
hockeyR: Easy access to detailed NHL
play-by-play data

Dan Morse

2022-09-02

Introduction

The sports world seems to delve deeper into statistical analysis with each passing year. Not
only are team front offices across major sports hiring more analytics staffers than ever, but fans
and beat reporters are becoming more fluent and intrigued by the underlying numbers behind
the sport that they love. The key to growing this community of sports-loving statisticians is
through easy access to as much data as these leagues will allow. In American football, there is
no better example of easy access to data than the nflfastR package (Carl and Baldwin 2021)
(and its predecessor, nflscrapr (Yurko, Ventura, and Horowitz 2018)). But when it comes
to hockey, accessing raw, detailed play-by-play data isn’t nearly as straightforward. There
was once an nhlscrapr package, but it was lost when authors Samuel Ventura and Andrew
C. Thomas were hired by NHL teams. Both Emmanuel Perry and Josh & Luke Younggren
have published their own scrapers in the past as well, but have since taken them down. This
package, hockeyR, seeks to fill the space with access to not only bare scraping functions, but
already compiled play-by-play data that anyone can use.

Loading data with hockeyR

Play-by-play data from the NHL has long been available to the general public through the
NHL’s Real Time Scoring System (RTSS), but it was up to the end user to scrape that data
themselves. With hockeyR, it’s already been scraped so the analyst can load the data with a
single, simple function call.

install hockeyR 1.0.0 from CRAN
install.packages("hockeyR")

library(hockeyR)
library(tidyverse)

1

library(ggalluvial)
library(sportyR)

pbp <- load_pbp(season = "2021-22")

pbp |>
select(event, event_team, event_player_1_name, description) |>
head()

A tibble: 6 x 4
event event_team event_player_1_name description
<chr> <chr> <chr> <chr>

1 Game Scheduled <NA> <NA> Game Scheduled
2 Faceoff Pittsburgh Penguins Jeff.Carter Jeff Carter faceoff wo~
3 Hit Tampa Bay Lightning Ondrej.Palat Ondrej Palat hit Jeff ~
4 Stoppage <NA> <NA> Puck in Netting
5 Faceoff Tampa Bay Lightning Anthony.Cirelli Anthony Cirelli faceof~
6 Hit Tampa Bay Lightning Anthony.Cirelli Anthony Cirelli hit Ma~

Play-by-play data going back to the 2010-11 season is stored in a public GitHub repository.
The load_pbp function is just an easy way to read the data in from that repository, and it has
the advantage of accepting multiple seasons in the season argument as well as accepting either
the full name of the season (e.g. “2021-22”) or just the end-year of the season (e.g. 2022).

The data

The loaded data is event-based and contains 107 variables, including the type of event, the
player(s) involved in the event, the time of the game, and the players on the ice during the
event. Every “event” during a game is recorded as its own row in the data. There are nine
different on-ice events in the data, plus a handful of other game state events (start of period,
end of game, etc.).

unique(pbp$event)

[1] "Game Scheduled" "Faceoff"
[3] "Hit" "Stoppage"
[5] "Shot" "Takeaway"
[7] "Blocked Shot" "Missed Shot"
[9] "Giveaway" "Period End"

2

https://github.com/danmorse314/hockeyR-data

[11] "Goal" "Penalty"
[13] "Game End" "Official Challenge"
[15] "Shootout Complete" "Early Intermission Start"
[17] "Early Intermission End" "Emergency Goaltender"

There is also an option when loading the play-by-play data to include shift change events.
This nearly doubles the size of the data, and for most analyses isn’t necessary, so the default
is to exclude those for faster loading and easier manipulating.

A single season’s worth of play-by-play data generally includes records of over 100,000 un-
blocked shots and their locations. A heat map of the shots shows how shooters frequently look
to take their shots from as close to the net as possible.

shots <- filter(pbp, event_type %in% c("SHOT","MISSED_SHOT","GOAL"))

geom_hockey("nhl") +
geom_hex(data = shots, aes(x, y), alpha = .7, binwidth = c(5,5), show.legend = FALSE) +
geom_text(aes(0,-40, label = paste("n shots:",nrow(shots)))) +
scale_fill_gradient2(low = "white", mid = "#dff5f7", high = "darkred")

n shots: 122349

Figure 1: Heatmap of all unblocked shot attempts in the NHL in 2021-22

3

Investigating player stats

The full play-by-play can be used to calculate basic counting stats, like goals and shots.

