustments—is crucial. The
multilevel model, which separated player effects from team style, emerged as the best method,
providing both strong predictive performance and interpretable residuals.

One major takeaway is that many players add hidden value not reflected in season aggre-
gates. Players highlighted in our residual analysis often act as “igniters,” delivering bursts
of energy or critical defensive plays that swing momentum. These situational contributions,
captured by our RunImpactScore and TrailingImpactScore metrics, often go unnoticed but
can be game-changing.

Practically, NBA teams could use this approach to identify undervalued talent. Players
with consistently high run impact residuals might be ideal trade targets or candidates for
expanded roles. Our metrics also offer a fresh lens for recognizing “clutch” contributions—not
just final-shot heroes, but players who fuel critical mid-game runs.

However, there are several limitations. Our analysis used only one season of data; ex-
panding to multiple seasons and playoffs would improve robustness. Although we included
many advanced stats, features like lineup context, coaching strategies, fatigue, and richer
defensive measures (like deflections or contested shots) could further enhance our models.

For future work, developing a Bayesian multilevel model could be valuable. Bayesian
methods would provide full posterior distributions for player effects, improving uncertainty
quantification and handling small sample sizes more rigorously. Our initial attempt at a
Bayesian approach was inconclusive, but further refinement is promising.

Additionally, integrating modern player tracking data could deepen insights. Tracking
metrics—like speed, off-ball movement, screen-setting, or hockey assists—would capture crit-
ical run-making behaviors not visible in basic stats. This could refine RunImpactScore or
inspire new momentum-based metrics.

In conclusion, our project shows that focusing on momentum swings reveals hidden layers
of player value. Multilevel modeling combined with residual analysis provides a powerful
framework to spotlight players who consistently exceed expectations. By expanding the
data and refining the models, we can continue uncovering the unsung engines behind a
team’s success in the game of runs.
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