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Abstract

We propose a time-varying convex generalization of the original Bradley-Terry
model. Our model directly captures the temporal dependence structure of the
pairwise comparison data without explicit temporal distribution assumptions. This
enables the modeling of discrete-time dynamic global rankings of N distinct
objects. Different choices of the convex penalization term provide a control on
the degree of smoothing in the derived time-varying global rankings of the N
distinct objects. Furthermore this directly enables analysis on sparse time-varying
pairwise comparison data. We also prove that a relatively weak condition is both
necessary and sufficient to guarantee the existence and uniqueness of the solution
of our model. We implement various convex optimization algorithms to efficiently
estimate the model parameters under the `22, `2, and `1 convex penalization norms.
We conclude by thoroughly testing the practical effectiveness of our model under
both simulated and real world settings, including ranking 5 seasons of National
Football League (NFL) team data. Our generalized time-varying Bradley-Terry
model thus provides a useful minimalist benchmarking tool for other feature-
rich dynamic ranking models since it only relies on the time-varying pairwise
comparison data between the N distinct objects.

1 Introduction and Prior Work

1.1 Pairwise Comparison Data and the Bradley-Terry Model

Pairwise comparison data is very common in daily life especially in cases where the goal is to rank
several objects. Rather than directly ranking all objects simultaneously it is usually much easier and
more efficient to first obtain results of pairwise comparisons. The pairwise comparisons can then
be used to derive a global ranking across all individuals in a principled manner. One such statistical
model for deriving global rankings using pairwise comparisons was presented by statisticians R. A.
Bradley and M. E. Terry in their classic 1952 paper [3], and thereafter commonly referred to as the
Bradley-Terry model in statistical literature. A similar model was also studied by Zermelo dating
back to 1929 [19]. The Bradley-Terry model is one of the most popular models to analyze paired
comparison data due to its interpretable setup and computational efficiency in parameter estimation.
The Bradley-Terry model along with its various generalizations has been studied and applied in
various ranking applications across many broad domains. This includes the ranking of sports teams
([11],[5],[7]), scientific journals ([14],[15]), and the quality of several brands ([1],[13]).
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In order to describe the original Bradley-Terry model [3], suppose that we have N distinct objects,
each with a (positive) score or index (si)i∈[N ] showing their power of competing with each other
at a single point in time (static). This model assumes that the comparisons between different pairs
are independent and the results of comparisons between a given pair, object i and object j, are
independent and identically distributed as Bernoulli random variables, with success probability
defined as

P(i beats j) =
si

si + sj
(1)

A common way to parameterize (si)i∈[N ] is to assume that si = exp(βi), for all i ∈ [N ]. In this case,
equation (1) is usually expressed as logit(P(i beats j)) = βi − βj , where logit(x) := log x

1−x . An
important assumption in the original Bradley-Terry model is that comparisons of different pairs are
independent. However, in practice such strong data independence assumptions are unlikely to hold, as
discussed further in [2],[6],[4],[15]. A typical way to deal with such data dependence in the pairwise
comparison scores (si)i∈[N ] is to use quasi-likelihood approaches [17],[15]. Fortunately under the
setting of the original Bradley-Terry model [3] the log-quasi-likelihood and usual log-likelihood are
the same, in terms of optimizing for the target parameters β = (β1, · · · , βN ) as discussed further in
[17].

1.2 The Time-varying (dynamic) Bradley-Terry Model

In many applications it is very common to observe paired comparison data spanning over multiple
(discrete) time periods. A natural question of interest is then to understand how the global rankings
change over time. For example in sports analytics the performance of teams often changes from
season to season and thus explicitly incorporating the time-varying dependence into the model is
crucial. In particular the paper [7] considers a state-space generalization of the Bradley-Terry model
to modelling the sports tournaments data. In a similar manner bayesian frameworks for the dynamic
Bradley-Terry model are studied further in [9]. Such dynamic analysis of paired comparison data is
becoming increasingly important because of the rapid growth of openly available time-dependent
paired comparison data.