leaders <- pbp |>
get regular season stats, excluding shootout goals
filter(season_type == "R" & period < 5) |>
group_by(scorer = event_player_1_name, id = event_player_1_id) |>
summarize(

goals = sum(event_type == "GOAL"),
shot_attempts = sum(event_type %in% c("SHOT","MISSED_SHOT","BLOCKED_SHOT","GOAL")),
shot_percentage = round(goals/shot_attempts,3),
.groups = "drop"

) |>
arrange(-goals)

head(leaders)

A tibble: 6 x 5
scorer id goals shot_attempts shot_percentage
<chr> <int> <int> <int> <dbl>

1 Auston.Matthews 8479318 60 599 0.1
2 Leon.Draisaitl 8477934 55 482 0.114
3 Chris.Kreider 8475184 52 412 0.126
4 Alex.Ovechkin 8471214 50 642 0.078
5 Kirill.Kaprizov 8478864 47 515 0.091
6 Kyle.Connor 8478398 47 499 0.094

Each goal event includes information about who scored both the primary and secondary assists.
That information can be leveraged to look at who contributed most often to the leading goal
scorers’ production. For example, Auston Matthews frequently scored with help from Mitchell
Marner.

matthews <- pbp |>
filter(season_type == "R" & period < 5 & event_type == "GOAL") |>
filter(event_player_1_name == "Auston.Matthews") |>

group_by(
a2 = event_player_3_name, a1 = event_player_2_name, g = event_player_1_name
) |>

summarize(n = n(), .groups = "drop")

matthews |>

4

ggplot(aes(y = n, axis1 = a2, axis2 = a1, axis3 = g)) +
ggalluvial::geom_alluvium(width = 1/12, aes(fill = a1), show.legend = FALSE) +
ggalluvial::geom_stratum(width = 1/12, fill = "black", color = "grey") +
geom_label(stat = "stratum", aes(label = after_stat(stratum))) +
scale_x_continuous(

breaks = 1:3, labels = c("A2","A1","G"), limits = c(.8,3.2)) +
theme_bw() +
theme(

plot.title = element_text(hjust = 0.5),
axis.line = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
axis.text.y = element_blank(),
panel.grid = element_blank(),
panel.border = element_blank()

) +
labs(title = "Auston Matthews 2021-22 goal paths")

William.Nylander
Travis.Dermott

TJ.Brodie
Timothy.LiljegrenScott.WedgewoodOndrej.Kase

Morgan.Rielly

Mitchell.Marner

Mikko.Koskinen
Michael.Bunting
Linus.UllmarkKaapo.KahkonenJuuse.SarosJustin.HollJonas.Johansson
John.Tavares
Jake.MuzzinFrederik.AndersenElvis.MerzlikinsDan.VladarColin.BlackwellAndrei.VasilevskiyAlexander.Kerfoot

Thatcher.DemkoMark.Giordano
Jason.SpezzaDavid.Kampf

William.Nylander

TJ.Brodie
Timothy.Liljegren

Ondrej.Kase
Morgan.Rielly

Mitchell.Marner

Michael.Bunting

John.Tavares
Jake.MuzzinAndrei.VasilevskiyAlexander.Kerfoot

Auston.Matthews

A2 A1 G

Auston Matthews 2021−22 goal paths

Figure 2: Plot showing who assisted on every Auston Matthews goal in 2021-22

5

Single game charts

Single games can be pulled out of the full season play-by-play data to make shot charts. These
can be filtered using the game ID, if it is known, or as is more often the case by using the
game date and the name of either the home or away team. The simplest way to create a shot
chart is by leveraging the sportyR (Drucker 2021) package. This allows for easy plotting of
an NHL ice. The ggimage (Yu 2020) package can also be used along with the included team
logos data set in hockeyR to make a detailed shot chart for any game.

