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Abstract 

This research develops and evaluates several models for predicting injury risk among WNBA 
players, using publicly available injury and performance data from the 2024 season. The study 
addresses gaps in current injury prediction models, which are often based on male athletes and 
overlook the unique injury risks of female athletes. First, a mixed-effects Gamma regression 
model is trained on non-injured players to establish a baseline for expected minutes played, using 
fixed effects (starter status, position) and random effects (team, player) to account for variability 
across teams and playing styles. The model is applied to injured players, and residuals from 
games leading up to injury are analyzed to identify deviations that may indicate elevated injury 
risk. In another section, injury risk is predicted using a binary classification model (logistic 
regression), which estimates the likelihood of a player sustaining an injury in the time period 
between the most recently played game and the next future game, using predictors such as prior 
injuries, minutes played, and total points scored. The research also includes models that predict 
injury severity, using total missed days due to the injury as a proxy for injury severity. Various 
models – including Zero-Inflated Negative Binomial (ZINB), Negative Binomial (NB), 
Multinomial Logistic Regression, and Random Forest – are developed and compared to identify 
the most effective modeling approach. Ultimately, by modeling injury and performance trends in 
WNBA athletes, this research aims to support a deeper understanding of injury risk factors, 
informing future work in sports analytics and athlete health. 
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Chapter 1: Exploratory Data Analysis (EDA) 

1.1 Introduction  

As sports analytics evolves, injury prevention has become a critical focus for safeguarding 
athletes and optimizing long-term performance. Women's sports, particularly the Women’s 
National Basketball Association (WNBA), are leading this transformation, with the 2024 season 
marking a 170% increase in viewership, averaging 1.2 million viewers per game across ESPN 
platforms [1]. This surge, alongside a historic $2.2 billion media rights deal, underscores the 
need for advanced, data-driven tools to prioritize athlete health and safety [2]. 

However, existing injury prediction models are limited in several key areas. Current research in 
injury prevention and modeling has largely focused on male athletes, leading to less accurate 
predictions and treatment plans for women. Additionally, there is greater focus on acute 
(in-game) injury prediction models than on the role of long-term performance in injury risk. 
Furthermore, there are methodological gaps in the field. While current models often rely on 
classification or regression techniques, mixed-effects models – which account for both fixed and 
random effects – are underutilized and may offer a more comprehensive approach. 

This research seeks to fill this gap by developing injury prevention models for the WNBA, based 
on the 2024 season stats and injury records. By applying a mixed-effects model, this study aims 
to identify the key factors that influence injury risk throughout a season – considering player, 
team, and game level dynamics. This approach will provide a more nuanced understanding of 
injury risk, considering the unique factors affecting female athletes, ultimately improving injury 
prevention strategies. This first chapter presents an exploratory data analysis (EDA) of the 
WNBA injury and performance data, offering insights that can inform these predictive models. 

1.1.1 Research Gaps 

A critical gap in injury prediction lies in the gender-specific nature of existing models, which are 
primarily based on male athletes. They are not accurate for female athletes in the WNBA, as 
women face unique injury risks due to biological differences in biomechanics, balance, and 
anatomy [3]. Women, for example, tend to have lower centers of gravity than men, which affects 
their balance and stability, making them more susceptible to lower extremity injuries like ACL 
tears. Additionally, women often have less muscle mass in certain areas, increasing their 
vulnerability to muscle strains and overuse injuries. This research aims to develop more accurate 
and reliable injury prediction models for female athletes. 

The WNBA has been grappling with a significant injury problem, which became even more 
apparent since the 2023 season. The Next has reported a sharp increase in injuries led to 176 
reported incidents, resulting in 789 missed games and a substantial loss of team performance, 
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measured in win shares [4]. A disproportionate number of these injuries affected ankles, knees, 
and feet, with backcourt athletes bearing the brunt of the impact. Despite the rising concern, 
injury occurrence in the WNBA remains vastly understudied. The lack of comprehensive injury 
data limits the ability to improve rehabilitation processes and develop preventive strategies. 
Notably, the WNBA was absent from the 2023 Elite Basketball Rehab Conference, a key event 
for basketball medical providers, where NBA teams presented extensive injury data [5]. This gap 
highlights the league’s insufficient focus on injury tracking. The absence of WNBA injury data 
in scientific and medical circles not only hinders injury prevention efforts but also complicates 
the rehabilitation of athletes.  

Most existing models focus on in-game injuries, relying on technologies like motion capture, 
wearable sensors, and videography to detect sudden changes or irregular movements that precede 
an injury. While these methods are effective for capturing acute risks, there is a lack of research 
investigating how long-term athlete performance and health deviations could signal a heightened 
risk of injury. This study aims to address this gap by exploring how gradual changes in 
performance, health, and injury status leading up to a particular game can serve as early warning 
signs of injury. 

Most current injury prediction models use classification or regression techniques, which focus on 
predicting discrete outcomes, such as whether an injury will occur. However, this research will 
use a mixed-effects model, a less common but potentially more effective approach for 
understanding injury risk. This methodology will allow for a more nuanced analysis that 
incorporates player, team, and game level factors, providing deeper insights into the complex 
interactions that contribute to injury risk. 

1.2 Dataset Overview 

1.2.1 Data Sources 
 
The 2024 WNBA season player statistics were sourced from the Wehoop package [6], which 
provides detailed game level data for all athletes. The dataset includes key performance metrics 
such as minutes played, points, rebounds, assists, and other player statistics for each game.  
 

The injury data for this study was sourced from The Next's WNBA Injury Tracker [7], which 
provides a comprehensive and up-to-date log of injuries across the league during the 2023 and 
2024 seasons. This publicly available dataset includes details on the body parts affected, games 
missed, and estimated win shares lost for individual players. It also offers cumulative data, 
highlighting the most common injuries and their impact on team success. This tracker aims to 
shed light on injury trends in the WNBA, contributing to better health outcomes and 
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understanding of injury patterns within the league. Here's a preview of the first 10 rows from the 
dataset, showcasing a subset of the columns:  

 

1.2.2 Research Questions and Approach 

This study aims to investigate the relationship between player workload and injury occurrence in 
the WNBA. The following key questions are addressed: 

1.​ How does playing time impact injury risk? 
○​ To explore this, a model is trained on non-injured players to establish baseline 

expected minutes. Applying the model to injured players reveals deviations from 
expected play, helping identify patterns of overuse that may signal elevated injury 
risk. 

 
2.​ Can injury risk be predicted between consecutive games? 

○​ This question will be addressed using a binary classification model that estimates 
the likelihood of an injury occurring between the current and next game, based on 
predictors such as prior injuries, minutes played, and points scored. 
 

3.​ Can the duration of a player's injury be predicted? 
○​ Recovery duration can be modeled using cumulative factors leading up to injury – 

including injury location, minutes played, and prior injuries – to predict days 
missed due to injury, which is a metric that also serves as a proxy to injury 
severity.  

To address these questions, an Exploratory Data Analysis (EDA) will first be conducted to 
understand injury distributions and player workload patterns. Then, mixed effects models will be 
created and evaluated to estimate player usage and injury trends in Chapter 2, addressing the first 
research question. In Chapter 3, the second and third research questions will be answered by 
creating a binary classification model to predict injury risk in an upcoming game, along with 
several other models to predict recovery time. 
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1.3 Injury Data Patterns and Insights 

1.3.1 Injury Data and Type Overview 
 
The available injury data was collected for the 2023 and 2024 seasons. In 2023, there were 175 
injuries, and there was an increase to 203 injuries in the 2024 season. Over two years, 96 unique 
injury descriptions were identified. These descriptions specify the body part affected by the 
injury and are recorded as string values in the dataset. Examples range from general terms like 
"Knee" to more specific descriptions such as "Right Knee Hyperextension." To streamline the 
analysis and identify patterns more effectively, these injuries were manually grouped into 13 
broader categories. This grouping approach was essential for simplifying the dataset, reducing 
ambiguity, and making it easier to observe trends. Injuries were grouped into 13 categories using 
the case_when function in R, which standardizes the variations in terminology into broader 
groups: 
 

●​ Face – Includes injuries such as jaw fractures, facial lacerations, and broken noses. 
●​ Head – Covers injuries like concussions and other head-related conditions. 
●​ Abdomen & Back – Encompasses injuries from the lower back to the ribs. 
●​ Shoulder – Ranges from shoulder labrum surgery to shoulder subluxation. 
●​ Arm/Hand – Includes injuries such as broken fingers and hand fractures. 
●​ Hip – Covers conditions like general hip injuries and hip labrum repair recovery. 
●​ Knee – Includes injuries from minor knee issues to major conditions like ACL tears and 

meniscectomy. 
●​ Ankle – Covers various ankle injuries, including Achilles and lateral ankle sprains. 
●​ Foot – Includes injuries such as toe fractures, plantar fasciitis, and foot fractures requiring 

surgery. 
●​ General Leg Injuries – Encompasses injuries affecting the leg, calf, and thigh. 
●​ Rest & Mental Health – Covers instances labeled as "Rest" or mental health-related 

absences. 
●​ Illness – Includes illnesses ranging from general sickness to COVID-related absences. 
●​ Undisclosed – Consists of cases where the injury was not specified.​
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Figure 1.1 Most common injury categories among reported cases. Ankle, knee and foot 
injuries are among the most common, highlighting a predominance of lower extremity cases. 
 
According to Figure 1.1 above, ankle injuries appeared to be most common, followed by knee 
and foot injuries. This reaffirms the existing research showing women are more susceptible to 
lower-extremity injuries [8]. Absences due to illness also are extremely common.  
 

 

Figure 1.2. Breakdown of ankle-related injuries. Vast majority of ankle injuries were just 
labeled as “ankle” with “lateral ankle sprain” being the next most common.  
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Shown above, a further breakdown of the "Ankle" category shows that many ankle-related 
injuries were simply labeled as "Ankle" in the original dataset, with sprains and Achilles injuries 
being the most common. This highlights the value of using the 13 broad categories that were 
manually made, like "Ankle," to group vague or overly specific injury descriptions (e.g., "Ankle" 
or "Lateral Ankle Sprain + Arthroscopy"). This approach simplifies analysis by creating a more 
organized structure, making it easier to identify patterns and trends across related injuries. 

1.3.2 Injury Impact by Player Position  

In the player performance data, positions are categorized as center, frontcourt (forwards), and 
backcourt (guards). However, the injury dataset only uses frontcourt and backcourt. To 
understand how centers are classified in the injury dataset, we identified all athletes labeled as 
centers in the performance data and checked their positions in the injury dataset. All of them 
were listed as frontcourt, indicating that in the injury dataset, "frontcourt" includes both forwards 
and centers, while "backcourt" refers to guards. According to the injury dataset, across both 
seasons, there were 63 frontcourt and 83 backcourt players who got injured at least once.  