Our main focus in this paper is to tackle the problem of efficiently estimating the parameters in the
time-varying Bradley-Terry model under a frequentist framework. Our frequentist approach allows
us to assume a distribution-free approach in the changes in model parameters over time in order
to perform a dynamic parameter estimation with minimal assumptions. Our proposed model relies
only on the time-varying pairwise comparison data across the N distinct objects. This is in contrast
to more assumption-heavy recent frequentist dynamic Bradley-Terry models including [5]. The
remainder of this paper discusses our model in detail and is organized as follows. First, we formulate
our overall time-varying Bradley-Terry estimation requirement as a convex optimization problem
under various penalty norms. We then describe the relatively weak necessary and sufficient conditions
to guarantee uniqueness of our model solution. We proceed to apply various well known convex
optimization algorithms to derive efficient estimation of time-varying parameters with provable
computational convergence guarantees, exploiting specific structure of the convex penalty terms
as applicable. We then provide two strategies to optimizing our penalization parameter, λ, using
both data-driven and heuristic approaches. Finally we conclude by applying our model on synthetic
datasets and a real-world example including NFL data demonstrating the practical viability of the
model as minimalist benchmarking tool for time-varying rankings.

2 Our proposed Time-varying Bradley-Terry Model

In our time-varying frequentist setup of the Bradley-Terry model, we generalize the approach taken in
the original Bradley-Terry paper [3] in estimating parameters of interest via maximizing the likelihood
(or mimimizing negative likelihood) over the discrete observed time points {1, 2, . . . , T} =: [T ].
The parameters of interest, β(t) ∈ RN , are now given for each time point t ∈ [T ], for each of the N
distinct objects. We assume that the pairwise comparison between a given pair, object i and object j,
at a given time point t is determined by the corresponding parameter β(t) so that

logit(P(i beats j at time t)) = β
(t)
i − β

(t)
j . (2)
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Given a β(t), by equation (2) we can derive the log-likelihood `t(β(t)) at each time t ∈ [T ]. As the
size of data in each t is much smaller than the global data, we might want to smooth the parameter β(t)

across different time points and to leverage the dynamic structure in the global data. Our proposal is
to include the penalization term λ

∑T−1
t=1 h(β(t+1) − β(t)) for some convex penalty function h that

can effectively smooth the estimation of parameter by penalizing large differences in subsequent time
points. In summary, our proposed time-varying setup of the Bradley-Terry model can be framed as
the following convex optimization problem:

min
{β(t)}t∈[T ]

−
T∑
t=1

`t(β
(t)) + λ

T−1∑
t=1

h(β(t+1) − β(t)), s.t.
N∑
i=1

β
(1)
i = 0 (3)

where λ ≥ 0, β(t) ∈ RN , and h : RN → R≥0 is the convex penalty function.

First, we observe that if T = 1 and λ = 0 then equation (3) reduces to the same objective as the
original (static) Bradley-Terry model [3]. As such our model represents a generalization of the
original Bradley-Terry model to the time-varying setting. Furthermore we include an additional
constraint, namely

∑N
i=1 β

(1)
i = 0 which sets the sum of the estimated parameters to 0 at the initial

time point t = 1. This artificial constraint is used to guarantee the existence and uniqueness of
the global solution set in the convex formulation discussed further in section 3. Since we are only
concerned with obtaining relative global object rankings this constraint still maintains our ultimate
goal and further ensures that equation (3) is invariant to constant shifts in the model parameters.
In our project we consider 3 cases for the convex penalty function h, namely h = ‖·‖1, h = ‖·‖2,
and h = ‖·‖22 to allow for user flexibility in the degree of smoothing in the output global rankings
depending on the underlying sparsity of the available pairwise comparison data.

3 Existence and uniqueness of solution

The existence or the uniqueness of solutions for the model (3) is not guaranteed in general. This is an
innate property of the original Bradley-Terry model [3]. As pointed out by Ford Jr. [8] the Bradley-
Terry model requires a sufficient amount of pairwise comparisons so that there is enough information
of relative performance between any pair of two entries for parameter estimation purposes. For
example, if there is an object which has never been compared to the others, there is no information
which the model can exploit to assign a score for the object, so its derived rank could be arbitrary. In
addition if there are several entries which have never outperformed the others then Bradley-Terry
model would assign negative infinity for the performance of these entries, and we would not be able
to compare among them for global ranking purposes.

In 1957 Ford Jr. [8] discovered the necessary and sufficient conditions which guarantee the uniqueness
of the solution in the original Bradley-Terry model. The two equivalent conditions are:
Condition (1). In every possible partition of the objects into two nonempty subsets, some object in
the second set has been preferred at least once to some object in the first set
Condition (2). For each ordered pair (i, j), there exists a sequence of indices i0 = i, i1, . . . , in = j
such that

xik−1,ik > 0 (4)
for k = 1, . . . , n.

We prove that these conditions can also be adapted to guarantee the uniqueness of the solution in our
time-varying Bradley-Terry model. This is summarized in the following theorem.

