

Cell-Signalling in Streptococcus Pneumoniae (SPN)

By Jacqueline Deng, Calum Zhang, Betty Hou Advisor: Joel Greenhouse Clients : Corine Jackman Burden, N. Luisa Hiller

Background

- Spn is the leading cause of pneumonia mortality globally, killing more than 300,000 children under 5 years old worldwide annually
- Spn cells are inserted in microdroplets
- How cells communicate \rightarrow use the **peptide** produced by PhrA induction
- How we measure communication \rightarrow fluorescence intensity (FL) \succ more peptides \rightarrow more communication \rightarrow greater FL
- Research Objective Investigate cell communication under 3 experiment conditions

Data

Experimental Conditions – approximately 35-40 droplets @4 hr

Response: FL per cell

Method

Mixed effect model

- Model that accounts for both fixed effects (systematic, population-level) variability) and random effects (individual-level variability)
- model = Imer(response ~ fixed effect + (1 | random effect), data = data)
- Intraclass Correlation Coefficient (ICC) measures the proportion of total variance in the response variable that is attributable to between unit (droplet) variation

• ICC =
$$\frac{\sigma_{\text{between}}^2}{\sigma_{\text{between}}^2 + \sigma_{\text{within}}^2}$$

 \succ The black circles are droplets. Droplets may have different \succ The red dots are cells.

between droplets variance

within droplet variance

• Random selection of 10 droplets Mean of WT (greenline) higher than KO • WT group has more variation **both between and within droplet** and has more extreme outliers

Table 1: Comparison of KO vs WT @ 4 hrs			
\mathbf{Exp}	Measure	Mixed Model KO WT	Fixed Effects KO WT
Exp #1	Mean (KO)	6.752	6.764
	Group Effect (WT)	0.582	0.552
	t-value (group)	8.554	29.61
	ICC	10.35%	NA
Exp #2	Mean (KO)	7.10398	6.82107
	Group Effect (WT)	0.43544	0.52545
	t-value (group)	5.401	32.27
	ICC	9.55%	NA
Exp #3	Mean (KO)	6.722	6.873
	Group Effect (WT)	0.498	0.546
	t-value (group)	22.04	32.74
	ICC	12.06%	NA

- More active communication in WT than KO ➤ mean FL WT > mean FL KO
- Between-droplet variability is significant \rightarrow ICC significantly > 0
- **t-values differ** significantly between two models
- Fixed-effect models yield much larger t-values
- Mixed model accounts for droplet-level variability
- \succ more conservative significance

Conclusion

Biological insights

- WT cells show **stronger fluorescence** than KO
- WT+peptide further increases fluorescence Intensity
- **Between-droplet variability** is consistently significant across experiments

Modeling Insights

- Fixed-effects models lead to inflated t-values and potentially **overstated** significance by ignoring between-droplet variability
- Mixed effect model is more suitable for this experiment

Carnegie Mellon University Statistics & Data Science

Results & Analysis

- Figure shows each droplet's 95% CI for the deviation in mean FL from the overall WT average
- There is **heterogeneity** among WT droplets in their mean FL under the 4-hour condition

Table 2: Comparison of WT vs WT+Peptide @ 4 hrs

Exp	Measure	Mixed Model	Fixed Effects
Exp #1	Intercept (WT)	7.006	6.964
	Group Effect (+ peptide)	0.391	0.426
	t-value (group)	14.30	22.86
	ICC	10.90%	NA
Exp #2	Intercept (WT)	6.900	6.821
	Group Effect (+ peptide)	0.423	0.525
	t-value (group)	16.99	32.27
	ICC	7.05%	NA
Exp #3	Intercept (WT)	7.191	7.092
	Group Effect (+ peptide)	0.244	0.383
	t-value (group)	8.41	18.31
	ICC	12.38%	NA

- t-values of group effect range from 8.41 to 32.27, all significant with $p < .001 \rightarrow strong statistical support$ for group effect
- More active communication in WT+Peptide mean FL WT+Peptide > mean FL WT
- ICC shows significant varibility across droplets

References

- Clark, M. (2020). Random Intercepts Mixed Models with R. Retrieved from m-clark.github.io
- Mudge, L. (n.d.). *Mixed Effects Models*. Retrieved from Imudge13.github.io
- Aggarwal, S. D., Yesilkaya, H., Dawid, S., & Hiller, N. L. (2020). The pneumococcal social network. PLOS Pathogens, 16(10), e1008931. https://doi.org/10.1371/journal.ppat.1008931