A chi-squared test was conducted to determine if player position (backcourt vs. frontcourt) 
affects the types of injuries sustained. The p-value from the test was 0.595, well above the 0.05 
significance threshold, indicating no significant association between player position and injury 
type. Thus, position does not appear to influence injury type. 

1.3.3 Injury Impact by Recovery Time 

Next, we examine how injury category types relate to total days missed due to the injury, which 
is calculated as the difference between the date of injury and the date of return, with records 
containing "NA" values or vague dates like "March" or "2025" being excluded. 
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Figure 1.3. Ridgeline plot of days missed due to injury, by injury category. Most injuries 
result in short recovery periods, though some categories show long-tailed distributions. 

The figure above reveals that ankle and knee injuries, which are most common, have long right 
tails, meaning many cases involve short absences, but some result in longer recovery times. Hip 
injuries have a bimodal distribution, with peaks around 1–2 days and 90 days missed, likely due 
to surgery and recovery time. Shoulder injuries show a multimodal pattern, with peaks at 1–2 
days, 50 days, and 90 days, indicating varying severity. Foot injuries have a wide, flat 
distribution, showing high variability in recovery time. General leg and arm/hand injuries show 
similar patterns. Notably, shoulder, hip, and face injuries are the only ones with densities 
extending into the 75–100 days missed range, suggesting they were likely season-ending. This 
difference is likely due to treatment, injury severity, and the demands of returning to play. 

1.3.4 Seasonal Injury Trends and Player Workload 

For the analysis below and throughout the paper, injury data from the 2024 season is the primary 
focus, as it is the most comprehensive and recent. Additionally, certain dates that could introduce 
bias into the modeling, such as the 2024 Olympics and the All-Star Game, will be filtered out in 
later analyses. 
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Figure 1.4. Total days missed due to injury (a) and injury frequency (b) by month in 2024. 
May and June accounted for the highest number of days missed and the highest injury counts, 
suggesting that early-season injuries were more severe or required longer recovery periods.  

Figure (a) on the left shows the total number of days missed due to injuries each month in the 
2024 season. For instance, if an injury occurred in May resulting in 50 missed days, all 50 days 
would be counted toward May. This allows us to visualize the impact of injuries on player 
availability, highlighting periods of greater disruption. May had the highest missed days, while 
June had significantly fewer. The total missed days decreased over the season, with August and 
September seeing much lower totals. This may be due to season-ending injuries occurring early 
in May, with those players no longer contributing to missed days in later months, explaining the 
drop in missed days in August and September. 

Figure (b) shows that the frequency of injuries was highest in May, with June having a similar 
number of injuries. The other months had about half the number of injuries as May and June. 
However, since May had significantly more total missed days despite the similar injury 
frequency, it suggests that the injuries in May were likely more severe, warranting longer 
recovery times, or players were more frequently rested for longer periods during this month.  
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Figure 1.5. Injury frequency across months in 2024, categorized by injury type. This 
highlights the month in which each injury type was most prevalent. 

The figure above displays the distribution of injuries across each month, for each injury category. 
This helps reveal when certain injuries were most common. The work prior to this suggests that 
most injuries occur in the months of May and June, which is true for many injuries, but there are 
a few exceptions, such as Abdomen and Arm/Hand injuries peaking in June, and general leg 
injuries peaking in July.  
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Figure 1.6. Injury type frequency in 2024, faceted by month. This highlights the type of injury 
that was most common in each month.  
 
This next figure displays the same information, but faceted by month. The side-by-side bar chart 
for each month reveals that the injuries causing the highest number of days missed were shoulder 
injuries in May, arm/hand injuries in June, and general leg injuries in July. Foot injuries had the 
highest total in August, while ankle injuries peaked in September, although the magnitude of 
days missed in these two months was relatively small compared to the earlier months. Overall, 
injuries appear to be less common in August and September. This could be due to the WNBA's 
mid-season break or the lower intensity of play as the season nears the playoffs, possibly leading 
to fewer severe injuries during these months. 

Overall, the trends observed in this section show that injuries aren’t evenly spread across the 
season – May and June clearly have the most, and they tend to be more severe early on. Knowing 
when certain injuries are more likely to happen helps us predict risk better throughout the season. 
If patterns like this hold in future seasons, we would expect well-designed models to pick up on 
this seasonality and assign higher risk earlier in the year.  

1.3.5 Seasonal Trends Among Injured vs. Non-Injured Players 

After analyzing injury data by body part, category, position, and days missed, we now turn to the 
2024 season stats. This dataset includes performance metrics for both injured and non-injured 
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players, offering a more complete view of player activity. Using the wehoop package, we 
loaded WNBA player statistics for the 2024 season. Unlike the injury dataset, which has one 
entry per injury (and excludes uninjured players), the season stats include one record per game 
for every player, capturing details like minutes played. 

 

Figure 1.7. Average minutes played per game in 2024 by injury status, with a separate trend 
line for Angel Reese. Injured players averaged more minutes than non-injured players, while 
Angel Reese consistently played the most. 

The figure above compares average minutes played by three groups: non-injured players, injured 
players before their injury, and Angel Reese as a high-performing baseline. Using merged 2024 
injury and season stats data, we calculated minutes leading up to injuries for affected players, and 
season-long averages for those who remained healthy. 

Injured players consistently played more minutes than non-injured ones, and Angel Reese played 
even more than both groups. This suggests that players logging heavier minutes – especially star 
players – may be at greater risk of injury. A dip in minutes appears just before August, likely due 
to the WNBA All-Star Game and the 2024 Olympics. Non-injured players dropped to zero 
during this rest period, while injured players and Angel Reese still averaged around 15 minutes. 
The red line (injured players) ends in mid-September, as all injuries in the dataset occurred 
before then, leaving no post-injury data beyond that point. 

This next section explores the differences within the injured and non-injured groups, focusing on 
patterns like injured players with low minutes and non-injured players with high minutes. Players 
were split into two groups based on average minutes played: the top 40 players with the highest 
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averages (“high minutes”) and the rest (“low minutes”). Each group was then segmented by 
injury status to highlight how playing time relates to injury trends, as shown in the graph below.  

 

Figure 1.8. Average minutes played in 2024 across player subgroups by injury status. 
Players were split into the top 40 by average minutes played (“high minutes”) and the rest (“low 
minutes”), then further divided by injury status.  

The graph above shows that both categories of frequently playing players, regardless of injury 
status, maintained high average minutes throughout the season, with occasional fluctuations on 
specific dates. However, around the mid-July WNBA All-Star break, minutes for frequently 
playing, non-injured players dropped significantly to near zero, falling below those of both 
categories of less-frequent players. This decline is likely a result of intentional rest during the 
All-Star break, where key players, who had already logged high minutes and were not suffering 
from injuries, were given time off to recover and perhaps alleviate fatigue. 

Additional patterns observed: within the players who played frequently, the average minutes 
played were somewhat similar across the season, as the lines were overlapping. The main 
exception would be around October, when the average minutes played by the non-injured 
frequently playing athletes dropped. This may reflect rest for star players before the playoffs or 
fatigue/load management.  

Among the less-frequent playing athletes, the injured players consistently had higher average 
minutes. This is likely because the injured players had fewer games to play, but when they did 
play, they often played longer to make up for their absence. 
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1.3.6 Pre- and Post-Olympics Injury Trends 
 
To refine our analysis and prepare the data for modeling, we exclude dates associated with 
unique game contexts, since these events and the surrounding injury data may introduce bias into 
predictive models. Specifically, we remove the period spanning the 2024 Paris Olympics, the 
WNBA All-Star Game, and the playoffs. The final regular-season games before the Olympic 
break occurred on July 17, 2024, after which the WNBA paused its season to allow players to 
compete in the Olympics. The WNBA All-Star Game took place on July 20, 2024, and the 
Olympics officially began on July 25, 2024. The WNBA season resumed on August 11, 2024, 
following the end of the Olympics. Additionally, the playoffs began on September 22, 2024 and 
ended on October 20, 2024, so those dates have been removed as well.  
 
For analysis purposes, we segment the season into two distinct periods: 

●​ Pre-Olympics (Start of season – July 17, 2024) 
●​ Post-Olympics (August 11, 2024 – End of season) 

 

 

Figure 1.9. Average minutes played across player subgroups by injury status. This is 
excluding data from atypical game contexts (e.g., Olympics, All-Star, playoffs), and the season is 
divided into pre- and post-Olympics periods for analysis. 

Examining pre-Olympic trends, non-injured high-minute players showed greater variation in 
playing time, with noticeable drops in mid-June and mid-July, likely due to strategic rest. In 
contrast, injured high-minute players maintained steadier minutes, suggesting heavier reliance 
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until injury. Among low-minute players, injured players consistently logged more minutes, 
possibly due to increased usage before sustaining injuries. 

Post-Olympics, variation patterns shift, with more overlap between injured and non-injured 
players. Among low-minute players, injured players logged similar minutes early on but saw 
higher averages nearing the playoffs, suggesting late-season reliance. Meanwhile, injured 
high-minute players saw reduced minutes late in the season, likely due to load management 
before the playoffs. These trends align with existing workload management strategies in sports 
analytics, where preserving key players is prioritized as post-season approaches. 

1.4 Key Findings and Implications for Future Modeling 

The EDA identified key trends that will shape future injury prediction models, particularly in 
selecting the most important features for predicting injury risk. Most injuries occurred early in 
the season, with May and June showing the highest frequency and severity of injuries, 
particularly in the ankle, knee, and foot categories. Player position did not significantly influence 
injury types, suggesting that injury risk may be more closely related to performance, workload 
and other individual factors. Additionally, the analysis highlighted that injured players tended to 
log higher minutes than non-injured players, supporting the hypothesis that overuse may be a key 
factor in injury risk. These findings suggest that future models should account for seasonality 
(month) in injury occurrence, player workload, and specific injury patterns. By incorporating 
these insights, we can develop more effective models that predict injury risk and recovery time, 
ultimately contributing to better health outcomes for players. 
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Chapter 2: Predicting Minutes Played Using Mixed Effects 
Modeling 

2.1 Why Model Minutes Played? 

Injury risk is influenced by several factors, with workload being one of the most significant. 
Although internal indicators like fatigue or soreness are challenging to monitor, minutes played 
serve as a practical measure of physical demand. Athletes who consistently log high minutes are 
likely undergoing increased physical stress, which can build up and raise the risk of injury over 
time. Additionally, minutes played is a controllable metric for coaches, making it valuable to 
have a model that predicts the optimal number of minutes a player should play in a given game 
to minimize injury risk. 

