Goal: Predicting a winning probability distribution for each horse at any time t.

To reduce the complexity during the training and improve the explainability of the model, we only feed the data from the most current 20% of the time. In other words, we make our model independent of the more previous observations. This in fact filters out the noise and improves the accuracy (see graph for comparison).

- The loss function is defined as the squared difference between estimate distribution and true distribution.
- The metrics of optimization is based on the Brier Score:
 \[BS = \frac{1}{n} \sum (f_i - o_i)^2 \]
 (o and f are predicted probability and true outcome)
- The model of logistic regression (LR) is compared with probabilistic random forest (RF) with short-term memory on 2 types of races. We predict a distribution on every time snapshot of the race and sum the probability losses.
- Dark-horse race: The horse of best inferred prob of winning is not the winning horse.
 Sum of Squared loss for LR = 282.78, RF = 50.94, Brier Score of LR= 0.6999, RF=0.1185.
- Favorites race: The horse of best inferred prob of winning is the winning horse.
 Sum of Squared loss for LR = 3.073, RF = 16.46, Brier Score of LR= 0.00756, RF=0.0452.

Data

Our dataset contains 2000 races and 22 variables. We identify the useful variables and split them into 3 sections:

- Spatial Temporal
 - Time frame (0.25 sec)
 - Horse ID
 - Raw longitude
 - Raw latitude
- Race Condition
 - Race ID
 - Race location
 - Race date
 - Type of race
 - Type of track
- Jockey Information
 - Jockey name
 - Finish position
 - Weight carried
 - Betting odds

Using the variables: “time frame”, “raw longitude”, and “raw latitude”, we derived the following variables based on Haversine distance formula.

\[\text{haversin} \left(\frac{d}{r} \right) = \text{haversin}(\phi_2 - \phi_1) + \cos(\phi_1) \cos(\phi_2) \text{haversin}(\lambda_2 - \lambda_1) \]

Modeling Predictor Variables:

- \(v \): Velocity (m/s) of each horse at each 0.25 sec interval
- \#: Nearest horse at each 0.25 sec interval
- \(d \): Distance to the nearest horse (m) at each 0.25 sec interval
- \(p \): Inferred probability of winning by odds of betting

Modeling Response Variable:

Probability of winning for each horse at time t

The graph below shows an example of the change of velocity over time of different horses in three races. The color of the curve shows the final position of the horse (red color shows the horse that ranked first).

Conclusion

- RF with short term memory has significantly more accurate predictions than LR model in “Dark horse” scenarios (0.11-0.15 Brier Score vs. 0.6 or more).
- RF with short term memory has less “accurate” predictions than LR model in favorites races (loss difference 0.05 on avg). Converges slower than the LR models.
- RF with short term memory predicts most accurately compared to all models in a tight match.
- RF model assigns 0-probability to horses too late in the game, which can be optimized to decrease prediction loss.