Theorem 3.1. Given data {x(t)i,j}i,j,t satisfies the previous condition, let xi,j =
∑T
t=1 x

(t)
i,j . If {xi,j}

satisfies the condition above, then

1. If h is continuous and h(x)→∞ as x→∞, the solution β? for (2) is attainable in RN×T ;
and

2. With squared-`2 penalty, h = ‖·‖22, the uniqueness of solution classes for (3).

Hence, in our proposed time-varying Bradley-Terry model we do not require the strong conditions
[8] to hold at each time point, but simply require the aggregated conditions in Theorem 3.1 to hold
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overall. This is a quite weak data requirement in the sense that it is satisfied even when each object
does not have pairwise comparisons with all other objects at every single time point. For example,
even if one player did not play any game in a season, as long as we have a game record in another
season (with at least one win and one loss respectively), we can assign a rank to this player in the
missed season. This minimal data requirement for our proposed model is in our view a key advantage
to other frequentist time-varying approaches which could be alternatively considered here. A typical
such alternative frequentist time-varying approach would be to fit a separate Bradley-Terry model at
each discrete time point and then ‘smooth’ the derived global rankings post-hoc. This could be done
using kernel smoothing techniques over the T time points. However, such an approach would require
the stronger conditions in [8] to hold at every time point rather than the much weaker aggregated
conditions required for our model to hold in order for a unique solution. In this sense our model
requires not only minimal assumptions on the time-varying dependence but also on the pairwise data
information requirements between the N distinct objects.

4 Optimization Methods for Model Estimation

Since we have formulated our model as a convex optimization problem per equation (3), we discuss
well known algorithms which can be used to efficiently estimate our time-varying model parameters
β(t). More specifically we note that the objective function in equation (3) can be expressed as follows:

f(β)︸︷︷︸
objective in β

= g(β)︸︷︷︸
negative log-likelihood

+ H(β)︸ ︷︷ ︸
convex penalty

(5)

where

g(β) = −
T∑
i=1

lt(β
(t)), and H(β) = λ

T−1∑
t=1

h(β(t) − β(t+1)), λ ≥ 0 (6)

Since g is convex differentiable and H is convex for the convex penalty function h : RN → R≥0 then
the proximal gradient descent method (PGD) is a natural optimization technique for this problem
when using the `22-norm for the smoothing penalty. In this case we can derive the closed form of the
proximal operator and run PGD at an inexpensive computational cost. However in the case of other
smoothing penalties such as using the `1-norm or `2-norm, the proximal operator for h does not have
a closed form thereby reducing the computational feasibility of the PGD technique. In such cases we
resort to the Alternating Direction Method of Multipliers (ADMM) technique. In our optimization
implementations we consider both fixed descent step sizes si and also determined by the backtracking
line search with the initial step size sinit. Below we separately detail the efficient closed form for the
proximal operator with the `22-penalty and discuss the computational feasibility under more general
`1-norm and `2-norm smoothing penalties.

4.1 Efficient PGD for `22-penalty

The proximal operator for the step size s > 0 and the smoothing penalty H is defined as follows:

proxs,H(β′) = arg maxβ∈RN×T

[
1

2s
‖β − β′‖22 + λ

T−1∑
t=1

‖β(t+1) − β(t)‖22

]
(7)

Hence, we can decompose the optimization in the proximal operator into the marginal optimizations
for i = 1 . . . N so that if β+ = proxs,H(β′), then

β+
i = arg maxβi∈RT

[
1

2s
‖β(t)

i − β
′(t)
i ‖22 + λ

T−1∑
t=1

(β
(t+1)
i − β(t)

i )2

]
. (8)

Hence, ∇βi
Fi = 0 if and only if

1 + 2sλ −2sλ

−2sλ 1 + 4sλ
. . .

. . . . . . −2sλ
−2sλ 1 + 4sλ

β+
i = β′i. (9)
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Hence by solving the linear system (9) for each i = 1, . . . , N , we get the output of the proximal
operator for the squared `22-norm penalty. By exploiting the specific sparse tri-diagonal structure of
the linear system we can solve it in O(n) computations which is much more efficient that just using
matrix inversion.

Even though we can solve the proximal operator quite efficiently, we find that in practice the
classical Newton’s method can be even more efficient. However, when λ is close to 0, the numerical
performance of Newton’s method would become a little bit unstable, so we still need PGD in cases
where λ is very small. For moderate λ we recommend Newton’s method.

