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We created a simplified representation of acoustic data for canonical and accented speech 
using simulated data. The data was generated from two bivariate gaussian distributions. Each 
represents one of two acoustic dimensions of human speech. A third gaussian distribution is 
centered at each sample to represent excitement of different neurons to the sound. We 
specifically took 15 samples from each of these three distributions.

General Procedure:
● Pretrain phase: We first train the slow pathway on canonical data.
● Exposure phase: We add the fast pathway to the model and fit the 

model in the order of reversed - canonical - reversed data set.
● During the exposure phase, we perform Time-Course Analysis on 

edge cases as test stimuli.

The goal of this project was to model human speech adaptation and accent learning abstractly in order to explain how the brain 
could potentially work in this task. We simplified the actual learning procedure of humans down to only two major dimensions in our 
modeling of the dimension-based statistical learning. We implemented a simple neural network with two hidden layers and two 
separate but ultimately concatenated pathways to simulate slow, long-term learning and fast, short-term adaptations to speech 
stimuli. After pretraining the model, we exposed it to reverse stimuli, canonical stimuli, and reverse stimuli again (different). 

Our hypothesis was that the model would have more difficulty distinguishing between the reverse stimuli and be more reliant on the 
fast pathway for the classification decision. This behavior is exactly what resulted. The next steps we recommend our project 
advisor take based on our findings are to further run this simulation to see if the model can exhibit a full reversal in the proportion “P” 
prediction, where the Low stimuli get predicted a higher probability and the High stimuli a lower probability than the other. There is 
also room to explore the impact of differing weight decay in each path’s learning. Moreover, real acoustic sounds could be ued 
instead of synthetic data. Finally, there is potential for self-supervised learning to be incorporated into the model to help truly model 
the human brain. 

● We add the fast pathway in a conventional 
NN to emulate the rapid changes of 
neurons during speech adaptations.

● We used tanh activation for the first hidden 
layer and linear activation for the second 
hidden layer. Sigmoid activation was used 
for the output layer to ultimately classify 
“Beer” or “Pier”.

● We set a low learning rate of 0.01 for the 
slow layers and 0.18 for the fast layers.
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In Figure 4, we visualize the weights for the slow and fast 
pathways after exposure to the Reversed data. We can 
observe that the slow pathway weights barely change, while 
the fast pathway weights change rapidly throughout the 
exposure. This implies that our model prediction is indeed 
more reliant on the fast path when the model is exposed to 
“weird” accent data, which is exactly how we wanted the 
model to behave. 

Simulation of Human Speech Adaptation

In Figure 3, we show the proportion of instances classified as 
“Pier” after running the model on Reversed - Canonical - 
Reversed data sets in that order after the pretrain phase. The 
reverse data flips the dimensions of the stimuli from the canonical 
data, and are pictured in Figure 2 to the left. We hypothesized 
initially that when the model sees reversed data after pretraining, 
it will exhibit down-weighting, meaning that the model is clearly 
adjusting itself to the different, accented data by classifying a 
smaller proportion of High stimuli as “Pier” and higher proportion 
of Low stimuli as “Pier”. When we continue with exposure, this 
time on Canonical data (the “regular” stimuli/accent), we see the 
consistent separation between proportions for Low and High 
stimuli. Finally, when we expose on Reverse data one last time, 
we again see this down-weighting effect occur with the model 
trying to distinguish between the two stimuli given one of the 
same dimensions. 

This work simulates an acoustically driven adaptation phenomenon called dimension-based 
statistical learning. We conceptualize human speech adaptation as having two different 
pathways: one path learns slowly and stores long-term representations of how acoustic input 
can map to linguistic representation, while the other path learns quickly and constantly make 
dynamic adjustments. Throughout the experiment, we simplify the learning process by using 
two acoustic dimensions. With the error-driven learning idea, we modeled a dual-pathway 
design through a 2 hidden layer neural network with these two separate “paths”. We 
successfully simulated a specific phenomenon, namely the down-weighting of the secondary 
dimension.

Time-Course Analysis:
To find out when the down-weighting 
of the secondary dimension happens, 
during exposure phase, we need to:
● Expose the model to only one 

single instance at a time. 
● Test the model immediately on the 

two test stimuli.

Edge Cases as Test Stimuli:
● Vertical and horizontal axes are 

primary and secondary dimension.
● Orange (High) and purple (Low)

circles are the edge case, or 
test stimuli. 

● Note that test the two stimuli 
    are indistinguishable in the 

secondary dimension.

We manipulated the ratio of learning rates for the two 
layers, and observed that with higher learning rates in the 
fast layer, we see faster downweighting during reversed 
exposure.

Figure 2. References: Wu, C. (2020). Neural Speech Adaptation [PowerPoint slides]. 
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