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Abstract

Football analysts traditionally value a future draft pick position by its expected per-
formance or surplus value. But, these expected value curves do not match the valuation
implied by the observed trade market. One takeaway is general managers are making
terrible trades on average. An alternative explanation is they are using some other value
function that captures an essential piece of the puzzle missing from previous analyses.
We are partial to the latter explanation. In particular, traditional analyses don’t consider
how variance in performance outcomes changes over the draft. Because variance decays
convexly accross the draft, eliteness (e.g., right tail probability) decays much more steeply
than expected value. We suspect general managers value performance nonlinearly, plac-
ing exponentially higher value on players as their eliteness increases. This is because elite
players have an outsize influence on winning the Super Bowl. Thus, in this paper we con-
sider nonlinear draft value curves that capture the outsize influence of elite players. Such
nonlinear value functions produce steeper draft value curves that more closely resemble
the observed trade market.

Reproducibility statement: the code and data in this analysis is reproducible and publicly
available on Github at https://github.com/snoopryan123/NFL_draft_chart_Ryan.

1 Introduction

NFL teams often find themselves wanting to trade draft picks. A general manager may want
to trade up to draft a particular player before he is taken by another team. He may also want
to trade up to be able to draft players of a certain caliber at a particular position. In exchange
for trading up, a general manager often offers a trade of current and/or future draft picks.
This naturally leads to the following questions. If a team wants to trade for a particular draft
pick, which picks should it offer in exchange? And if a team is offered a bundle of draft picks
in exchange for another bundle of draft picks, should it accept or reject the trade? We are
interested in the relative value of draft picks.

1.1 Traditional NFL draft trade value charts

Prior to the draft, we do not know how well a player drafted at pick x ∈ {1, ..., 256} will perform
in the NFL. Thus, we think of the performance outcome Y associated with pick x as a random
variable, denoted by a capital letter. Throughout this paper, we let the realization of Y be a
player’s observed second contract value relative to the salary cap (APY cap percentage). This
is a reflection of a player’s first contract performance value since he signs his second contract
in free agency just after his first contract ends. Though free agent APY cap percentage is an
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imperfect measure of a player’s performance and first contract value is an incomplete measure
of the total value he provides to his team (as it excludes the rest of his career), the focus of
this paper is to value draft picks assuming a performance measure, not to choose the best
performance measure. We leave further analysis of various measures of performance to future
work.

From the dataset {(xi, Yi)} of all recent draft picks in NFL history, we want to learn the de-
noised relationship between pick number x and performance outcome Y . Traditional analyses
use a standard approach but with differing measures of first contract performance (Massey
and Thaler, 2013; Stuart, 2012; Fitzgerald and Spielberger, 2024; Pro Football Focus, 2024;
Baldwin, 2024). The de-noised relationship they estimate from data is the expected value of Y
given x.

This traditional approach proceeds as follows. First, fit the expected performance curve. This
is the conditional mean function x 7→ E[Y |x]. Second, calculate the compensation curve. This
is the cost function x 7→ cost(x). Cost is first contract compensation, which is essentially a
deterministic function of x. Third, calculate the expected surplus curve. This is the difference
between the expected performance curve and the compensation curve, x 7→ E[Y − cost(x)|x].
Finally, normalize each of these curves so that the value of the first pick is 1. They normalize
by dividing by the value of the first pick.

We fit these traditional draft value curves using our outcome variable Y (second contract APY
cap percentage), which we visualize in Figure 1. We use spline regression to fit the expected
performance curve from a publicly available dataset of all draft picks from 2013 to 2023 (Ho and
Carl, 2024). We calculate the compensation curve as in Baldwin (2024): beginning with the
actual 2023 salary cap (about $225 million) and assuming a cap growth rate of 7% over the next
three seasons (2024, 2025, and 2026), we convert the total dollar amount of the rookie contract
into a percentage of the cap. Then, for each draft pick we average the compensation values
across the four seasons. We calculate the expected surplus curve as the difference between the
expected performance curve and compensation curve.

Expected performance value (blue) is less steep than compensation (red), indicating that players
are underpaid on average in their first contracts. This yields positive expected surplus value
(green) across most of the draft. Expected surplus value (green) is larger than 1 throughout
the first round, peaking in the middle of the first round. This indicates that later first round
picks provide more value on average than top picks relative to their cost. This phenomenon is
the “loser’s curse” documented in Massey and Thaler (2013): the worst teams who pick at the
beginning of the first round get less surplus value on average than better teams who pick later
in the first round.