4.2 ADMM for `1-penalty and `2-penalty

On the other hand, getting the proximal operator for general smoothing penalty functions is nontrivial.
In particular the l1-norm and l2-norm penalty terms do not have a closed-form proximal solution and
require nontrivial amount of computation to approximate the optimum. In these two cases, we can
use ADMM (Alternating Direction Method of Multipliers), as detailed below for our setting.

Let β := vec(β(1), · · · ,β(T )) ∈ RTN be the vector of scores of all individuals at all time points.
Define θ ∈ R(T−1)N by θt·N+i = µt+2

i − µt+1
i for i ∈ [N ], 0 ≤ t ≤ T − 2. By introducing a

matrix A ∈ R[(T−1)N ]×TN we can express θ as θ = Aµ and rewrite the optimization (3) as

minimize − `T (β) + λh̃(θ),

subject to Aβ = θ,
(10)

where `T (β) =
∑T
t=1 `t(β

(t)) and h̃ =
∑T−1
t=1 h(θIt) with the index set It = {i : N(t− 1) + 1 ≤

i ≤ Nt}. The ADMM scheme can be written as

βk+1 = arg min
β

−`T (β) + (Aβ)>µk +
η

2
‖Aβ − θk‖2,

θk+1 = arg min
θ

λh̃(θ)− θ>µk +
η

2
‖Aβk+1 − θ‖2,

µk+1 = µk + η(Aβk+1 − θk+1).

(11)

The update of θ is simply the proximal operator of h̃. The update of β is a convex optimization
problem of a well-behaved function with no constraints and can be solved by some basic methods,
like Newton’s method.

5 Tuning λ (smoothing penalty parameter) in practical settings

In our convex formulation of the time-varying Bradley Terry model (3) we note that the penalty
coefficient λ ∈ R≥0 is effectively a global smoothing parameter for the fitted β(t) values between
subsequent time periods under the various penalty norms. Increasing λ , all else held constant, thus
increases the penalty on the difference between subsequent β(t) values over a single time period.
This leads to β(t) values (and hence the derived global rankings) becoming ‘smoothed’ together
across time.

Naturally the question remains on how to tune λ in practical applications in a principled manner.
This is a fundamentally challenging question since our proposed model is unsupervised i.e. the true
β(t) or score (si)i∈[N ] values are not directly observed. We note that in practice the end user of the
time-varying Bradley Terry model typically seeks the global time-varying team rankings, rather than
the individual fitted β(t) coefficients used to derive pairwise comparisons. As such the usual approach
of changing λ to fit the β(t) values and then assessing the associated impact on the time-varying
global rankings changes is a rather indirect approach to controlling the degree of smoothing in
the sought after time-varying global rankings. We propose both a direct heuristic approch and a
data-driven approach in tuning λ in real world settings. We detail the approaches and the conditions
under which they would be useful below.
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5.1 Heuristic Approach

We propose a simple heuristic whereby the user controls the degree of smoothing in global rankings
directly by specifying a maximal ranking change parameter α ∈ [N ] over all N teams and over all
T time periods. By specifying this global (integer) parameter α we can search over a suitable finite
grid of λ ∈ R+ values to meet this user specified global maximum team rank change requirement.
In this heuristic we note that the user simply specifies a positive integer α indicating the maximum
increase/decrease in global ranks for any team over all time periods. We claim that the user-specified
α parameter is much more intuitive for the end user to directly control the global ranking changes.
Here α is seen as a global smoothing parameter since controlling the maximum global rank change
over all T periods is effectively controlling smoothing across all local consecutive time periods as
well.

Furthermore, since α here is integer-valued it is naturally capped at the total number of teams N ,
since a team can’t globally change rankings by more than the total number of teams across any
time period. However in practice it will be much lower than this and easier to prescribe by the end
user based on reasonable domain knowledge of expected time-varying ranking movements. We
acknowledge that this heuristic trades the subjectivity of choosing λ for α but that it controls for the
degree of smoothing in global rankings directly from the users point of view. The limited choice of α
for the end user and the efficiency in grid-fitting λ makes it effective to apply in practical situations
where the user has suitable domain knowledge on maximal global ranking changes.

5.2 Data Driven Approach - Sample Splitting and LOOCV (recommended)

Alternatively we propose a data-driven approach to tuning λ when sufficient domain knowledge is
not available for the end-user. First, we note that in ranking objects from pairwise comparisons, we
want the time-varying Bradley-Terry model to sort objects by means of win rates. That is, a higher
globally-ranked object should be more likely to win against a lower globally-ranked object. Hence,
we choose λ giving the best prediction on pair-wise win rates. In prediction, leave-one-out cross-
validation (LOOCV) has been a provably successful model parameter tuning mechanism without the
aid of human heuristics [10]. Given that we don’t observe the ranking values we briefly describe how
we adapt LOOCV to our unsupervised time-varying Bradley-Terry model. We then propose several
techniques to reduce computational cost for our LOOCV λ-tuning approach.