The aim of this chapter is to build a model that estimates expected playing time in an upcoming 
game, given the context of the game, the player’s role, and team dynamics. The model 
specifically aims to predict minutes for games that may be leading up to an injury, rather than 
long-term or future predictions for the entire season. This model will be trained exclusively on 
data from non-injured players to learn the typical patterns of playing time. Then, the model is 
applied to injured players to see if their actual playing time starts to deviate from what the model 
would have expected if they were otherwise healthy. 

If such deviations exist, they might serve as signs that a player’s usage was abnormal in a way 
that could be linked to increased injury risk. This approach allows us to explore whether 
predictive modeling can help identify when a player might be approaching dangerous levels of 
workload, before an injury actually occurs. 
 

2.2 Justification for Mixed-Effects Regression  
 
The player performance data is inherently hierarchical, as individual athletes play in multiple 
games across a season, are influenced by team-specific dynamics, and may differ substantially in 
roles and playing styles. A standard regression model would treat all observations independently 
and would overlook this nested structure. To address this, we turn to mixed-effects models, 
which are well suited for this type of data, where games are nested within players, and players 
are nested within teams.  
 
Mixed-effects models would allow us to estimate fixed effects, which are the consistent effects 
across the population. For instance: impact of player position or starter status on minutes played 
would be considered consistent since those characteristics are generally associated with 
predictable differences in playing time, regardless of team or individual. Starters will generally 
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always play more minutes than non-starters, across all teams, and this is why this relationship is 
treated as a fixed effect.  
 
Random effects, however, capture group-specific deviations from these overall trends. For 
example, each team might have its own culture, strategies, or coaching decisions that influence 
playing time patterns. Similarly, players may have individual tendencies or different fitness 
levels within their team that can also contribute to deviations from the average effect.  
 
Thus, in this model, starter status and position are treated as fixed effects because they represent 
consistent patterns across the entire population of players. Teams and players are treated as 
random effects to account for variations that arise from specific team dynamics or individual 
differences.  

2.3 Data Pre-processing 

To prepare the data for three-level mixed effects modeling, multiple records for the same player 
on the same game date were aggregated by summing their minutes. For example, some players 
had multiple entries for a single game, with one row recording nonzero minutes and others 
recording zero minutes. The data were consolidated so that each row represents a unique 
player-game combination. Additionally, cases in which players logged exactly 0 minutes were 
retained to preserve information about healthy players who did not participate in a given game. 

2.4 Exploring the Distribution of Minutes Played 

2.4.1 Marginal Distributions  
This section examines the distribution of minutes played per game by non-injured WNBA 
players. The minutes data is sourced from the season stats data, which contains player box data – 
player performance data from every single game. Injured players were filtered out using injury 
status information from the WeHoop Injury Tracker dataset. Since the ultimate goal is to make a 
model that establishes a baseline from healthy athletes, only those who remained uninjured 
throughout the season are included in this analysis.  
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Figure 2.1: Histogram of minutes played per game (non-injured players). The distribution is 
right-skewed, bounded at zero, and most values fall below 40 minutes, which aligns with regular 
game limits.  
 
The figure above shows the frequency counts for the minutes played per game by all non-injured 
players, with most values capping at around 40 minutes, as WNBA games typically never exceed 
40 minutes (aside from overtime periods). The data is right-skewed, indicating that most players 
play fewer minutes, with very few logging the full 40-minute game. The distribution is right 
skewed and bounded at zero – traits that suggest the data may be Gamma distributed.  
 
A Gamma density curve was overlaid on the histogram to assess if the Gamma distribution could 
be a good fit for modeling minutes played. 
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Figure 2.2: Density plot with fitted Gamma density. The Gamma curve roughly follows the 
shape of the histogram. The α (shape) parameter controls skewness, while the λ (rate) parameter 
controls spread.  

The shape and rate parameters were estimated using the method of moments, where the 
parameters are automatically derived from the original data's mean and variance. This method 
links the first two moments (mean and variance) of the data to the corresponding moments of the 
Gamma distribution to estimate the parameters. Specifically, the shape parameter is calculated as 
the square of the mean divided by the variance, while the rate parameter is the mean divided by 
the variance. These estimates ensure that the fitted Gamma distribution appropriately reflects the 
observed data's distribution. 

The Gamma density curve aligns reasonably well with the overall shape of the data – capturing 
the right-skewed structure and the natural lower bound at zero. However, there are some 
mismatches: in the lower range (0–5 minutes), the Gamma curve sharply increases while the 
observed data starts at a high density and steadily decreases. Additionally, between 5 to 20 
minutes, the observed density consistently falls below the Gamma estimate. And between around 
22 to 40 minutes, the observed density consistently lies above the Gamma estimate. These 
discrepancies suggest that the Gamma distribution may not perfectly capture minute level 
variation, particularly for cases where athletes play a low number of minutes. Despite these 
discrepancies, the Gamma distribution is still a reasonable choice given the data’s continuous, 
positive, and right-skewed nature.  

2.3.2 Conditional Distributions  

While marginal distributions above are useful for understanding the overall shape of a variable 
like minutes played, they do not account for the influence of other factors. To build a meaningful 
model, it is necessary to look at conditional distributions – that is, how minutes played varies 
given specific covariates like starter status, position, or team. This is exactly what a mixed 
effects model attempts to estimate: the expected distribution of minutes after accounting for both 
fixed and random effects.  

By approximating the conditional distribution given these factors, we can better explain the 
variation in minutes played. If, even after adjusting for player and team level random effects, the 
conditional distribution remains skewed – it may suggest that a non-normal model (like a gamma 
or log-normal) is more appropriate. Ultimately, understanding the conditional distribution helps 
us choose the right modeling approach for the data.  
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Figure 2.3: Conditional distribution of minutes played by starter status.  
 
The figure above shows how the distribution of minutes played differs significantly by starter 
status. Starters tend to have a more symmetric distribution centered at higher minutes, while 
non-starters show a pronounced right skew with a concentration of low-minute games. This 
further indicates that a non-normal distribution – like gamma or log-normal – could perhaps 
capture the variation across groups. 
 

 

Figure 2.4: Conditional distribution of minutes played by position.  

The distribution of minutes played also varied when conditioned by player positions. Centers 
showed a multi-modal and slightly right-skewed distribution, while forwards and guards had 

22 



stronger right-skewness, with far more observations concentrated at lower minute ranges 
compared to centers. These patterns suggest non-normality across all groups. 

 

Figure 2.5: Conditional distribution of minutes played by team.  

Many teams show right-skewed distributions (e.g., Aces, Liberty, Storm), suggesting that 
normality assumptions may not hold. Similar to the previous figures, this hints that a log-normal 
or gamma model could be more appropriate than a standard linear model. 

These conditional plots help visualize how minutes played vary across key covariates, but they 
do not fully isolate individual player contributions. The dataset includes 61 unique players, each 
with multiple game observations, and player level variation appears to significantly influence 
minutes played. Figure 1.7 from the previous chapter highlights how individual trends, such as 
those of standout players like Angel Reese, can differ from broader league trends. While that 
figure does not adjust for starter status or position, it underscores the importance of modeling 
individual level variation using random effects. 

After reviewing both the marginal and conditional distributions of minutes played, it became 
evident that a non-normal modeling approach was worth considering. The marginal distribution 
showed strong right skewness, pointing toward a Gamma or log-normal distribution as a 
potentially good fit. This skewness persisted across key subgroups in the conditional plots, 
further supporting the decision to explore alternatives to a standard Gaussian model. 

2.5 Linear Mixed-Effects Model 
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A linear model was initially fitted to establish a baseline for modeling minutes played. This 
model was fitted using the lme4 package, which was chosen over nlme due to its ability to 
support both linear and gamma mixed models [9]. As described in Section 2.2, the model 
includes starter status and player position as fixed effects, and player name and team name are 
modeled as random effects, ultimately to predict the number of minutes played in a given game. 
This is considered a three level linear model, as it accounts for variation at the team level, the 
player level, and the overall game level. 
 
The linear mixed effects model can be described as: 

 
Where: 

●​  represents the minutes played by player j on team i for a given game g.  𝑦
𝑖𝑗𝑔

●​  and  are the coefficients for the fixed effects for starter status and position.  β
1

β
2

●​  and  are the coefficients for the random effects for team i and player j, for game g.  𝑏
𝑖𝑔

𝑏
𝑗𝑔

●​  represents the residual variation at the individual game level, for given game g. ϵ
𝑔

The fixed effects coefficients  and   capture the average impact of starter status and position β
1

β
2

across all players, estimated directly from the data. In contrast, the team-level ( ) and 𝑏
𝑖𝑔

player-level (  random effects account for deviations from these averages and are assumed to 𝑏
𝑗𝑔

)

follow normal distributions centered at 0. The team-level variance, , represents variability σ
𝑡𝑒𝑎𝑚
2

in playing time across teams, likewise for players, . These random effects reflect that some σ
𝑝𝑙𝑎𝑦𝑒𝑟
2

teams tend to play their players more (or less) on average, and individual players may have their 
own consistent playing time tendencies. Finally, the residual error term , also assumed to be ϵ

𝑔

normally distributed with mean 0, captures additional unexplained variability. The variance of 

the residual error term, , captures the unexplained variability in minutes played at the σ2

individual game level. In summary: 

●​  𝑏
𝑖𝑔

∼𝑁 0,  σ
𝑡𝑒𝑎𝑚
2( )

●​  𝑏
𝑗𝑔

∼𝑁 0,  σ
𝑝𝑙𝑎𝑦𝑒𝑟
2( )

●​  ϵ
𝑔
∼𝑁 0,  σ2( )
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2.5.1 Linear Model Results and Residual Plots 

The model’s random effects show substantial variation in playing time across players and teams. 
The player random effect has a variance of 28.88, meaning there are large differences in minutes 
played from one player to another, likely because of individual factors like skill or playing style. 
The team random effect has a variance of 12.74, showing that playing time also varies across 
teams, possibly due to differences in team strategies or coaching. The residual variance is 32.79, 
which captures other random variation not explained by the model. Overall, individual player 
differences have a bigger impact on playing time than team level differences. 

The fixed effects analysis reveals that starter status is a strong predictor of minutes played, with 
starters playing, on average, 12.59 more minutes than non-starters. This effect is highly 
significant, as indicated by a t-value of 26.81, which is much larger than the typical threshold for 
significance (around 2). In contrast, athlete position (forward and guard) has minimal impact on 
playing time. For forwards and guards, the increases in playing time are small (1.47 and 1.84 
minutes, respectively), and these effects are not statistically significant, as their t-values are 0.53 
and 0.66, respectively, which are too low to indicate meaningful differences. Thus, starter status 
is the primary factor influencing playing time, while athlete position has little to no effect. 