In Figure 1 we also visualize Jimmy Johnson’s draft curve (pink) and the Weibull trade market
curve (orange). At the request of Dallas Cowboys coach Jimmy Johnson, vice president Mike
McCoy created the first draft value chart based on gut instinct and past trades. This is known
today as the Jimmy Johnson chart. Devised in Massey and Thaler (2013), the Weibull curve
attempts to fit the dataset of all observed trades as best as possible. If all teams used one
additive trade value chart for each trade, it would look like the Weibull curve.

The Weibull and Jimmy Johnson curves are quite similar. They are much steeper than the
expected performance and surplus curves and aren’t even the same shape as the expected surplus
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Figure 1: In blue is expected performance value x 7→ E[Y |x]/E[Y |x = 1], where Y is second
contract APY cap percentage and x is draft pick. In red is first contract compensation x 7→
cost(x)/cost(x = 1). In green is expected surplus value x 7→ E[Y − cost(x)|x]/E[Y − cost(x =
1)|x = 1]. In pink is Jimmy Johnson’s value curve. In orange is the Weibull value curve implied
by the trade market.

curve. Thus, it seems NFL general managers do not trade based on expected performance
value or expected surplus value. It also implies that teams should trade down in the draft more
often. According to surplus value, even teams at the very top of the draft should trade down,
particularly towards the middle of the first round. This result is counterintuitive because very
top picks are so highly regarded by general managers and football fans.

1.2 Expected value charts don’t tell the full story

The discrepancy between the trade market and expected performance/surplus value curves
hasn’t changed since the publication of Massey and Thaler (2013). One explanation is that
general managers haven’t learned from these analyses. They have continued to make terrible
trades on average, not trading down often enough and overpaying when they trade up. An
alternative explanation is that expected value curves don’t tell the full story. General managers
are using some other value function that captures an essential piece of the puzzle missing from
previous analyses. We are partial to the latter explanation.

Previous analyses don’t consider how the variance of performance outcomes changes as the draft
progresses. In Figure 2 we visualize the conditional mean x 7→ E[Y |x] and standard deviation
x 7→ sd(Y |x) of performance Y as a function of draft pick x. These graphs look remarkably
similar. The key insight is that the conditional mean and variance of performance Y decreases
as draft pick x increases. Moreover, they decrease convexly. Since an earlier pick has a much
higher expected value and variance than a later pick, it has a much fatter right tail. In other
words, an earlier pick has a significantly higher probability of becoming an elite player, moreso
than we would expect if we just considered expected value.

Elite players have an outsize influence on winning the Super Bowl. Tom Brady or Patrick
Mahomes won seven of the ten Super Bowls from 2014-2023 because they’re just that good.
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Figure 2: The black dots indicate the empirical mean (left) and s.d. (right) of Y (performance,
i.e. second contract APY cap percentage) given x (draft pick). The blue lines are smoothed
curves x 7→ E[Y |x] (left) and x 7→ sd(Y |x) (right).

Mathematically, winning the Super Bowl is like exceeding a high threshold of team performance.
Far right tail players exponentially increase the odds of exceeding such a high threshold. The
difference in Super Bowl win probability between adding an elite player and an average player
to your team is massive. In particular, it is much larger than suggested by the difference in
performance outcome Y .

Thus, if a general manager’s goal is to win a Super Bowl, then accepting a trade because it
yields higher performance or surplus value on average is not necessarily optimal. We suspect
general managers value performance nonlinearly, place exponentially higher value on players as
their eliteness increases. Ideally we would quantify the probability of winning the Super Bowl if
a team drafts a player of performance value Y . We would need to adjust for confounders such
as the team’s current roster and the position of the drafted player. This is extremely difficult
to estimate from data for many reasons. The Super Bowl win/loss outcome is sparse and the
confounders are complex.

Instead, in this paper we consider simpler alternative value functions beyond expected perfor-
mance or surplus value. We focus on nonlinear transformations of Y that capture the outsize
influence of elite players. The most intuitive example is right tail probability, which places high
value on elite performance and no value on lesser performance. We find that such nonlinear
value functions produce steeper draft value curves that more closely resemble the observed
trade market.