In general settings where we have independent and identically distributed (i.i.d) samples, LOOCV
assesses the performance of a predictive model by holding out one of the i.i.d samples. In our case,
each pairwise comparison can be considered an i.i.d. sample if we take the compared objects and the
time point on which they are compared as covariates. Let (tk, ik, jk) denote k-th pairwise comparison
where object ik won against object jk at time point tk for k = 1, . . . , N . Then, for a given smoothing
penalty parameter λ, LOOCV is adapted to our model as follows:

1. For k = 1, . . . , N , given λ:
(a) Solve (3) with λ on the dataset where the k-th comparison is held-out.
(b) Calculate the negative log-likelihood (nll) of the previous solution to (tk, ik, jk).

2. Take the average of the negative log-likelihoods to obtain nllλ as a loss in the predictive
performance of time-varying Bradley-Terry model for given λ on our dataset

3. Choose the λ∗ with the smallest nllλ value overall

Solving (3) with every candidate λ, over a suitable finite grid of candidate values and on every
hold-one-out dataset incurs heavy computational cost. To reduce this cost, we can approximate
the exhaustive LOOCV with a stochastic estimate. The exhaustive LOOCV fits the model to every
possible held-one-out data and takes their average. However, if we have a large number of pairwise
comparisons, an average of much fewer losses makes tiny error. Hence, we can uniformly randomly
sample a smaller number of matches to be held-out and obtain n̂llλ efficiently. Also, we can quicken
fitting on held-one-out data by giving the original estimate as an initial value. We assume that the
parameter fitted on the entire dataset differs little to the fitted on held-one-out datasets. Hence, starting
from the original estimate, optimizing functions could reach convergence much faster. These two
speed-up techniques make LOOCV a practical and recommended option for time-varying Bradley-
Terry models with a large number of parameter values, and where there is limited domain knowledge
available.
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6 Experiments

6.1 Synthetic Data Generation

We can conduct simulation experiments in which we know the underlying global ranks of all entries
by generating data from a synthetic process. Given the number of entries N and the number of time
points T , the overall synthetic data generation process is as follows:

1. For each i ∈ [N ], simulate β∗i ∈ RT from a distribution of time-series.

2. For each i 6= j and t ∈ [T ], generate n(t)ij from some distribution and simulate x(t)ij by

x
(t)
ij ∼ Binom

(
n
(t)
ij , 1/{1 + exp[β

(t)
j − β

(t)
i ]}

)
, x

(t)
ji = n

(t)
ij − x

(t)
ij .

For the choice of distribution of β∗i ’s in step 1, we use Gaussian process to generate β∗ since they are
widely used in applications and can generate β∗ that are smoothed path across time. For each i ∈ [N ],
The generation of β∗i ∈ RT from a Gaussian process GP(µi(·), σi(·, ·)) includes three steps.

1. Set the values of the mean process µi(·) at t ∈ [T ] and get mean vector µi ∈ RT

2. Set the values of the variance process σi(·, ·) at (s, t) ∈ [T ]2, to derive Σi ∈ RT×T .
3. Generate a sample β∗i from Normal(µi,Σi).

6.2 Synthetic Simulation Results

First we generate the parameter β∗ via a Gaussian process using the method described in 6.1 for
N = 10 and T = 10 (see appendix for more details). We can then compare the true β∗ and β̂ by
different methods to see how effectively our formulation of time-varying Bradley-Terry Model fits
the synthetic ground truth. The results are shown in Figure 1.

2 4 6 8 10

T

−4

−2

0

2

β∗

True β∗

2 4 6 8 10

T

0.0

0.2

0.4

0.6

0.8

W
in

R
at

e

Win Rate

2 4 6 8 10

T

−10

−5

0

5

β̂

Vanilla Bradley-Terry

Team0

Team1

Team2

Team3

Team4

Team5

Team6

Team7

Team8

Team9

2 4 6 8 10

T

−4

−2

0

2

β̂

Dynamic Bradley-Terry `2-square

2 4 6 8 10

T

−4

−2

0

2

β̂

Dynamic Bradley-Terry `2

2 4 6 8 10

T

−4

−2

0

2

β̂

Dynamic Bradley-Terry `1

Figure 1: Comparisons of β∗ and different solutions. From left to right: (first row) β∗, win rate,
vanilla BT; (second row) β̂ by ‖ · ‖22 with LOOCV, ‖ · ‖2, ‖ · ‖1. x-axis: time points