 

Figure 2.6: Residuals vs fitted values plot. The residuals are randomly scattered around zero, 
suggesting the model’s assumptions are reasonable. However, the residual size is large. 

The figure shows residuals plotted against the model’s predicted values to assess fit and 
assumptions. Residuals are fairly evenly scattered around zero, indicating no systematic 
overprediction or underprediction, and supporting model assumptions. However, the residuals 
have a wide spread, ranging from about -20 to +20 minutes. This suggests that while the model 
captures overall trends, a significant amount of variation remains unexplained. 
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Figure 2.7: Observed vs predicted minutes plot. The observed values closely align with the 
predicted values, indicating general accuracy, but the variation suggests the model may still be 
influenced by other factors. 
 
The figure above plots the model’s predictions against the actual values, allowing us to assess 
overall accuracy. Most observed values (blue points) lie close to the red dotted line, which 
represents perfect prediction, indicating generally accurate model performance. However, some 
points are noticeably scattered, suggesting the model doesn't fully capture all factors influencing 
playing time. 

2.5.2 Random Effects from the Linear Model  

In this section, we examine the random effects extracted from the model for both players and 
teams. These random effects show how much individual group level deviations (from players 
and teams) differ from the overall average, after accounting for fixed effects. 

Among players, Marina Mabrey had the highest deviation at +11.82 minutes, meaning she 
consistently plays significantly more than average after accounting for starter status and position. 
In contrast, Caitlin Bickle had the lowest deviation at -8.06 minutes, indicating she plays 
considerably less. These values reflect how individual players deviate from the model’s expected 
baseline. 
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Figure 2.8: Plot of the random effect intercepts for teams. This shows the deviations of each 
team’s baseline playing time from the overall average baseline playing time (after accounting for 
fixed effects).  

For teams, the Wings had the highest deviation at 4.15 minutes, meaning their baseline playing 
time as a team is much higher than the average. The Lynx had the lowest at -5.29 minutes, 
indicating lower than average playing time. Teams like the Sparks had a deviation of 0.0018, 
meaning their playing time is almost exactly at the average. Compared to players, teams show a 
much smaller range of deviations, with players exhibiting more variability in their baseline 
playing time. 
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Figure 2.9: Density plot of random effect estimates for teams and athletes, for the linear 
model.  

The density plot above shows the distribution of random effect estimates for athletes and teams. 
Athlete estimates form a unimodal, right-skewed distribution with a wide range (−8.06 to 11.82 
minutes), reflecting substantial variation in baseline playing time across players. In contrast, 
team estimates are multimodal with most values near zero and a narrower range (−5.29 to 4.15 
minutes), indicating smaller deviations from the average. These patterns align with earlier 
findings showing greater variability at the player level than the team level. 

In conclusion, the model summary and random effect distributions both show that there is greater 
variability in baseline playing time at the player level, suggesting that individual player patterns 
are not fully captured. This points to the need for a more nuanced model to account for these 
variations. While the linear mixed-effects model serves as a useful baseline, it struggles with the 
right-skewed nature of the data, as reflected in the wide spread of residuals. To better handle this 
skew and improve predictions, exploring Gamma or log-normal models is recommended. 

2.6 Gamma Mixed-Effects Model 

In the Gamma mixed model, the structure from Section 2.4 remains the same, but the response 
variable (minutes) is assumed to be positive and right-skewed. A log link function is used to 
ensure that the predictions remain positive by modeling the log of the expected value, which is 
exponentiated to yield positive values. The key difference in the equation is applying the log link 
to the response variable, so the model predicts  log( ) instead of the raw response ​. The 𝑦

𝑖𝑗𝑔
𝑦

𝑖𝑗𝑔

model equation is: 
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In contrast to the linear model equation, the error term  is dropped because we model the ϵ
𝑔

conditional mean directly, and the Gamma distribution itself captures the variance structure of 
the response variable. Therefore, the residual error term is unnecessary, as the Gamma 
distribution already defines the variability around the predicted value. 

Similar to the linear model, the random effects and the residual error are assumed to follow 
normal distributions centered at 0. However, for the response variable , we assume it follows 𝑦

𝑖𝑗𝑔

a Gamma distribution with mean  determined by the fixed and random effects:  µ
𝑖𝑗𝑔

●​   Gamma , where  is the shape parameter and  is the rate parameter, as 𝑦
𝑖𝑗𝑔

∼ α,  β( ) α β

described in Figure 2.2 from Section 2.4, where parameters were automatically estimated 
using the method of moments. 

2.6.1 Gamma Model Results and Residual Plots 

The player level random effect had a variance of 0.131, the team random effect had a variance of 
0.054, and the residual variance was 0.261 – however, as mentioned above, the residual variance 
is technically no longer meaningful in the gamma regression. Similar to the linear model, this 
indicates that individual player differences have a larger influence on playing time than team 
level variations. The residual variance of 0.261 in the Gamma model is significantly lower 
compared to the linear model's residual variance of 32.79. While this might initially suggest that 
the Gamma model better explains the variation in playing time, this difference likely arises 
because the Gamma distribution inherently accounts for the variance in the response. Therefore, 
the residual variance in the Gamma model is not directly comparable to that in the linear model, 
as the Gamma distribution already incorporates this variability. 

The fixed effects analysis highlights starter status as a significant predictor of minutes played. 
Starters, on average, play 0.672 more minutes than non-starters, with a highly significant z-value 
of 13.274 (p < 2e-16), indicating a strong relationship. On the other hand, athlete position shows 
minimal impact. Forwards and guards only have small increases in playing time (0.145 and 
0.270 minutes, respectively), and these effects are not statistically significant, with z-values of 
0.422 and 0.774, respectively (both p > 0.05). Thus, similar to the results of the linear model, the 
starter status appears to be more significant in determining playing time, while athlete position 
has little to no effect. 
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Since the Gamma model uses a log-link function, its predictions are on the log scale. To create a 
Residuals vs Fitted Values plot on the original scale of minutes played, we exponentiate the 
predicted values to convert them back. 

 

Figure 2.10: Residuals vs fitted values plot for Gamma model. The distribution of residuals 
appears very similar to that of the linear model.   

Compared to the residual vs. fitted value plot for the linear model in Figure 2.6, both plots have a 
similar overall residual spread (roughly -20 to +20). There's similar vertical "striping patterns" 
throughout both plots, where each vertical stripe represents all of the players who had that 
specific number of minutes played. The minutes played were captured as whole numbers which 
is why the points appear in lines. Comparing both plots, the residuals appear more densely 
concentrated in similar regions of fitted values (particularly from 0-15 and from 25-35). 
However, the greater density of points in the gamma model compared to the linear model could 
be attributed to the way the predicted values were exponentiated, resulting in continuous 
(non-discrete) fitted values. 

For the Observed vs Predicted Minutes plot, predicted values were exponentiated to return to the 
original minutes scale for direct comparison with the observed values, which are already on that 
scale.  
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Figure 2.11: Observed vs predicted minutes plot for Gamma model. This plot lets us assess 
how well the model's predictions align with the actual values, evaluating its overall accuracy. 

Comparing the observed versus predicted plots reveals distinct differences in how each model 
handles basketball minutes data. In the gamma model plot, points appear more concentrated, 
particularly in the 10-15 minute range, due to the log link function that compresses distances 
between lower values while expanding those between higher values. Despite containing identical 
data points, this transformation creates different visual distributions across the plots. 

In contrast to the gamma model, the linear model (Figure 2.7) appears to overpredict players 
with few minutes (0-2), as linear model predictions in that region range from 0-15 minutes, while 
gamma model predictions in that region range more accurately from 0-5. Additionally, the linear 
model does not produce any predicted values above 35, while the gamma model predicts values 
up to nearly 50. This suggests that the two models handle the right-skewed nature of the response 
variable differently. The linear model appears to "average out" extreme values, pulling 
predictions toward the center of the distribution and struggling to capture the long right tail – 
resulting in a compressed prediction range. In contrast, the gamma model, which is better suited 
for right-skewed data, applies an exponential transformation to the linear predictor. This may 
allow it to more naturally produce higher predicted values, extending further into the right tail. 

2.6.2 Random Effects from the Gamma Model 
 
The distribution of the random effects from the Gamma model is quite similar to that of the 
linear model. The player with the lowest deviation was still Caitlin Bickle, this time with a 
deviation of -1.18, while Cecilia Zandalasini had the highest deviation at 0.86. This differs from 
the linear model in that the deviations for the players ranged from -8.06 to 11.82, but for the 
gamma model it was much more narrow. The random effects for teams also showed similar 
patterns: the Lynx had the lowest deviation and the Mystics had the highest, consistent with the 
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results from the linear model. The main difference is that in the Gamma model, the team 
deviations were much smaller, ranging from approximately -0.5 to 0.5, whereas in the linear 
model, the range was much larger, from about -5 to 5. 
 

 

Figure 2.12: Density plot of random effect estimates for teams and athletes for gamma 
model.  

Compared to the random effect density plots from the linear model, the Gamma model’s curves 
are more smoothed and the athlete distribution is more tightly centered around 0. The most 
noticeable difference is the range: in the linear model, random effects ranged widely from 
approximately -8.06 to 11.82 minutes, while in the Gamma model, the spread is much more 
condensed, staying within approximately ±2. 

The Gamma model provides a more compact estimation of random effects compared to the linear 
model, capturing the overall variability in playing time more effectively. While the linear model 
has wider random effect deviations and larger residuals, the Gamma model's residuals are tighter, 
indicating better overall accuracy. However, the Gamma model shows localized over and 
underprediction in certain ranges, as seen in Figures 2.10 and 2.11. In general, each model has its 
strengths: the linear model is more balanced in predictions but less accurate overall, while the 
Gamma model is more precise but has some systematic biases in specific regions. 

2.7 Log-Normal Mixed-Effects Model 

The Log-Normal mixed-effects model builds upon the framework for the linear model outlined 
in Section 2.5, with the primary difference being the assumption of a log-normal distribution for 

32 



the response variable. A log transformation is applied to the response variable to better handle 
the right-skewed nature of the data. Specifically, the model predicts the logarithm of the expected 
minutes played, and the inverse transformation (exponentiation) is used to return to the original 
scale. The model equation is shown below: 

 

In the log-normal model, the response variable ​ is assumed to follow a log-normal 𝑦
𝑖𝑗𝑔

distribution – or, in other words, the model assumes that the log of the response (minutes played) 
follows a normal distribution. Similar to the linear mixed-effects model, the random effects for 
teams and players are assumed to be normally distributed with mean zero. Additionally, the 
residual errors after log transformation are assumed to be normally distributed, capturing 
unobserved variation at the game level. 