2 Exploring nonlinear transformations of performance

2.1 Right tail probability

Intuitively, one reason a general manager trades up is that he wants to add an elite player to
his roster. Often, he is interested in an elite quarterback. This suggests we consider a draft
trade value curve proportional to right tail probability, x 7→ P(Y > r|x). Assuming additivity,
this is equivalent to valuing a bundle of draft picks {xj}nj=1 by the expected number of elite
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players it is expected to produce,

n∑
j=1

P(Y > r|xj) = E
[ n∑

j=1

I (Yj > r|xj)

]
= E

[
#{Yj > r}nj=1|{xj}nj=1

]
. (2.1)

We calculate right tail probability from the conditional density P(Y |x), which we estimate using
a Bayesian “spike plus Beta regression” model.3 As both the mean and variance of Y decay
convexly over the draft (recall Figure 2), the right tail decays convexly as well. The densities of
top picks feature fat right tails, which shift lefward and morph into a spike near 0 as the draft
progresses.

In Figure 3 we visualize right tail probability P(Y > r|x) and its associated value curve
velite(x) = P(Y > r|x)/P(Y > r|x = 1). We overlay the expected performance value curve
vEV(x) = E[Y |x]/E[Y |x = 1] and the Weibull trade market curve. The right tail curves are
much steeper than the expected value curve. To draft for eliteness, not expected value, earlier
picks are much more valuable. The higher the cutoff defining elite, the steeper the curve.

The observed trade market curve is as steep as some of the right tail curves. The way general
managers trade resembles valuing picks by the number of elite players they are expected to
produce. Though we can’t peer into the minds of general managers, if they were trading for
eliteness we would have seen a similar trade market. In particular, the right tail curve with
r ≈ 0.15 closely matches the Weibull curve. When trades occur, the price of a pick appears
proportional to the probability it results in an extremely elite player (whose second contract
APY cap percentage exceeds ≈ 15%). This is a high bar: in our dataset of draft picks from
2013 to 2023, just 16 players (≈ 0.57%) satisfy Y ≥ 0.15.

Figure 3: On the left: right tail probability P(Y > r|x) (y-axis) as a function of draft pick x and
right tail cutoff r (color). On the right: right tail probability relative to the first pick velite(x) =
P(Y > r|x)/P(Y > r|x = 1). The black dotted line is the relative expected performance value
curve vEV(x) = E[Y |x]/E[Y |x = 1] and the black dashed line is the Weibull trade market curve.

3Due to space constraints, we exclude the full details of our Beta regression model, instead summarizing it
here. We model the right tail using Beta regression, which works because Y ∈ [0, 1] and it seems reasonable when
we eyeball the empirical densities. Using the mean-precision parameterization of the Beta distribution (Ferrari
and Cribari-Neto, 2004), we model Y |x, Y > 0.005 ∼ Beta(µ(x), ϕ(x)) where µ(x) = logistic(spline(x|β)) and
ϕ(x) = exp(γ0+γ1 ·x). We model the spike near zero, the bust spike, using logistic regression, P(Y ≤ 0.005|x) =
logistic(α0 + α1 · x). We estimate the posterior distribution of each parameter in Stan.
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2.2 S curves

An oddity of valuing a draft pick by right tail probability P(Y > r|x) is that it so sharply
characterizes success and failure. Formally, it is the expected value of a step function, P(Y >
r|x) = E[gstep(Y )|x] where gstep(y) = I (y > r). We visualize such a step function in Figure 4a.
A general manager who values performance outcome Y by gstep(Y ) views a player as a total
success if Y > r and a total failure if Y < r.

(a) (b) (c) (d)

Figure 4: Performance outcome value functions gstep(y) = I (y > r) (a), two gs curves (b,c), and
gline(y) = y (d).

A general manager could use some other function g to measure how he values outcomes. An
outcome valuation function y 7→ g(y) then implies a draft pick valuation function x 7→ v(x)
by v(x) ∝ E[g(Y )|x]. For example, gstep implies velite and gline(y) = y implies vEV. Given any
g, we can calculate the corresponding v using the conditional density P(Y |x). In particular,

E[g(Y )|x] =
∫ 1

0
g(y)P(y|x)dy.

The step function gstep is extreme. It is sharp, ascribing Y = r a total failure and Y = r + ε a
total success. Also, it values all outcomes above r equally. On the other end of the spectrum
is the expected performance value curve. It corresponds to the identity function gline(y) = y
(see Figure 4d). A general manager who uses gline values outcomes linearly. For instance, he
values the difference between 0.02 and 0.01 the same as the difference between 0.09 and 0.08.
gline is also extreme since it discounts the outsized influence of elite players on winning. If you
believe great players are exponentially more valuable than typical players, it is critical to use a
nonlinear g.