In Figure 1, we also include the paths of the simulated “win rate”, given by the proportion of games
that each team wins at each time point, and the path of β̂ estimated by vanilla Bradley-Terry model at
each time point. By comparing these curves, we note that our models produce estimates β̂ that recover
the comprehensive global ranking of each team better than "win rate" and vanilla Bradley-Terry
model, and meanwhile give more stable paths over time. In figures of β∗ and β̂ for ‖ · ‖22, ‖ · ‖2, ‖ · ‖1,
we can verify that team 2 is almost always dominating and team 0 is maintaining the lowest position
in the majority of the time points. However, we can also find some differences of β̂ from β∗ which
comes from the smoothing property of our model. For instance, the estimated parameters of team 2
and team 0 by our model tend to have larger gaps with other teams, compared with the true β∗.
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Another point illustrated by Figure 1 is that, different choices of the penalty function lead to different
shapes of the solution. Specifically, the `22 norm produces the smoothest paths of β, while the `1
norm imposes a piecewise constant structure on the paths of β. In applications, the path of β could
have various shapes. Therefore, our model is adaptive to different user requirements on the smoothed
shape of β in different applications.
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Figure 2: LOOCV curve of Dynamic Bradley-Terry model with `2-square penalty. x-axis: coefficient
of the penalty, y-axis: the averaged negative log-likelihood. The best λ∗ is 4.25.

Figure 2 shows the curve of LOOCV of our Dynamic Bradley-Terry model with `2-square penalty.
The curve shows a typical shape of CV curve for tuning parameter. The λ with smallest nllλ is
λ∗ = 4.25. For `2 and `1 penalty, since the LOOCV procedure takes much time, we currently just
use λ = 4.25.

7 Application - NFL Data

In order to test our model in practical settings we consider ranking National Football League (NFL)
teams over multiple seasons. Specifically we source 5 seasons of openly available NFL data from
2011-2015 (inclusive) using the nflWAR package [18]. Each NFL season is comprised of N = 32
teams playing T = 16 games each over the season i.e. t ∈ [16] in this case. This means that at each
point in time t the pairwise matrix of scores across all 32 teams is sparsely populated with only 16
entries. We fit our time-varying Bradley Terry model over all 16 rounds in the season using the `22
convex penalty and tuning λ using the LOOCV approach described in section 5.2. In order to gauge
whether the rankings produced by our model are reasonable we compare our season ending rankings
(fit over all games played in that season) with the relevant openly available NFL ELO ratings [12].
The top 10 season-ending rankings from each method across NFL seasons 2011-2015 are summarized
in Table 1.

Based on table 1 we observe that we roughly match between 6 to 9 of the top 10 ELO teams
consistently over all 5 seasons. However we can see that there are often misalignment with specific
ranking values across both ranking methods. For example in the 2014 season we can see that our
rankings are reasonably well aligned and notably a match with Seattle being the number one ranked
team by both methods. The 2012 season had slightly more misalignment comparatively across both
methods. This is captured in the average ranking difference between ELO and our time varying
Bradley-Terry model being 3.2 which is slightly higher than the 2014 season value of 1.9. We
observe that the average differences across all seasons between ELO and the Bradley Terry model are
uniformly positive indicating that ELO ranks the same teams higher than the Bradley-Terry model on
average across all seasons.

We note that it is difficult to interpret the differences in great further detail given that the underlying
ranking methodologies are fundamentally different. In particular the NFL ELO ranking methodology
uses both the pairwise scores between teams (similar to our time-varying Bradley Terry model) but
also uses the location information of each game in the modeling process. In this sense we view the
comparable top 10 ranking results as an encouraging indication of our model viability in this real
world application. We thus view our time-varying Bradley Terry model as a useful benchmarking
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rank
2011 2012 2013 2014 2015

ELO BT BLO BT ELO BT ELO BT ELO BT
1 GB GB NE DEN SEA SF SEA SEA SEA CAR
2 NE NO DEN NE SF CAR NE DEN CAR ARI
3 NO NE GB SEA NE SEA DEN GB ARI KC
4 PIT SF SF MIN DEN ARI GB NE KC SEA
5 BAL PIT ATL SF CAR NE DAL DAL DEN MIN
6 SF BAL SEA GB CIN DEN PIT PIT NE DEN
7 ATL DET NYG IND NO NO BAL IND PIT CIN
8 PHI ATL CIN HOU ARI CIN IND ARI CIN PIT
9 SD PHI BAL WAS IND IND ARI BUF GB GB
10 HOU SD HOU CHI SD SD CIN DET MIN DET

Av. Diff. 2.6 3.2 2.6 1.9 2.8

Table 1: Bradley-Terry vs. ELO NFL top 10 rankings. Blue: perfect match, yellow: top 10 match

tool for other feature-rich time-varying ranking models since (such as ELO) since our model simply
relies on the minimalist time-varying score information for modeling.