#get single game
game <- filter(pbp, game_date == "2021-12-01" & home_abbreviation == "TOR")

grab team logos & colors
team_logos <- hockeyR::team_logos_colors |>
filter(team_abbr == unique(game$home_abbreviation) |

team_abbr == unique(game$away_abbreviation)) |>
add in dummy variables to put logos on the ice
mutate(x = ifelse(full_team_name == unique(game$home_name), 50, -50),

y = 0)

shots <- game |> filter(event_type %in% c("MISSED_SHOT","SHOT","GOAL")) |>
adding team colors
left_join(team_logos, by = c("event_team_abbr" = "team_abbr"))

add transparency to logo
transparent <- function(img) {
magick::image_fx(img, expression = "0.3*a", channel = "alpha")

}

away_abbr <- unique(shots$away_abbreviation)
away_final <- unique(shots$away_final)
home_abbr <- unique(shots$home_abbreviation)
home_final <- unique(shots$home_final)
create shot plot
geom_hockey("nhl") +
ggimage::geom_image(

data = team_logos,
aes(x = x, y = y, image = team_logo_espn),
image_fun = transparent, size = 0.22, asp = 2.35
) +

geom_point(
data = shots, aes(x_fixed, y_fixed), size = 6,

6

color = shots$team_color1, shape = ifelse(shots$event_type == "GOAL", 19, 1)
) +

labs(
title = glue::glue("{unique(game$away_name)} @ {unique(game$home_name)}"),
subtitle = glue::glue("{unique(game$game_date)}\n
{away_abbr} {away_final} - {home_final} {home_abbr}")
) +

theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
plot.caption = element_text(hjust = .9))

2021−12−01

COL 3 − 8 TOR

Colorado Avalanche @ Toronto Maple Leafs

Figure 3: Plot showing unblocked shot locations for a single game

Scraping functions

There are three main scraping functions in hockeyR that deal with scraping play-by-play
data:

• scrape_day: gets all play-by-play data for a given day; this is what is used to update
the data repository each night.

7

• scrape_season: gets all play-by-play data for a given season; this is what built the
initial database

• scrape_game: gets all play-by-play data for a given game; this is where the real meat of
all three scraping functions lies

The scrape_game function takes a game ID as an argument. Game IDs can be found using the
get_game_ids function, which returns all game IDs for either a single day or an entire season.
With these two functions, it becomes quite simple to scrape play-by-play data for a live game,
without the need to wait for the data repository to update at the end of the night.

ids <- get_game_ids(day = "2021-10-17")

game_pbp <- scrape_game(ids$game_id[1])

head(game_pbp)

A tibble: 6 x 111
xg event_id event_type event secon~1 event~2 event~3 descr~4 period perio~5

<dbl> <dbl> <chr> <chr> <chr> <chr> <chr> <chr> <int> <dbl>
1 NA 2.02e13 GAME_SCHE~ Game~ <NA> <NA> <NA> Game S~ 1 0
2 NA 2.02e13 CHANGE Chan~ <NA> Dallas~ away ON: Ry~ 1 0
3 NA 2.02e13 CHANGE Chan~ Line c~ Ottawa~ home ON: Th~ 1 0
4 NA 2.02e13 FACEOFF Face~ <NA> Ottawa~ home Josh N~ 1 0
5 NA 2.02e13 STOP Stop~ <NA> <NA> <NA> Hand P~ 1 8
6 NA 2.02e13 FACEOFF Face~ <NA> Dallas~ away Luke G~ 1 8
... with 101 more variables: period_seconds_remaining <dbl>,
game_seconds <dbl>, game_seconds_remaining <dbl>, home_score <dbl>,
away_score <dbl>, event_player_1_name <chr>, event_player_1_type <chr>,
event_player_2_name <chr>, event_player_2_type <chr>,
event_player_3_name <chr>, event_player_3_type <chr>,
event_goalie_name <chr>, strength_state <glue>, strength_code <chr>,
strength <chr>, game_winning_goal <lgl>, empty_net <lgl>, ...

In addition to play-by-play data, hockeyR also provides functions to scrape two other details
regarding NHL rosters from the NHL API: get_draft_class and get_current_rosters.
With the get_current_rosters function, the user can scrape an up-to-the minute data frame
of the current rosters for all 32 NHL teams, as listed on NHL.com.

rosters <- get_current_rosters()

rosters |>

8

https://www.nhl.com/

select(player, player_id, jersey_number, position, full_team_name, everything())

A tibble: 845 x 8
player player_id jersey_n~1 posit~2 full_~3 posit~4 team_id team_~5
<chr> <int> <int> <chr> <chr> <chr> <int> <chr>