We propose a nonlinear outcome valuation function g between the two extremes of gstep and
gline. To capture nonlinearity in performance outcomes but in a less sharp way, we use an s
curve. We use the CDF of the beta distribution, a sufficiently rich family of s curves, denoted
by gs and parameterized by α and β,

gs(y) = s(y;α, β) =

∫ y

0
zα−1(1− z)β−1dz∫ 1

0
zα−1(1− z)β−1dz

. (2.2)

We visualize two of these s curves in Figures 4b and 4c. For example, gs in Figure 4b assigns
near failure to busts and near total success to elite players. The two dashed gray lines indicate
where g′s(y) = 1. When y is between the two gray lines, g′s(y) > 1. This reflects, for example,
that the difference in outcome value between a good and median player is much larger for gs
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than for gline (as gline
′(y) ≡ 1). Similarly, the difference in outcome value between a median and

a bad player is much larger for gs than for gline.

A gs curve implies a draft value curve vs(x) ∝ E[gs(Y )|x], which we visualize in Figure 5
alongside other curves. The least steep curve is the expected performance value curve (beige). It
ignores that variance declines steeply over the draft. The steepest curves are the Jimmy Johnson
curve (gray), Weibull curve (teal), and right tail probability curve with high cutoff r = 0.15
(pink). Those curves place extreme value on elite players. The s curves (chartreuse and yellow)
lie between the expected performance value curve and the extremely steep curves. They place
exponentially increasing value on increasingly good players while still placing nonzero value on
less-than-elite production.

Figure 5: Various trade market value functions v(x).

2.3 Surplus value

Massey and Thaler (2013), an economics paper at heart, are interested in surplus value, the
difference between performance value and cost. This accounts for the varying cost of each draft
pick. We visualize the cost/compensation curve by the orange line in Figure 5. It matches
the steepness of the other steep curves through the first round but then asymptotes above zero
due to the minimum salary. In this section, we account for compensation and consider surplus
value.

Denote the first contract compensation of draft pick x by cost(x). As before, denote the
performance outcome associated with a draft pick by Y , a random variable. The surplus
value of a pick is S = Y − cost(x). Massey and Thaler (2013) model expected surplus value,
E[S|x] = E[Y − cost(x)|x] = E[gline(Y − cost(x))|x], where gline(y) = y. We discussed in the
previous section the problem with valuing performance outcomes Y linearly. This logic extends
to surplus value. We’d like to consider nonlinear valuations of surplus S, v(x) ∝ E[g(S)|x] =
E[g(Y − cost(x))|x].

In Figure 6 we visualize various surplus and performance value curves. For each g, the corre-
sponding performance curve is steeper than the corresponding surplus curve. This is because
the compensation curve is itself steep, which reduces the relative value of earlier picks. The
surplus curves corresponding to s (orange) and right tail (teal) g functions are much steeper
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than the traditional linear surplus curve (blue). Even after accounting for the varying cost
of players across the draft, placing exponentially more value on eliteness than lesser outcomes
produces a steeper value curve. Further, recall the loser’s curse from Massey and Thaler (2013)
and Section 1. According to the expected surplus value curve (blue), bad teams who generally
pick at the top of the draft have less valuable picks than better teams who pick later in the first
round. The effect size of the loser’s curse diminishes significantly if we use a nonlinear g. The
surplus peaks of the orange and teal curves barely lie above 1, and those peaks appear earlier
in the first round than the peak of the blue curve.

Figure 6: Various trade market value functions v(x).

2.4 Adjusting for position

It is imperative to adjust for position (pos), or at least for quarterbacks (qb), in modeling the
density of performance outcomes. Notably, quarterbacks command the largest contracts in the
NFL, they have by far the highest wins above replacement according to PFF WAR (Eager,
2020), and anyone who watches football knows elite quarterbacks like Brady or Mahomes are
incredibly valuable. Formally, quarterbacks have a much fatter right tail than other positions,
as they have a much higher mean and variance than other positions.