8 Conclusion

In this paper we propose a time-varying (dynamic) convex generalization of the original (static)
Bradley-Terry model [3]. The underlying goal of the model is to derive the global ranking of N
distinct objects over T discrete time periods in a principled statistical manner using observed pairwise
comparison data at each time point t ∈ [T ]. Our proposed model directly captures the temporal
dependence structure of the pairwise comparison data in the form of time-varying model parameters.
These time-varying model parameters are modeled in a distribution-free frequentist manner in the
form of a convex penalty term. The specific choice of convex penalty norm also acts as a ‘smoothing’
mechanism for the derived time-varying global rankings. In particular the convex penalty term
also enables analysis on sparse time-varying pairwise comparison data, which is common in many
practical settings including sports analytics.

From a theoretical perspective we prove that a relatively weak condition is necessary and sufficient to
guarantee the existence and uniqueness of the solution of our proposed time-varying Bradley-Terry
model. This ensures that we fit using limited temporal distributional assumptions and also means that
we require much less time-varying pairwise comparison data to derive our global rankings than other
non-sparse time-varying frequentist ranking approaches. In order to tune the model penalty term λ
we propose both a heuristic and data-driven approach. This heuristic is driven by user preferences
in directly setting the degree of smoothing in the final global rankings. Although subjective, this
is computational efficient and viable when such user-domain knowledge applies. The data-driven
approach uses a sample-splitting approach via leave-one-out cross validation (LOOCV) to derive
optimal lambda across a held out set. Although computationally exhaustive, we discuss methods
to optimize this further using random sampling and better initial seeding. From an algorithmic
perspective we implement various well studied convex optimization algorithms to solve the model
efficiently under the `22, `2 and `1 penalization norms. This is done exploiting any specific structure
in our proposed model under the chosen convex penalty norm for additional computational efficiency
gain.

We finally test the practical effectiveness of our model under both simulated and real world settings.
In the latter case we separately rank 5 consecutive seasons of open National Football League (NFL)
team data [18] from 2011-2015. Our NFL ranking results compare favourably to the well-accepted
and feature rich NFL ELO model rankings [12]. We thus view our distribution-free time-varying
Bradley-Terry model as a useful benchmarking tool for other feature-rich time-varying ranking
models since it simply relies on the minimalist time-varying score information for modeling.
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9 Appendix

9.1 Proof of Theorem

Throughout this section, let f denote the target loss function:

f(β) = −
T∑
t=1

`t(β
(t)) + λ

T−1∑
t=1

h(β(t) − β(t+1)) (12)

9.1.1 Uniqueness of the solution with squared-`2 penalty

We can decompose the loss function with squared-`2 penalty into two parts:

f =

T∑
t=1

Lt +

N∑
i=1

Ri (13)

where Lt = −`t(β(t)) and Ri = λ
∑T
t=2(β

(t)
i − β

(t−1)
i ).

Elements of Lt’s Hessian with respect to β(t) are:

∇2

β
(t)
i

Lt =
∑
i 6=j

(x
(t)
ij + x

(t)
ji )

expβ
(t)
i expβ

(t)
j

(expβ
(t)
i + expβ

(t)
j )2

(14)

∇
β

(t)
j
∇

β
(t)
i
Lt =− (x

(t)
ij + x

(t)
ji )

expβ
(t)
i expβ

(t)
j

(expβ
(t)
i + expβ

(t)
j )2

(15)

Also, Ri’s Hessian with respect to βi := (β
(1)
i ,β

(2)
i , . . . ,β

(T )
i ) is:

2 −2 0 · · · 0 0
−2 4 −2 · · · 0 0
0 −2 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −2
0 0 0 · · · −2 2

 (16)

Hence, both kinds of Hessians have zero column sums and so does the sum of them, i.e., the Hessian
of the loss function. Let H denote the Hessian of f and H(β

(t)
i ,β

(s)
j ) denote each element of H .