1 Jonathan Bernier 8473541 45 G New Je~ G 1 NJD
2 Reilly Walsh 8480054 8 D New Je~ D 1 NJD
3 Brendan Smith 8474090 2 D New Je~ D 1 NJD
4 Tomas Tatar 8475193 90 LW New Je~ F 1 NJD
5 Erik Haula 8475287 56 LW New Je~ F 1 NJD
6 Ondrej Palat 8476292 18 LW New Je~ F 1 NJD
7 Dougie Hamilton 8476462 7 D New Je~ D 1 NJD
8 Damon Severson 8476923 28 D New Je~ D 1 NJD
9 Andreas Johnsson 8477341 11 LW New Je~ F 1 NJD
10 Mason Geertsen 8477419 55 D New Je~ D 1 NJD
... with 835 more rows, and abbreviated variable names 1: jersey_number,
2: position, 3: full_team_name, 4: position_type, 5: team_abbr

The get_draft_class function allows the user to load the draft selections for every team for
a single draft class. The returned data includes just the basics – player name, drafting team,
and round and pick number – but it can also return more details such as amateur league,
height and weight, and birthplace by setting the player_details argument to TRUE.1 This
step is necessary in order to get the proper NHL player ID for each player, which then allows
for easier joining to previously calculated player stats. For example, here’s the top goal scorers
in the 2021-22 season among players selected in the 2016 NHL Entry Draft:

draft <- get_draft_class(2016, player_details = TRUE)

leaders_2016 <- leaders |>
left_join(draft, by = c("id" = "player_id")) |>
filter(!is.na(draft_year))

leaders_2016 |>
select(scorer, id, goals_2022 = goals, draft_year, round, pick_overall) |>
head(n = 10)

A tibble: 10 x 6
scorer id goals_2022 draft_year round pick_overall

1By default, the player_details argument is set to FALSE simply because adding the details makes the scrape
take ~45 seconds instead of ~1 second.

9

<chr> <int> <int> <int> <chr> <int>
1 Auston.Matthews 8479318 60 2016 1 1
2 Matthew.Tkachuk 8479314 42 2016 1 6
3 Alex.DeBrincat 8479337 41 2016 2 39
4 Tage.Thompson 8479420 38 2016 1 26
5 Clayton.Keller 8479343 28 2016 1 7
6 Pierre.Luc.Dubois 8479400 28 2016 1 3
7 Jordan.Kyrou 8479385 27 2016 2 35
8 Jesper.Bratt 8479407 26 2016 6 162
9 Patrik.Laine 8479339 26 2016 1 2

10 Brandon.Hagel 8479542 25 2016 6 159

What’s next

The next steps for hockeyR will be to include the package’s own expected goals model – a
common model in the NHL statistics world to evaluate how likely any given shot is to result
in a goal. With an included expected goals model, the play-by-play data could then have
an extra column appended to it to include an expected goal value for every shot attempt.
This would allow analysts to calculate expected goals in different situations and time frames
without requiring the construction of their own model.

There is also work to be done to scrape games prior to the 2010-11 season. While the RTSS
data existed as far back as 2007, the JSON files utilized by hockeyR didn’t exist until 2010 –
so a new HTML scraper is necessary to go back further.

References
Carl, Sebastian, and Ben Baldwin. 2021. “nflfastR: Functions to Efficiently Access NFL Play

by Play Data.”
Drucker, Ross. 2021. “sportyR: Plot Scaled ’Ggplot’ Representations of Sports Playing Sur-

faces.” https://github.com/rossdrucker/sportyR.
Yu, Guangchuang. 2020. “Ggimage: Use Image in ’Ggplot2’.” https://CRAN.R-project.org/

package=ggimage.
Yurko, Ronald, Samuel Ventura, and Maksim Horowitz. 2018. “nflWAR: A Reproducible

Method for Offensive Player Evaluation in Football.” https://doi.org/10.48550/ARXIV.
1802.00998.

10

https://github.com/rossdrucker/sportyR
https://CRAN.R-project.org/package=ggimage
https://CRAN.R-project.org/package=ggimage
https://doi.org/10.48550/ARXIV.1802.00998
https://doi.org/10.48550/ARXIV.1802.00998

	Introduction
	Loading data with hockeyR
	The data
	Investigating player stats
	Single game charts
	Scraping functions
	What's next
	References