Accordingly, we estimate the conditional density P(Y |x, pos) using a Bayesian hierarchical
model.4 It is crucial to shrink positional estimates towards a common mean since there are so
few datapoints for each position. The standard errors of the positional conditional densities (and
conditional means) are huge and need to be accounted for. We don’t find large or significant
differences across non-quarterback positions. But, quarterbacks have significantly higher con-
ditional mean and variance curves (and hence fatter right tails) than non-quarterbacks. Thus,
in formulating draft trade value curves, we consider just quarterbacks and non-quarterbacks.
We define the non-quarterback conditional density by averaging over all the non-quarterback
positions, P(Y |x, not qb) := 1

#pos−1

∑
k ̸=qb P(Y |x, pos = k).

First, we consider performance value curves for quarterbacks and non-quarterbacks. Formally,
we consider curves proportional to E[g(Y )|x, qb] and E[g(Y )|x, not qb]. We normalize both of

4We devise a Bayesian hierarchical model that includes position-specific parameters for each of the α, β,
and γ parameters from the previous model. We shrink the position-specific coefficients α∗,pos, β∗,pos, and γ∗,pos
towards overall mean parameters α∗, β∗, and γ∗. We omit details due to space constraints.
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these curves to be relative to the value of a first pick qb. In Figure 7 we visualize several of
these curves for various choices of g.

Figure 7: Various draft trade performance value curves relative to the value of a first pick qb.

The non-quarterback curves are less steep than the quarterback curves. This is because the
mean and variance of top pick quarterbacks are so extraordinarily high relative to other positions
and later picks (see Figure 8), particularly the variance. For the curves derived from extreme
right tail probabilities gstep(y) = I (y > 0.15) (orange) and gstep(y) = I (Y > 0.20) (blue), a
non-quarterback first pick is worth about 10% and 1%, respectively, of a quarterback first pick.
The value of later non-quarterback picks quickly converges to 0% of a first pick quarterback.
This makes sense: just about the only way to get an extremely elite, far right tail performance
outcome is from a quarterback. For the traditional expected performance value curves (yellow)
corresponding to gline(y) = y, a non-quarterback first pick is worth about 60% of a first pick
quarterback. This makes sense: a non-quarterback drafted first will on average provide less
value than a quarterback drafted first, but nowhere near as much less value than if we value
performance by eliteness. The s curves gs (magenta and chartreuse) lie between the extremes
of gstep and gline.

Figure 8: For pos ∈ {qb, not qb}, the posterior mean estimates (lines) of µ(x, pos), sd(x, pos),
and bp(x, pos) as a function of draft pick x and position pos (color). We also include 95%
credible intervals (the shaded regions) to these curves.

Next, we consider surplus value. Formally, we consider curves proportional to E[g(S)|x, qb] and
E[g(S)|x, not qb]. We again normalize both of these curves to be relative to the value of a first
pick qb. In Figure 9 we visualize several of these curves for various choices of g.

For both qb and not qb, the traditional expected surplus value curve (yellow) corresponding to
gline(y) = y features the loser’s curse (a spike in the middle of the first round). For quarterbacks,
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Figure 9: Various draft trade surplus value curves relative to the value of a first pick qb.

the loser’s curse all but disappears for other nonlinear outcome valuations gs and gstep. Placing
exponentially higher value on elite outcomes produces surplus curves lying just about entirely
below 1. The far right tails of Y are so fat for top pick qb’s that even the high cost of top
picks doesn’t massively diminish their value. For non-quarterbacks, the loser’s curse is more
prominent, even for nonlinear g. Surplus value peaks in the middle of the first round and
decays across the draft. This makes sense: early picks’ compensation are priced for the ultra
high mean and variance of quarterbacks. On average, this price becomes too high for other
positions. Further, the more value a general manager places on eliteness (i.e., as g transitions
from gline to gs to gstep), the smaller the effect size of the loser’s curse for not qb. This makes
sense: the more eliteness matters to a general manager, the more he is willing to justify paying
the high cost of earlier picks.

3 Discussion

Traditional NFL draft position value curves are proportional to expected performance or surplus
value. These curves are much less steep than the value curve implied by the trade market and
Jimmy Johnson’s trade value curve. To proponents of traditional curves, general managers on
average make terrible trades. They often overpay when they trade up in the draft and they
don’t trade down often enough. We, on the other hand, posit that general managers are using
some other value function that may have merit. Valuing a pick by its expected value does not
necessarily align with a general manager’s primary problem of interest, which is to maximize
the chance of winning the Super Bowl. To win a Super Bowl, elite players, and particularly
elite quarterbacks, are exponentially more valuable than good or median players. Accounting
for such nonlinear valuations of performance outcomes, for instance using right tail probability,
yields steeper draft trade value curves that more closely resemble the market.
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