2.7.1 Log-Normal Model Results and Residual Plots 

The player level random effect had a variance of 0.867, the team level random effect had a 
variance of 0.458, and the residual variance was 0.917. As with the linear and gamma models, 
individual player differences had a larger influence on playing time than team level variations. 
The residual variance of 0.917 is substantially lower than the linear model's residual variance of 
32.79, but not as low as that of the gamma model’s residual variance of 0.261. This still indicates 
that the log-normal model accounts for variation in playing time better than the linear model.  

The fixed effects analysis identifies starter status as a significant predictor of minutes played. 
Starters are associated with a 0.782 increase in the log of minutes played, with a highly 
significant t-value of 9.930, suggesting a strong relationship (p < 2e-16). And similar to previous 
model analysis, athlete position again shows minimal impact. The fixed effects estimates for 
forwards and guards are small (0.092 and 0.136, respectively) and not statistically significant, 
with t-values of 0.193 and 0.281 (both p > 0.05). These findings mirror those of the linear and 
Gamma models, reinforcing that starter status plays a more important role in determining playing 
time than player position. 
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Figure 2.13: Residuals vs fitted values plot for Log-Normal model. The distribution of 
residuals differs greatly from the linear and gamma plots.  

In the figure above, the residuals start mostly positive at low fitted values and become mostly 
negative at high fitted values. This means the log-normal model is underpredicting high values 
and overpredicting low values. The issue may stem from how the fitted values are exponentiated, 
which gives the median of the distribution on the original scale rather than the mean. To address 
this, we attempted to adjust the fitted values by adding the variance of the log scale, which 
accounts for the difference between the median and the mean in a log-normal distribution. This 
adjustment is intended to provide more accurate mean predictions on the original scale. 
However, the graph remained unchanged, likely because the variance adjustment had a minimal 
impact on the predictions, or the model’s fit already adequately represents the underlying 
distribution, leaving little room for further improvement. 
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Figure 2.14: Observed vs Predicted values plot for Log-Normal model. This shows a strong 
positive relationship, with a somewhat wide range for predictions.  

The observed vs. predicted values plot for the log-normal model closely resembles the one for 
the gamma model (Figure 2.11) rather than the linear model (Figure 2.7). This is likely because 
exponentiating the predicted values back onto the original scale had a similar effect as in the 
gamma model, while the linear model does not involve any transformed scales. Similar to the 
gamma model, the spread of residuals is narrower at lower minutes and increases toward higher 
minutes played, suggesting that the model may be underestimating variability at higher values. 
This pattern aligns with the right-skewed nature of the original response variable, where higher 
values have more variability and the model may struggle to capture this increased spread 
effectively. 

2.7.2 Random Effects for Log-Normal Model  

In the current model, the player with the highest deviation is Cecilia Zandalasini, with a 
deviation of 1.71, and the player with the lowest deviation is Jakia Brown-Turner, at -3.04. The 
range of deviations for teams is from -1.5 to 1, with the Lynx at the lower end and the Mercury at 
the upper end. Compared to the linear model, the player deviations are much narrower, which 
ranged from -8.06 to 11.82. In contrast to the Gamma model, the team deviations in the current 
model are slightly wider, ranging from -1.5 to 1, compared to -0.5 to 0.5 in the Gamma model. 
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Figure 2.15: Density plot of random effect estimates for teams and athletes for gamma 
model.  

Similar to the density plots from the linear and Gamma models, the team random effects in the 
log-normal model show a sharp peak around 0, indicating that most estimates are clustered near 
the average. Like in the Gamma model, both the player and team density curves are relatively 
smooth, with a spread of about ±2.5. This contrasts with the linear model, which had a much 
wider range of deviations – from approximately -8 to 11. One notable difference in the 
log-normal model is that the spreads for players and teams are more comparable, whereas in the 
linear model (Figure 2.9), the team distribution was significantly narrower than the player 
distribution. Additionally, the random effects distributions in the log-normal model appear more 
symmetrical and closely resemble a normal distribution, better aligning with the model's 
assumption of normally distributed random effects than in the previous models. 

2.8 Model Comparison and Summary  

Below is a model summary table of the results from sections 2.5, 2.6, and 2.7: 

Model  Linear Gamma Log-Normal 

Starter Status 
Effect 

+12.59 minutes, 
Highly significant 

+0.672 minutes, 
Highly significant 

+2.185 minutes, 
Highly significant 

Residuals vs Fitted 
Values Plot 
(accesses error 

Residuals random but 
wide spread (-20 to 
+20), no strong 

Similar spread to 
linear, but denser in 
specific regions, 

Residuals mostly 
positive at low fitted 
values, negative at 
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distribution) patterns continuous fitted 
values 

high, underprediction 
at high values 

Observed vs 
Predicted Plot 
(accesses 
accuracy) 

Good alignment, some 
scatter, general 
accuracy 

Similar to Linear, but 
better captures 
right-skewed data with 
extended predictions. 

Similar to Gamma, but 
struggles with 
variability at higher 
values. 

Random Effects 
Spread (Player) 

Wide (-8.06 to 11.82) Narrow (-1.18 to 0.86) Narrow (-3.04 to 1.71) 

Random Effects 
Spread (Team) 

Moderate (-5.29 to 
4.15) 

Narrow (-0.5 to 0.5) Narrow (-1.5 to 1) 

Random Effects 
Distribution Shape 
(Player) 

Right-skewed, wide 
spread 

Centered at 0, 
smoother curves 

Sharp peak around 0, 
comparable spread to 
teams 

Random Effects 
Distribution Shape 
(Team) 

Multimodal  Centered at 0, 
smoother curves 

More symmetrical 
shape than others 

Table 2.16: Summary of Model Diagnostics and Results for Linear, Gamma, and Log 
Normal Models. Includes variance components, starter effect estimates, and key residual and 
random effect patterns. 

Before evaluating model performance, we might expect the Gamma model to perform the best. It 
has the smallest residual variance (0.26), much lower than both the linear and log-normal 
models, suggesting it fits the data most tightly. The random effect variances for players and 
teams are also much smaller, indicating it captures individual and team differences without 
excessive spread. Additionally, the residual patterns for the Gamma model suggest less bias 
(although some overprediction at low minutes), and the random effects distributions are centered 
and smooth, hinting at better model assumptions. 

2.8.1 Cross Validation Approach 

To compare the predictive performance of the three models, 5-fold cross-validation was 
conducted separately for each model. However, the cross-validation was performed within the 
same loop, ensuring that each model was trained and tested on the same data folds. Rather than 
randomly splitting the data by rows (individual games), folds were created at the athlete level to 
ensure that all data from a given player appeared exclusively in either the training or testing set. 
This approach better mimics the real-world scenario, where we want to predict outcomes for 
players the model hasn’t seen before. If the data were split by individual games, the same player 
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could appear in both training and testing sets – making it easier for the model to predict their 
outcomes based on prior knowledge, and inflating its performance unfairly. 

In each fold, models were trained on 80% of the athletes and tested on the remaining 20%, 
rotating across all athletes over five folds. In each round of cross-validation, 20% of the players 
are held out as the test set, and the model is trained on the remaining 80%. This process is 
repeated five times, each time with a different subset of players used for testing, so that every 
player is eventually part of the test set once. This rotation of the test group was done to average 
the results to get a more stable and fair measure of how well the model works. 

Root mean squared error (RMSE) was used as the performance metric, quantifying how far off 
the predictions were from the actual minutes played. 

2.8.2 Linear Model Demonstrated Superior Performance 

The RMSE was calculated for each of the 5 folds, and the mean RMSE for each model was used 
to compare their predictive performance. The cross-validation results showed that the linear 
model consistently produced the lowest prediction errors, with a mean RMSE of 8.27. The 
gamma model followed with an RMSE of 10.26, while the log-normal model had the poorest 
performance, yielding an RMSE of 18.63. A paired t-test between the two best performing 
models (linear and gamma) was conducted, and the test revealed a statistically significant 
difference in RMSE values (p=0.0216), supporting the superiority of the linear model.  

This outcome is somewhat surprising given the right-skewed nature of minutes played, which 
motivated the gamma and log-normal models. However, in this dataset, the added complexity of 
a log transformation or gamma specification did not translate to better generalization 
performance. These results suggest that, despite potential skewness, the linear mixed effects 
model offers a robust and interpretable baseline for modeling minutes played. 
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Figure 2.17: Cross-Validation Performance Comparison of Models. Boxplots indicate that the 
linear model had the lowest median RMSE and thus best predictive performance.  

The boxplots reveal distinctive RMSE distributions across models. While the gamma model 
shows a relatively symmetric error distribution with a centered median, both linear and 
log-normal models display medians positioned toward their lower quartiles, indicating a skew. 
This suggests both models perform better than their mean RMSEs imply for most athlete subsets, 
with occasional higher-error folds pulling their averages upward. Despite this similar distribution 
pattern, the linear model maintains substantially lower and more consistent RMSE values 
(approximately 7-10) compared to the log-normal model's wider and higher range 
(approximately 9-15), demonstrating superior generalizability despite sharing a comparable error 
distribution shape. 

The boxplots show some overlap between models, with the log-normal model's best performance 
(around 9 RMSE) reaching into the linear model's typical range (7-10 RMSE). This means the 
log-normal model occasionally performs adequately for certain athlete subsets. However, its 
accuracy varies dramatically across folds, with errors sometimes reaching 15 RMSE. In contrast, 
the linear model maintains consistent, low errors throughout all cross-validation folds. While the 
log-normal model may effectively capture relationships for specific player profiles, it lacks the 
reliable generalization ability of the linear model. 

2.9 Model Predictions for Injured Players 

After evaluating the three models with cross-validation, the linear mixed-effects model 
outperformed the others, so we proceed with it to assess players who eventually sustained 
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injuries. It’s important to note that the model was trained exclusively on healthy players, serving 
as a baseline to estimate expected minutes played under normal (non-injured) conditions. 

To evaluate how injured players deviated from the model's expectations leading up to their 
injuries, we applied the trained linear model to generate minute predictions for these players. By 
comparing actual minutes played by injured players vs. the model’s predictions, we calculated 
residuals – representing deviations from the expected healthy baseline.  

The figure below displays the residuals from the linear mixed-effects model for all injured 
players, focusing on the games leading up to each injury event. For players with multiple 

injuries, we identified and labeled each injury cycle separately. Each game played by an injured 
athlete during the 2024 season was matched to all of their injuries and filtered to include only 

those that occurred on or before the injury date within that cycle. To prevent overlap, we retained 
only the most immediate upcoming injury associated with each game. If a player was injured on 
a non-game day, their most recent prior game was treated as the injury-adjacent event. Within 

each cycle, we calculated the number of games preceding the injury, counting down from a 
maximum of 40 games – the length of the 2024 WNBA regular season. Using the trained model, 

we predicted the number of minutes each injured player was expected to play, and calculated 
residuals as the difference between actual and predicted minutes. Positive residuals indicate 
overuse relative to healthy player expectations, while negative residuals suggest underuse. 

