Evaluating Parametric Methods for Modeling European Soccer Team Goals

Zhiwei Xiao, University of Michigan
Thea Sukianto, Boise State University

Carnegie Mellon Sports Analytics Conference 2020
Introduction of the Data

- European Pro Soccer Database for 2008-2016 seasons
- Source: Kaggle (a machine learning and data science community)
- Format: SQLite (accessible in R using dbConnect function)
 - Contains information of 11 leagues
 - More than 25000 matches / 1000 players
 - Tables: Country, **League**, **Match**, Player, player attributes, **Team**, team attributes
 - Our research focuses on the latest season 2015-2016
How can we best model soccer team ratings in European leagues?
Getting Started

- Start simple - two parametric models (GLMs)
- Ratings are based on goals
 - Offensive and defensive ratings
- **Response:** home, away team goals (counts)
- **Predictors:** home, away team names (categorical)
- Let’s see how the data is distributed...
Candidate Distribution #1: Poisson

- Suggested by existing work (e.g. Karlis and Ntzoufras 2003)
- Most interpretable
 - If $X \sim \text{Poisson}(\lambda)$, then...
 - X: r.v., # of event occurrences in a certain interval (goals per match)
 - λ: Rate parameter (mean and variance of the goals per match)

Correlation?

Overdispersion?

Zero-inflation?
Overdispersion?

- **Definition:**
 - presence of greater variability in a data set than would be expected based on a given statistical model
 - Often encountered when fitting simple parametric models like poisson distribution
 - Poisson has one free parameter and does not allow for the variance to be adjusted independently of the mean.

- **How to check: Computed variance to mean ratio for home/away team goals**
 - Done over different seasons and different leagues
 - Ratios were all very close to 1, which suggested we don’t need to worry about overdispersion.
Zero-inflation?

- **Zero-inflation**: Observed zero frequency > Expected
- Checking for zero-inflation
 - Plot observed vs. expected Poisson frequencies
 - Conduct a chi-square goodness-of-fit (GOF) significance test
Layout of Most Recent Work

Candidate Distributions
- Poisson: Likelihood Estimation
- Negative Binomial: Likelihood Estimation
- Zero-inflated Poisson (ZIP): Likelihood Estimation
- Zero-inflated Negative Binomial (ZINB): Likelihood Estimation

Model Evaluation
- Time-window Validation
- Compare model coefficients
- Compute Multiclass Brier Score
- Plot Probability Calibration

Implementation difficulties (Attempted resampling, but MLE algorithm would not converge)
Log-Likelihood Comparison
Home Team Goals

Based on fitdistr()’s log-likelihood output:

Belgium: Poisson

England: Zero Inflated Poisson

France: Negative Binomial

Germany: Negative Binomial

Italy: Zero Inflated Poisson

Netherland: Zero Inflated Poisson

Poland: Negative Binomial

Portugal: Negative Binomial

Scotland: Negative Binomial

Spain: Negative Binomial

Switzerland: Zero Inflated Poisson
Away Team Goals

Similar log-likelihoods for each model (within +/- 1 unit)

Formula: Away goals <- home team + away team

1. Poisson, Negative Binomial

Belgium, Netherlands, Poland

2. Poisson, Negative Binomial, Zero-Inflated Poisson

England, France, Germany, Italy, Scotland, Spain, Switzerland

3. Poisson, Negative Binomial, both zero-inflated alternatives

Portugal
Model Validation
Model Validation Procedure

- Time window based train-test split
- Difficulty: finding the earliest group stage when all teams have played
 - Choose **week 6** for ease of implementation
- For group stage number t, train model on group stages $1, \ldots, t$ and test on group stage $t+1$
- Calculate the mean squared error (MSE)
England Premier League Model Holdout Error by Stage

Formula: Home Goals ~ Home Team + Away Team

Not shown: Poisson/ZIP stage 7 test error = 8e22 (!)
England Premier League Model Holdout Error by Stage

Formula: Away Goals ~ Home Team + Away Team

Stage 7 negative binomial test error is higher
Coefficients Comparison
Coefficient Comparison for England Premier League's Home Team Goal

Formula: home_team_goal ~ away_team_name + home_team_name
Coefficient Comparison:

England Premier League
away goals
Brier Score
Introduction to Brier Score

\[BS = \frac{1}{N} \sum_{t=1}^{N} \sum_{i=1}^{R} (f_{ti} - o_{ti})^2 \]

- N is the overall number of instances of all classes. R is the number of possible classes in which the event can fall, so in our research R = 3, because we have three possible classes: home team wins, away team wins, a draw
- f_{ti} here is the probability that’s forecast by our models.
- O_{ti} here is the actual outcome of the event at instance t (0 if it doesn’t happen, 1 if it does happen)
- The lower the Brier score is for a set of predictions, the better the predictions are calibrated.
England Premier League as an Example

<table>
<thead>
<tr>
<th>League</th>
<th>Distribution</th>
<th>In-Sample Multiclass Brier Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>England Premier</td>
<td>poisson</td>
<td>0.1936225</td>
</tr>
<tr>
<td></td>
<td>Negative Binomial</td>
<td>0.1938776</td>
</tr>
<tr>
<td></td>
<td>Zero-Inflated Poisson</td>
<td>0.1814058</td>
</tr>
</tbody>
</table>

We found that zero-inflated Poisson always yielded the lowest Brier Score.
Calibration Curve
Probability Calibration

- Time window train-test split over group stage weeks 6-29
- For each league, fit GLMs and store parameters
- Use parameters to simulate test set matches (n = 500)
- For each stage across leagues, compare observed vs. expected win probabilities
Home Win Probability Calibration Comparison

Stage 7

Observed home win probability vs. Estimated home win probability for different distributions:
- negbin
- poisson
- zip

Number of matches

10 20 30
Away Win Probability Calibration Comparison

Stage 7

Estimated away win probability vs. Observed away win probability for different distributions: negbin, poisson, and zip. The color scale indicates the number of matches.
Draw Probability Calibration Comparison

Stage 7

- negbin
- poisson
- zip

Estimated draw probability

Observed draw probability

Number of matches

5 10 15
Home Win Probability Calibration Comparison
Stage 29

Observation Home Win Probability vs. Estimated Home Win Probability for different distributions: negbin, poisson, zip.

Number of matches:
- 4
- 8
- 12
- 16
Away Win Probability Calibration Comparison
Stage 29

Number of matches:
- 5
- 10
- 15
Overall predictive performance improves over time, but no clear winner emerges.
Future Work & Promising Directions

- Figure out whether these results are generalizable to other European leagues.
- Calculate out of sample Multi-Class Brier Score.
- Study the Time effect on rating
- Consider other factors than goal count -> Use Bayesian prior
 - FIFA rating
 - Player injuries
 - Goal type
 - Expected Goals (xG) by FiveThirtyEight
- Modeling goal difference instead of just home/away team goals