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Background & Introduction

Continuous glucose monitoring (CGM) is a new technique

that has revolutionized the tracking of people's blood sugar
levels. Dexcom, a prominent glucose monitoring device
company, is helping to lead this revolution. To track reported
Issues with its devices, Dexcom uses the Jira software

platform, which records the issues in the form of tickets.
However, many of these tickets are redundant, with the
same issues being recorded multiple times. Our solution to
this problem is to group related tickets together using
statistical models and natural language processing methods.

Methods

e Using the summary column primarily, we grouped the text based on the frequency of keywords. To do this, we used N-grams, a contiguous
sequence of words of length N, to find the most frequent series of words.

e \We converted the text inputs (words) into vectors of numbers using a technique called Word2Vec. These vectors contain information about the
relationships between the N-grams that is not observable, or that is latent.

e The K-means algorithm then assigned the elements in the vectors to different clusters based on the distance between elements.
e The clusters were then visualized with t-SNE, with a perplexity value of 50 and 100. The perplexity value controls the effective number of neighbors
that each point considers when reducing dimensionality, and we found that 50 and 100 were optimal for our clustering, based on data size.

e Clustering was finally evaluated using the Silhouette Score, which ranges from -1 to 1, with greater than 0.5 being optimal.
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Figure 1: Examples of three CGM Jira Tickets with fields Issue Key, Status, Date Created, OS
type, Description, Summary, and Comments

Data Pre-Processing

Our dataset comprises a collection of 10,011 reported CGM
device issues. For each, there are 16 associated fields,
including the following:

Status tracks the progress of the ticket through
the workflow (“open”, “closed”, “awaiting
action”)

OS denotes the operating system concerned

Description the body of the ticket description

Summary the title of the ticket

Comments detailed discussions or notes added to
the ticket

We conducted a detailed cleaning process to improve the

usability of text (Description, Summary and Comments).
Initially, we removed HTML tags and addressed formatting

Issues. Subsequently, we normalized text through
lemmatization (a process that simplifies words to their base
or root form) and removed stopwords, punctuation, and
excess spaces. Further, with the removal of replicated issues
using Issue Key as an identifier, we reduced the dataset to
1,673 unique tickets.

Analysis and Results
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Figure 6: Top 5 N-grams for each cluster, from N=2 to N=10 (bi-grams to deca-grams). Clustering was aggregated from each
data split. G6 Data: Cluster 0, Cluster 1, G7 Data: Cluster 2, Cluster 3; Remaining Data: Cluster 4, Cluster 5, Cluster 6

Cluster Interpretation: Cluster 0 covers G6 system issues, like device compatibility, software glitches, and Ul concerns, while Cluster 1 seems
to focus primarily on G6 app-specific problems like compatibility errors and signal loss. Cluster 2 focuses on the G7 app’s bug risks across
devices while Cluster 3 is more concerned about on G7’s signal loss and connectivity issues. Cluster 4 focuses on patient account and Clarity
app issues. Cluster 5 covers merge requests and system functionalities, while Cluster 6 centers on administrative tasks and user account
management within Clarity.

Conclusions

e Splitting the data into multiple datasets according to device type creates stronger and more compact clusters
e A total of seven clusters yields an aggregated Silhouette score of 0.475, where a Silhouette score of 0.5 or higher is considered optimal
e Further work could focus on improving the metric score by including more data or using more complex clustering methods
o Different clustering algorithms such as Gaussian Mixture Models or Balance lterative Reducing and Clustering using Hierarchies (BIRCH) might
account for features of the data that was missed by the methods used here