 

Figure 2.18: Residuals across games leading to injury events for injured WNBA players, 
labeled by how many prior injuries they had. The large presence of positive residuals near 
injury dates suggest some players may have been overused leading up to their injury. 
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In the figure above, each line represents an individual injury cycle. The noticeable skew toward 
positive residuals suggests that many injured players were playing more minutes than the model 
expected, implying possible overuse. In the final 10–15 games leading up to injury, the residuals 
become more densely clustered, perhaps reflecting increased game exposure and physical strain. 
Although there is no strong overall trend, the positive spikes and clustering near the injury event 
hint that elevated playing time shortly before injury may be a contributing risk factor worth 
further exploration. 

Additionally, there appears to be a pattern among players with few prior injuries. Athletes 
experiencing first-time injuries have a greater variability in residuals, and many of these athletes 
played significantly higher than expected minutes. In the five days leading up to their injury, a 
notable proportion of first-time injured players had the highest positive residuals observed across 
the dataset, ranging from 20 to 30 minutes. This suggests that these players were playing 20-30 
minutes more than expected, had they been healthy, based on the model's predictions. 

The original graph is quite cluttered due to all residuals being overlaid in a single plot, so the 
version below facets the residuals by the athlete’s number of prior injuries, for better clarity. 

 

Figure 2.19: Residuals across games leading to injury events for injured players, faceted by 
how many prior injuries they had. Players appear to exceed expected minutes before injury, 
with this pattern heavily shifting depending on the number of prior injuries.  

The figure above builds on Figure 2.18 by overlaying a smoothed regression line in each panel. 
This trend line is generated using a locally weighted regression (LOESS) fitted to the residuals 
within each facet, grouped by prior injury count. Each black regression line in each panel 
highlights the overall pattern of residuals in the games leading up to injury.  
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Across all groups, residuals are predominantly positive, suggesting that players often played 
more minutes than expected in the lead-up to an injury, which may reflect patterns of overuse. 
Some notable differences appear across prior injury counts. Players with no history of injury 
show a clear trend of increasing positive residuals as the injury date approaches – a pattern not 
seen in the other groups. This is particularly evident in their panel, where the regression line is 
the only one that distinctly slopes upward. For players with one prior injury, the residuals appear 
more stable or even slightly reduced before the day of injury, perhaps indicating more controlled 
playing time, given that the player and coaches know they’ve had an injury prior in the season.  

2.10 Limitations and Future Work 

In figure 2.19, there is a pattern among players with two or three prior injuries, where there is a 
distinct gap in the residuals during the 5–10 games leading up to the injury. This is unusual since 
the original dataset retains an entry for each game, even if a player did not participate or played 
zero minutes, ensuring every player is represented. Thus, the absence of residuals around 5-10 
games before the injury suggests that the model might not have made predictions for these 
games, or it could indicate missing data for those specific games.  

Given that this unusual pattern appears only for players with multiple injuries, it’s likely related 
to how injury cycles were categorized, specifically how multiple injuries close in proximity are 
handled in the code. The code is designed to retain only the closest future injury for each game, 
which works well in the vast majority of cases. However, when two injuries occur within a short 
time span, games that should logically lead up to the second injury may instead get grouped 
under the first. As a result, the second injury cycle appears to have missing data in the lead-up 
period, creating visible gaps in figures like 2.19. Future work could address this by adding a 
time-based buffer that skips games occurring shortly after a prior injury, though this may 
complicate cycle assignments when injuries are closely spaced. 

Despite its limitations, the linear mixed-effects model can be used to flag players at risk of injury 
by comparing actual vs. predicted minutes. Large, sustained positive residuals (like consistently 
playing 10+ minutes more than expected) may indicate overuse and unhealthy playing patterns. 
If this pattern continues over several games, it could signal elevated injury risk. Teams could 
monitor residuals during the season and use a threshold (e.g., +8 minutes for 3+ games) to 
prompt a change in coaching. 
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Chapter 3: Predicting Injury Likelihood and Recovery Times 

While the previous chapter focused on how minutes played might be linked to injury risk, the 
main takeaway was that many injuries could be due to overplaying. In this chapter, we move 
from identifying patterns to actually predicting injury risk, where minutes played is used as one 
of the key predictors. We do this in two ways:  

1.​ By predicting the likelihood of a player getting injured in the time frame between the 
current or most recent game and their next game.  

2.​ By predicting recovery time (days missed due to the injury).  

The first task frames injury occurrence as a binary classification problem. We use logistic 
regression to estimate the likelihood of a player getting injured between the most recent game 
and the future one, using features like prior injury history and average minutes played per game 
thus far. The goal is to ultimately produce risk scores for players to evaluate their likelihood of 
getting an injury by their next game.  

The second task focuses on injury severity, measured by the number of days missed. Here, we 
explore and evaluate the performance of multiple modeling approaches: linear regression, 
zero-inflated binomial regression, standard negative binomial regression, multinomial logistic 
regression, and random forest. 

3.1 Predicting Likelihood of Athlete Injury by the Next Game Day 

Before diving into the modeling, it’s important to clarify what this research defines as an injury 
'by the next game day.' The injury dataset only includes the date of the injury, not the exact time. 
So, if an injury occurs on a game day, there is no information on whether it happened before, 
during, or after the game. For this reason, the goal in this section is to predict the likelihood that 
an athlete will experience an injury between the date of their current game and the date of their 
next game. 

3.1.1 Data Preparation 

To address this problem, we aim to build a binary classification model that predicts the 
probability of an injury occurring between the current game and the next, with the output ranging 
from 0 to 1, reflecting the model's confidence in the likelihood of an injury during that time 
frame.  

The model is trained on both injured and uninjured players. Since this is a binary classification 
model, it requires data from both classes (injured and uninjured) to identify patterns for each 
outcome. If the model were trained only on injured players, for instance, it would be unable to 
predict outcomes for uninjured players. 
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The dataset structure mirrors earlier chapters, with each row representing a game played by a 
specific athlete. To create the binary target variable injured_next_game, we identified each 
athlete's next game and checked whether an injury occurred between the current and next game 
using the separate injury dataset, where each row represents an injury that occured along with 
details such as the date it occurred on. A few new features were also engineered: 

●​ body_part: lists injury type if an injury occurred after current game date, NA otherwise 
●​ prior_injuries: counts number of injuries an athlete had before each game 
●​ minutes: playing time in the current game  
●​ injury_status: flags whether the athlete was actively injured during the current game 

 

Figure 3.1: Injury timeline for Rebecca Allen. This data structure helps capture the temporal 
patterns between playing time and injury history.  
 
The table above presents the engineered features for Rebecca Allen’s games during the 2024 
season. For example, her first few games occurred on 5/14, 5/18, and 5/21. Because she 
sustained an injury on 5/18, the injured_next_game flag is set to 1 for the 5/14 game – as her 
next game was on 5/18, and the injury occurred between those dates. While it’s unclear whether 
the injury on 5/18 happened before, during, or after that game, it is still inclusively counted 
within the 5/14 - 5/18 cycle. Therefore, the prior_injuries counter is incremented by 1 after 
the injury on 5/18 to reflect that the athlete has had a prior injury before the 5/21 game. This 
logic is applied consistently to all games of all athletes in the dataset.  

3.1.2 Model Description  
To model whether or not a player will be injured before their next game, we use binary logistic 
regression. The key predictors we will focus on and use in this model are: minutes, 
prior_injuries, and injury_status. As previously mentioned, the response variable is 
injured_next_game, an indicator variable that measures whether a player was injured between 
current game  and their next game  + 1 (1=player was injured, 0=player was not injured).  𝑡 𝑡
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In the dataset, there are 4389 records of games resulting in a non-injury and only 124 records of 
games leading to an injury. Because around 97% of the outcomes are non-injuries, a naive model 
could just predict no injury every time and still achieve 97% accuracy, which is misleading and 
ineffective. In fact, an initial confusion matrix confirmed this issue, showing that the model 
failed to correctly identify any injuries.  
 
To address this, the dataset was split into training and test sets for unbiased evaluation, and 
upsampling was used (from the caret package) to balance out the classes. This technique 
oversamples the minority class (injuries) so the model couldn't be biased toward the majority 
class (non-injuries). Predictions were made on the test set using a probability threshold, and a 
confusion matrix was used to evaluate performance. This process allowed the model to better 
learn the underlying patterns that contribute to injury risk, making it more useful despite the 
initial class imbalance. 

3.1.2 Model Results  

The table below summarizes the key results of the binary logistic regression model: 

Predictor Estimate Odds ratio P-value 

minutes 0.034 1.035 < 2e-16 

prior_injuries 0.256 1.292 < 2e-16 

injury_status -0.767 0.464 0.00026 

 
Figure 3.2: Binary classification model summary. All predictors were significant. Minutes 
played being a significant predictor of injury likelihood aligns with the main takeaways from the 
previous chapter.  

The logistic regression results show that minutes played and prior injuries are both strong 
positive predictors of injury risk before the next game. Each additional minute increases the odds 
of injury by 3.5% (odds ratio = 1.035), while each past injury increases it by 29.2% (odds ratio = 
1.292). In contrast, if a player was already injured during the current game, their odds of injury 
in the next game are 53.6% lower (odds ratio = 0.464), likely because they were already playing 
fewer minutes or recovering from their current injury. 

3.1.3 Model Performance  
The confusion matrix from this model’s predictions on the test set is shown below.  
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 Reference 

 
 

Prediction 

 0 (actual non-injury) 1 (actual injury) 

0 (model predicted 
non-injury) 

499 8 

1 (model predicted 
injury) 

376 19 

 
Table 3.2: Regression model confusion matrix. Compared to the naive model, there are more 
cases of the model correctly predicting an injury when it occurs.  
 

The model achieved an accuracy of 57.43% – we can see in Table 3.2 this is likely because of the  
substantial number of non-injury cases that were misclassified as injuries. More notably, the 
model's sensitivity is 70.37%, indicating it correctly identifies actual injury events over 70% of 
the time – a promising result given the importance of catching potential injuries. However, the 
specificity is lower at 57.03%, meaning the model correctly identifies non-injury cases just over 
half the time, while falsely flagging around 43% of them as potential injuries. 