Then, H has a positive diagonal, and

H(β
(t)
i ,β

(s)
j ) =


−(x

(t)
ij + x

(t)
ji )

expβ
(t)
i expβ

(t)
j

(exp β
(t)
i +exp β

(t)
j )2

if t = s

−2 if i = j

0 otherwise

(17)

As H(β
(t)
i ,β

(t)
j ) < 0 if x(t)ij > 0 or x(t)ji , Condition (1) implies that H can be regarded as a graph

Laplacian for a connected graph. Following the classical proof of the property of graph Laplacian
[16],

vTHv =
∑
i<j

|Xij |(vi − vj)2 ≥ 0,

and Condition (1) guarantees that "=" is achieved if and only if v = c1. This proves the uniqueness
up to constant shifts.

9.1.2 Existence of solution

Because of its continuity, h attains its minimum in RT . Since we still get an equivalent optimization
after constant shifting h, we can assume h has minimum value 0 without loss of generality. Also,
note that −`t(βt) is non-negative:

−`t(βt) = −
∑
i 6=j

x
(t)
ij

(
log

(
expβ

(t)
i

expβ
(t)
i + expβ

(t)
j

))
≥ 0 (18)
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Plugging in β = 0, we get an upperbound for the minimum loss function f?:

f? ≤ (log 2)

T∑
t=1

∑
i6=j

x
(t)
ij . (19)

As f is continuous, it suffices to show that the level set with
∑N
i=1 β

(1)
i = 0 is bounded so that it is

compact.

We get an upper-bound on the extent to which β(t)’s are dispersed in the level set:

‖β(t) − β(t+1)‖∞ ≤
√

1

λ
(log 2)

∑
i6=j

x
(t)
ij =: B (20)

and
‖β(t) − β‖∞ ≤ BT (21)

where β = 1
T

∑T
t=1 β

(t).

Then,

−`t(β(t)) ≥ −
∑
i6=j

x
(t)
ij log

(
exp(βi −B)

exp(βi +B) + exp(βj +B)

)
(22)

≥ −
∑
i 6=j

x
(t)
ij log

(
expβi

expβi + expβj

)
− 2BT

∑
i 6=j

x
(t)
ij (23)

≥
∑
i 6=j

xij
(t) log(1 + exp(βj − βi))− 2BT

∑
i 6=j

x
(t)
ij (24)

Hence, under the level set,

(log 2)

T∑
t=1

∑
i 6=j

x
(t)
ij ≥f(β) (25)

≥
∑
i 6=j

(

T∑
t=1

x
(t)
ij ) log(1 + exp(βj − βi))− 2BT

T∑
t=1

∑
i 6=j

x
(t)
ij (26)

and if
∑T
t=1 x

(t)
ij 6= 0 then βj − βi is upperbounded.

By Condition (2) and the constraint
∑N
i=1 β

(1)
i = 0, now every elements of β in the level set are

bounded. This proves the existence part of the theorem.

9.2 Synthetic Simulation Results

First we generate the parameter β∗ via a Gaussian process. For each 1 ≤ i ≤ N , the value of
the mean process is set to be ci1 ∈ RT with ci a random sample from standard Normal, and the
covariance matrix is set to be a Toeplitz matrixG whose entry is given byGs,t = 1−T−1/2|s− t|1/2.
Then we generated the pairwise comparison data from β∗ with n(t)ij = 5 for every i 6= j and t ∈ [T ]
and solved (2) by different methods.

12



9.3 Statistical analyses

9.3.1 Oracle inequality

Suppose that an oracle gives the probability p(t)ij with which team i wins team j at time point t.

oracle loss function:

f?(β) = −
T∑
t=1

∑
i>j

(p
(t)
ij β

(t)
i + p

(t)
ji β

(t)
j − log(exp(β

(t)
i ) + exp(β

(t)
j )))

oracle estimator:

β? = arg minβf
?(β)

objective for statistical analyses:

1. probabilistic bound on f?(β̂)− f?(β∗)
2. probabilistic bound on ‖β̂ − β?‖ (‖ · ‖2 or ‖ · ‖∞)

9.3.2 Consistency in ranking

After we get probabilistic bound on ‖β̂ − β∗‖, under an assumption on a lower bound for |β?(t)i −
β?

(t)
j |, consistency in ranking in terms that

β̂
(t)
i > β̂

(t)
j ⇐⇒ β?

(t)
i > β?

(t)
j

from Bradley-Terry score would be easily get.

We might need arguments or references on nice properties of ranking from β?.

9.3.3 Consistency in rank change detection

We might need assumptions on a lower bound for |β?′i(t)− β?′j(t)| while β?′i(t) is a derivative of
β?i(t) as a function of time t.
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