While these results aren't poor, especially in a context where sensitivity matters more (since it’s 
ideally better to overpredict injuries), the relatively low specificity is still a concern. It suggests 
the model struggles to clearly distinguish between injury and non-injury cases, possibly due to 
the class imbalance. Improving specificity – without sacrificing sensitivity – will be key to 
reducing false alarms and enhancing the model’s practical utility. 
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Figure 3.3: ROC Curve for Injury Prediction Model. With an AUC of 0.631, the model shows 
moderate predictive power, outperforming random guessing but leaving room for improvement.  
 
The Receiver Operating Characteristic (ROC) curve above shows how well a model can separate 
injury and non-injury cases by plotting the trade-off between sensitivity (true positive rate) and 
1-specificity (false positive rate) across different thresholds. The diagonal line in the figure 
above represents a model that makes random guesses, held as comparison. Since the ROC curve 
(in blue) lies above the diagonal line, it indicates that the model performs better than random 
guessing. However, the curve is not close to the top-left corner of the plot, which is more ideal as 
it would indicate high sensitivity and specificity.  
 
The Area Under the Curve (AUC) is 0.631, meaning that 63.1% of the time, the model correctly 
assigns a higher injury probability to a player who actually gets injured compared to one who 
does not. While this suggests the model captures some predictive signal, there is significant room 
for improvement – likely restricted by the limited injury data.  

3.1.4 Model Optimization  

To optimize the model's performance, we can adjust the classification threshold to find the point 
that maximizes both sensitivity and specificity. In the previous work, a threshold of 0.5 was used, 
meaning probabilities greater than 0.5 were classified as "1" (injury), and all other probabilities 
as "0" (no injury). One approach is to maximize the sum of sensitivity and specificity, known as 
Youden's J statistic, to strike a balanced trade-off between the two [10]. Using the pROC 
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package, we can identify the coordinates on the ROC curve in Figure 3.3 that maximize both 
sensitivity and specificity, ultimately determining the optimal threshold. 

Our analysis revealed that this optimal threshold is 0.4761, slightly lower than the initial 0.5. At 
this threshold, the model achieves a specificity of 0.8148 (correctly identifying 81.48% of 
non-injury cases) and a sensitivity of 0.5074 (correctly identifying 50.74% of injury cases). This 
new threshold optimizes the balance between sensitivity and specificity, which can enhance 
model performance. 

3.1.5 Future Work  

To predict injuries with higher accuracy, the model’s threshold can be adjusted for classification. 
Lowering the threshold (as we did earlier, going from 0.5 to 0.47) will increase the model’s 
sensitivity (as it did, going from 70% to 81%), meaning it will correctly identify more injuries. 
However, this comes at the cost of reduced specificity, leading to a higher number of false 
positives. For instance, lowering the threshold to 0.25, for instance, will predict more injuries, 
but it will also misclassify more non-injury games as injuries. In this case, the model might just 
classify more or even all games as injuries to meet the lower threshold. This trade-off helps 
reduce the risk of missing actual injuries but increases the likelihood of false alarms. 

The above work maximizes the sum of sensitivity and specificity, finding the optimal threshold 
where both metrics are maximized. But if reducing false alarms is a priority, the threshold can be 
raised. It can ultimately be adjusted based on the priorities of the coaching staff – whether they 
prefer to take a more cautious approach and risk false alarms, or focus on reducing unnecessary 
alarms and risk missing injuries. 

Future work could explore more advanced techniques, especially to address the imbalance in the 
data and improve both the precision of injury predictions.  

3.2 Predicting Injury Severity by Modeling Recovery Time 

3.2.1 Introduction 
 
In this section, we develop models to predict the severity of injuries, using total days missed as a 
proxy for severity. The goal is to understand which player or injury-related characteristics – such 
as game participation, scoring performance, or injury type – are associated with longer recovery 
periods. We explore several modeling techniques and evaluate their performance to identify the 
most effective approach for predicting time lost to injury.  

3.2.2 Feature Engineering and Dataset Construction 
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Unlike previous models where each row in the dataset represents a game, for this model the 
dataset was restructured so that each row corresponds to a unique injury event. New aggregate 
features were engineered to capture a player’s condition leading up to the injury, these include: 

●​ Total_Days_Missed (response variable) 
●​ Total_Games_Missed 
●​ Total_Minutes_Played 
●​ Avg_Minutes_Played 
●​ Total_Points 
●​ Prior_Injury_Count 

The distribution of Total_Days_Missed, the response variable for the following models in this 
section is below.  
 

 
Figure 3.4: Histogram of total recovery days for injured athletes. Recovery periods range 
from 0 to 100, with the distribution being largely skewed towards shorter recovery days.   
 
The figure above shows that the majority of athletes had recovery periods that were roughly 0-10 
days long. To further estimate how zero-inflated this was, we found that 9.7% of injured athletes 
were listed as having 0 days missed (it’s likely they had an injury the day of a game, but returned 
to the game later). Additionally, to be more specific, 57.46% of the injured athletes had a 
recovery period within 0-5 days, further explaining why the graph appears so right-skewed. 
 
To further investigate the relationship between the new aggregate features, existing variables in 
the injury dataset, and Total_Days_Missed, their correlations were calculated as shown below: 
 

Feature Name Correlation with 
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Total_Days_Missed 

Total_Minutes_Played -0.249 

Total_Games_Played -0.260 

Avg_Minutes_Played -0.287 

Total_Points -0.219 

Prior_Injury_Count -0.122 

Estimated_WS_lost 0.682 

Position -0.145 

BMI -0.163 

 
Table 3.5: Correlation table for Total_Days_Missed. Most features aside from estimated 
win-share loss have very weak correlations with recovery days. (Higher WS loss means that a 
player getting injured had greater loss for the team.) 
 
As shown in the table above, most features are negatively correlated with recovery days — 
indicating that as these values increase, the number of days missed tends to decrease. Players 
who log more minutes, score more points, and have higher win share losses tend to have shorter 
recovery times, likely because their value to the team encourages quicker returns to play despite 
their injuries. 
 
Overall, most features were only weakly correlated with recovery duration. However, creating 
the new features transformed the dataset into a richer representation of injury events, setting the 
foundation for the predictive modeling in the next section. 

3.2.3 Initial Exploration and Linear Regression Models 

To explore what factors best predict recovery time after an injury, we tested a series of simple 
linear regression models focused on different domains. Model 1 tests whether features related to 
a player’s value to their team – such as minutes played, points scored, and starter status – help 
explain time lost due to injury. Model 2 focuses on characteristics tied more closely to injury 
severity, including injury type, prior injury history, BMI, and player position. Finally, Model 3 
combines both sets of features to see if a holistic model incorporating both team value and injury 
severity offers a stronger explanation of total days missed. These models help us understand the 
relative importance of player role versus injury nature in predicting recovery duration. In 
summary:  
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●​ Model 1 (Team value): Total Days Missed ~ Average Minutes Played + Total Points + 
Starter 

●​ Model 2 (Injury severity and athlete characteristics): Total Days Missed ~ Injury 
Category + Prior Injury Count + BMI + Position 

●​ Model 3 (Combined): Total Days Missed ~ All predictors above 

In Model 1, the only significant predictor of recovery time was average minutes played (coef = 
-0.67, p = 0.019), suggesting that players who typically play more minutes per game tend to miss 
fewer days when injured. This could indicate that players who are more valuable to their teams 
are prioritized for quicker recovery. 

In Model 2, Hip injuries proved to be a significant predictor, with a positive relationship to 
recovery time (coef = 25.16, p = 0.046). This aligns with our earlier exploratory data analysis 
(Figure 1.3), reinforcing the idea that hip injuries tend to be more severe and require longer 
recovery periods. BMI also had a surprising negative relationship with total days missed (coef = 
-2.81, p = 0.015). This suggests that athletes, particularly those with higher BMI (potentially due 
to greater muscle mass), may have a quicker recovery, possibly due to increased physical 
resilience. 

Finally, in Model 3, which combined both team value and injury severity predictors, only 
average minutes played (coef = -0.749, p = 0.013) and BMI (coef = -2.85, p = 0.012) remained 
significant. Their significance in the combined model was similar to their individual effects in 
the previous models, indicating that these factors play a consistent role in predicting recovery 
time across different contexts. 

The AIC values for models 1, 2, and 3 are 1190.745, 1166.854, and 1162.515, respectively. 
Model 3, which incorporates both team value and injury severity predictors, achieved the lowest 
AIC, suggesting it provides the best fit to the data. This indicates that combining these two types 
of predictors yields a more accurate model for predicting total days missed due to injury. Based 
on this analysis, all models moving forward will utilize predictors from model 3.  

Additionally, model 2, which focused solely on injury severity predictors, outperformed model 1, 
which included only team value predictors. This result implies that injury-related characteristics 
are stronger predictors of recovery time than team-related variables like minutes played and 
points scored. 

3.2.4 Advanced Statistical Models  

Recalling Figure 3.4 from the EDA in the previous section, we saw that the distribution of total 
days missed was right-skewed and somewhat zero-inflated. This suggests that a simple linear 
regression model may not adequately capture the complexities of the data, as it could fail to 
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account for the non-normal distribution. As a result, we move on to more advance statistical 
models:  

●​ Zero-inflated negative binomial model: to account for the excess zeros in the data  
●​ Negative binomial model: to handle the overdispersion, since the variance of the 

distribution (436.77) is significantly greater than the mean (12.79) 
●​ Multinomial logistic regression: to model recovery periods in categories (e.g., “short” vs 

“long” recoveries)  

Zero-Inflated Negative Binomial (ZINB) 

The results of the zero-inflated negative binomial (ZINB) model show a significant relationship 
between several predictors and total days missed. The negative binomial count model reveals 
that average minutes played (coef = -0.0496, p = 0.015) and BMI (coef = -0.2849, p = 0.0007) 
are significant predictors, suggesting that athletes who play more minutes and those with higher 
BMI tend to miss fewer days due to injury. Notably, Total_Points, Starter, and most injury 
categories did not significantly predict recovery time. The zero-inflation model had an intercept 
with an exceedingly large standard error, indicating no meaningful relationship between the 
zero-inflated part of the model and the predictors. The AIC for the model is 889.0634, and the 
log-likelihood is -426.5.  

Negative Binomial (NB) 

The ZINB model produced nearly identical coefficient estimates and significance levels for the 
count portion of the model, with average minutes played and BMI remaining significant. It is not 
surprising that these models produced similar results. If the data had excess zeros, we would 
have expected the ZINB model to outperform the NB, but since only 9% of athletes had 0 days 
of recovery, the data only had very few excess zeros, and thus explaining why the ZINB model 
behaved so similarly to the NB model.  

Furthermore, the zero-inflation component was not statistically meaningful — the intercept had a 
very large standard error and a p-value of 0.98, suggesting that modeling excess zeros with a 
separate process did not improve model performance. The ZINB model's AIC was slightly 
higher (889.06), and the log-likelihood (-426.5) was nearly indistinguishable from that of the NB 
model. 

However, both models have significantly lower AIC values compared to the linear regression 
model (AIC=1162.51), suggesting they provide a substantially better fit. This is likely due to 
their ability to account for overdispersion in the number of days missed. 

Multinomial Logistic Regression 
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While the ZINB and NB above models offered valuable insights into the continuous count of 
days missed, a different approach may help achieve a better model fit. We categorized total days 
missed into recovery periods: 

●​ 0 days = No Recovery 
●​ 1–2 days = Short Recovery 
●​ 3–14 days = Medium Recovery 
●​ 15–94 days = Long Recovery 

This categorical framing allows us to model recovery outcomes as discrete events using 
multinomial logistic regression. While it's not a requirement for each category to have an equal 
number of observations, the categories were designed to be relatively balanced. The distribution 
is shown below: 

 

Figure 3.6: Histogram showing the frequency of athletes across the different recovery 
period categories. The time intervals were manually defined to ensure the classes were 
relatively balanced. 
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Figure 3.7: Stacked bar chart depicting proportion of recovery periods based on injury 
type. Face injuries had the highest proportion of no recovery, hip injuries had the highest 
proportion of short recovery, head injuries had the highest proportion of medium recovery, and 
foot injuries had the highest proportion of long recovery periods. 
 
The figure above offers deeper insight into patterns observed in earlier analyses. For example, 
while previous models identified hip injuries as significant predictors of total days missed, this 
graph reveals that hip injury recovery tends to be either very short or very long — the latter often 
associated with surgeries. However, it’s important to note that the recovery period categories 
were manually defined and somewhat arbitrary; adjusting these boundaries could significantly 
alter how the distribution appears and is interpreted. 

For the model output, we selected "Short Recovery" (1-2 days) as the baseline category because 
it represents a more typical recovery period that is often observed in injury data. Unlike "No 
Recovery" (0 days), which may involve cases of minor injuries or no injury at all, “Short 
Recovery” reflects injuries that do require some recovery time, making it a more meaningful 
category for comparison. 

Below is a summary of the only predictors that were significant: 

Predictor Recovery Category Estimate p-value 

Average minutes played Long -0.104 0.0406 

Foot injury Long 2.655 0.0409 
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Head injury Long -14.311 < 2e-16 

Hip injury No recovery -14.036 < 2e-16 

Hip injury Medium -14.692 < 2e-16 

Shoulder No recovery  -13.670 < 2e-16 

 
Table 3.8: Summary of significant predictors. Most predictors for recovery period were 
various injury types.  

Aside from the various injury types, average minutes played was also a significant predictor. 
Since "Short Recovery" is the baseline, the negative estimate of -0.104 for "Average minutes 
played" in the "Long Recovery" category suggests that for each additional minute played, the 
likelihood of a player experiencing a long recovery (15-94 days) decreases. In other words, 
players who play more minutes are less likely to experience a long recovery compared to a short 
recovery. This is consistent with our previous analysis, where we observed that injured players 
who play more minutes tend to be key, high-value players for the team, and their recovery 
periods are often expedited to get them back on the field sooner. 

In comparison to the baseline "Short Recovery," significant predictors for "Long Recovery" 
include fewer minutes played and foot injuries, while head injuries are strongly associated with 
long recovery periods. For "No Recovery," hip injuries and shoulder injuries are strongly 
negative, indicating that these injuries are less likely to require no recovery time. This is all 
consistent with our EDA from Figure 3.7.  

Evaluating model performance, the multinomial model had an AIC of 374.86, which is far lower 
than the AIC of all previous models.This suggests it offers a much better fit by more effectively 
capturing the categorical variation in recovery periods, compared to models predicting 
continuous days missed. 

3.2.5 Random Forest  

Moving forward, we could use a random forest model to predict recovery time due to its ability 
to capture complex, non-linear relationships that the previous models could not. This approach 
may offer improved predictive accuracy. 

To ensure an apples-to-apples comparison with the multinomial regression model, the Random 
Forest will also predict recovery period, rather than continuous total missed days due to injury. 
Since the random forest model cannot be directly compared using AIC, we will evaluate its 
performance based on AUC metrics. 
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To create the random forest model, we utilized the caret and randomForest packages. The data 
was split into training and testing sets using a 80-20% split. The model uses bootstrapping with 
25 resampling repetitions to improve model stability and robustness. The mtry tuning parameter, 
which controls the number of variables randomly sampled at each split, was optimized across 
different values, with the final model selected based on the best accuracy (mtry=8). This means 
the final random forest model achieved its highest classification accuracy when considering 8 
predictors at each split. This resampling procedure was done to ensure that the model generalizes 
well to new data by repeatedly sampling and fitting the model. 

3.2.6 Model Comparison 

The results from the Random Forest model indicate an overall accuracy of 48%. In comparison, 
the accuracy for the multinomial model was 40%. Greater insight can be made by looking at the 
AUC values, which tells us how well a model can distinguish between a given class and all other 
classes.  

AUC values Multinomial Logistic 
Regression  

Random Forest 

No Recovery (0 days)   0.9347 0.8695 

Short (1-2 days)  0.3472 0.7048 

Medium (3-14 days)  0.5000 0.6985 

Long (15-94 days) 0.8859 0.7543 

 
Table 3.9: Summary of AUC values. The Random Forest model is better at distinguishing Short 
and Medium recovery periods, whereas the Multinomial model performs better in identifying No 
Recovery and Long recovery periods. 
 
The AUC measures how well a model distinguishes between classes. For a given category, it 
reflects the model’s ability to differentiate whether a player belongs to that specific category 
versus all others. For example, the AUC for the "No Recovery" class was 0.8695, meaning the 
model had an 87% chance of correctly distinguishing between a randomly selected player with 
no recovery and one with a different recovery outcome (short, medium, or long). Since an AUC 
of 0.5 indicates no better than random guessing, and 1.0 indicates perfect classification, an AUC 
of 0.87 suggests the model has strong discriminatory power for identifying the "No Recovery" 
class. 

Comparing the AUC values, the random forest model demonstrated stronger discrimination 
between short and medium recovery categories, likely due to its ability to capture non-linearities 
and interactions. In contrast, the multinomial model showed better performance in distinguishing 
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the long and no recovery classes, potentially because these patterns are more linearly separable 
or rarer. It’s also possible that the multinomial model may be overfitting to these less common 
classes, while the Random Forest model distributes learning more evenly across all categories. 

3.2.7 Summary of Findings 
 
The key findings from Section 3.2 are summarized below:  

●​ Most recoveries are very short: Over half (57.46%) of injured athletes recovered within 
0–5 days, and 9% returned with no missed days. 

●​ Injury severity predictors were stronger predictors of recovery time than player 
value predictors. The model predicting recovery time solely based on injury severity 
related predictors outperformed the model which only included team value related 
predictors. Ultimately, a model with combined predictors performed the best.  

●​ Negative binomial models outperform linear ones: Because of overdispersion and 
many short/no recovery cases, advanced models like the negative binomial provided a 
much better fit than standard linear regression. 

●​ Multinomial regression captures risk tiers well: This model grouped recovery into 4 
buckets and found hip injuries and minutes played to be strong predictors of severe (14+ 
day) recovery, which aligned with EDA.  

●​ The random forest and multinomial regression models had tradeoffs: Random Forest 
excels at distinguishing Short/Medium recoveries from others, while Multinomial better 
identifies No/Long recoveries. 
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Chapter 4: Reflection  
 
As we reflect through the journey of this study, the most common result that emerges across 
these three chapters is the critical role of minutes played in injury risk. This was revealed in 
Chapter 1, where we also found critical insights into injury factors, establishing the foundation 
for subsequent modeling. Lower extremity injuries (ankle, knee, foot) were most prevalent, 
reflecting known biomechanical risks in female athletes, with injuries and missed games rising 
sharply in recent seasons. While most injuries caused short absences, shoulder/hip injuries often 
led to prolonged recovery, and early-season injuries (May/June) proved more severe, resulting in 
longer recovery times and significant team disruption. Most critically, injured players averaged 
more minutes than non-injured players – this made sense as the best players generally have 
greater playtime, increasing injury exposure and reinforcing the link between high minutes 
played and injury risk. 
 
Given that minutes played is a critical factor contributing towards injury risk, Chapter 2 moved 
onto building a model to predict the optimal number of minutes a player should play in a given 
game, to minimize injury risk. A three-level mixed effects linear model-trained on non-injured 
players to establish healthy play habits-predicted minutes played using starter status (which was 
found to be highly influential) and position as fixed effects, and team/player as random effects. 
The linear model (assuming a Gaussian distribution) outperformed Gamma/Log-Normal 
alternatives via RMSE. When comparing the distributions of the random effects, it was found 
that there was greater variation in minutes played on the athlete compared to the team-level. 
When the model was applied to injured players, the residuals showed that the model was 
severely underestimating the injured players' actual minutes, indicating those players were 
consistently overplayed. Residuals grew larger approaching injury dates, confirming excessive 
minutes likely contributed to injuries.  
 
In the first section of Chapter 3, a binary classification model was created to determine the 
likelihood of an injury between the date of a player’s current game and the date of their next 
game. It was found that minutes played in the current game, number of prior injuries, and 
whether or not the player was already injured were all significant predictors. This model had an 
accuracy of 57% but sensitivity of 70%, meaning the model correctly identifies actual injuries 
over 70% of the time, which is promising given the importance of catching potential injuries 
over having false alarms. The AUC of the model revealed that 63% of the time, the model will 
correctly assign a higher injury probability to a player who actually got injured compared to one 
who was not.  
 
In the second section of Chapter 3, models predicting total days missed due to the injury were 
compared. A multinomial logistic regression categorized recovery periods (0 days = No 
Recovery; 1–2 = Short; 3–14 = Medium; 15–94 = Long), while a random forest model also 
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predicted these categories. The random forest excelled at identifying Short/Medium recoveries, 
whereas the multinomial model better detected No/Long recoveries.  
 
Ultimately, these findings mean injury risk is both predictable to an extent and modifiable 
through workload management, particularly by optimizing minutes played and monitoring 
high-exposure periods. The models developed here can be used to inform real-time coaching 
decisions, such as rotating players during high-risk periods (e.g., early season) or adjusting 
minutes for injury-prone athletes, while prioritizing early intervention for those flagged by 
predictive algorithms. These findings provide a valuable resource for coaches, trainers, and 
medical staff aiming to implement targeted injury prevention and management strategies in 
women’s basketball, balancing performance demands with athlete health. 
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