

Tracking the Intangible: Quantifying Effort in NFL Running Backs

Emily Shteynberg
New York University

Luke Snavely
Robert Morris University

Sheryl Solorzano

Amherst College

Carnegie Mellon University
Statistics & Data Science

Background

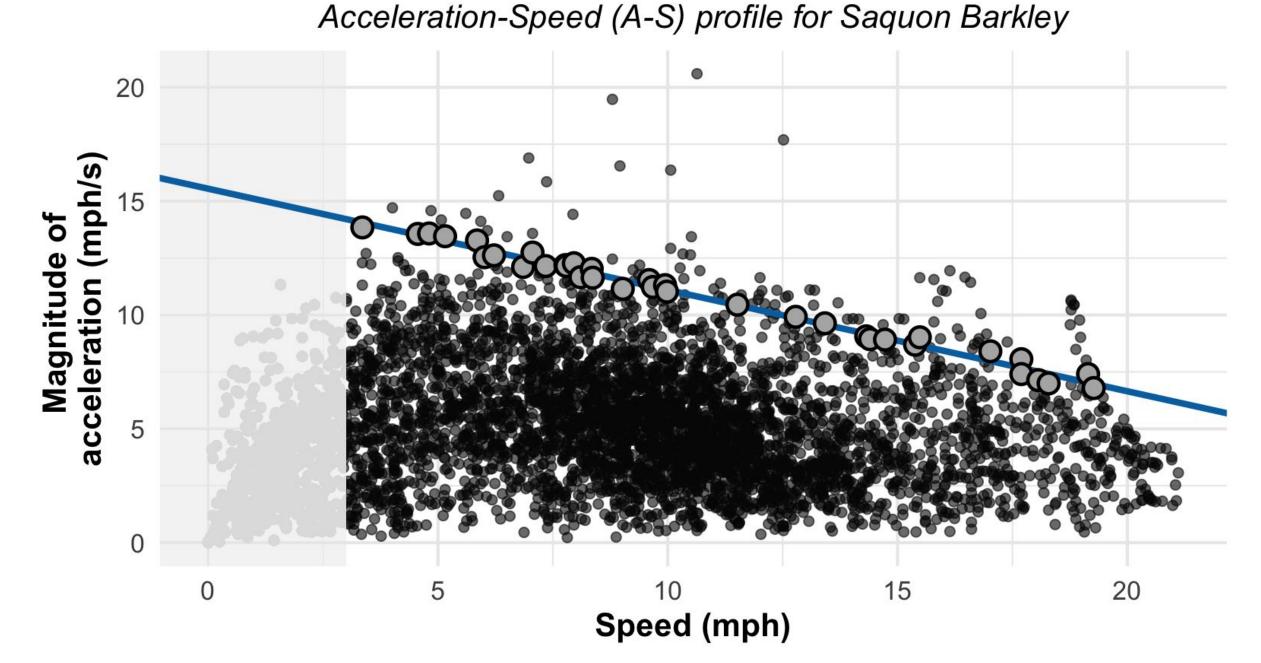
Motivation:

- Effort is a crucial—but intangible and subjective—aspect of sports
- Currently, there is no objective measure of effort in the NFL

Initial approach:

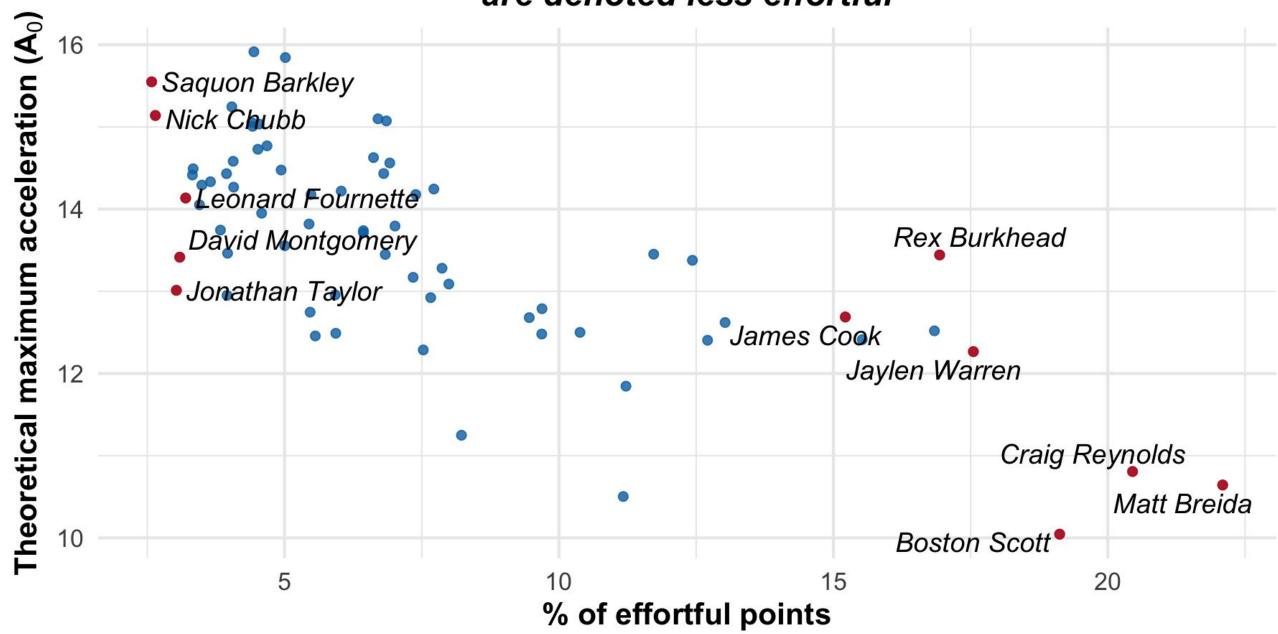
 Adapted from prior work on soccer players¹: estimate running backs' (RBs') individual theoretical maximal acceleration capacities for each possible running speed

We consider points close to and above a player's maximum acceleration frontier effortful



- But this has limitations:
- Gives no credit to low speed points
- Estimates unrealistic theoretical max speeds
- Players are penalized for being athletic (see figure below)
- Does not differentiate between acceleration and deceleration

Unfairly penalized: players with high max accelerations are denoted less effortful



Goals:

- Improve upon each player's individual max acceleration frontier using statistical models
- Assess how often each player comes close to or exceeds their max acceleration frontier as a proxy for effort

Data

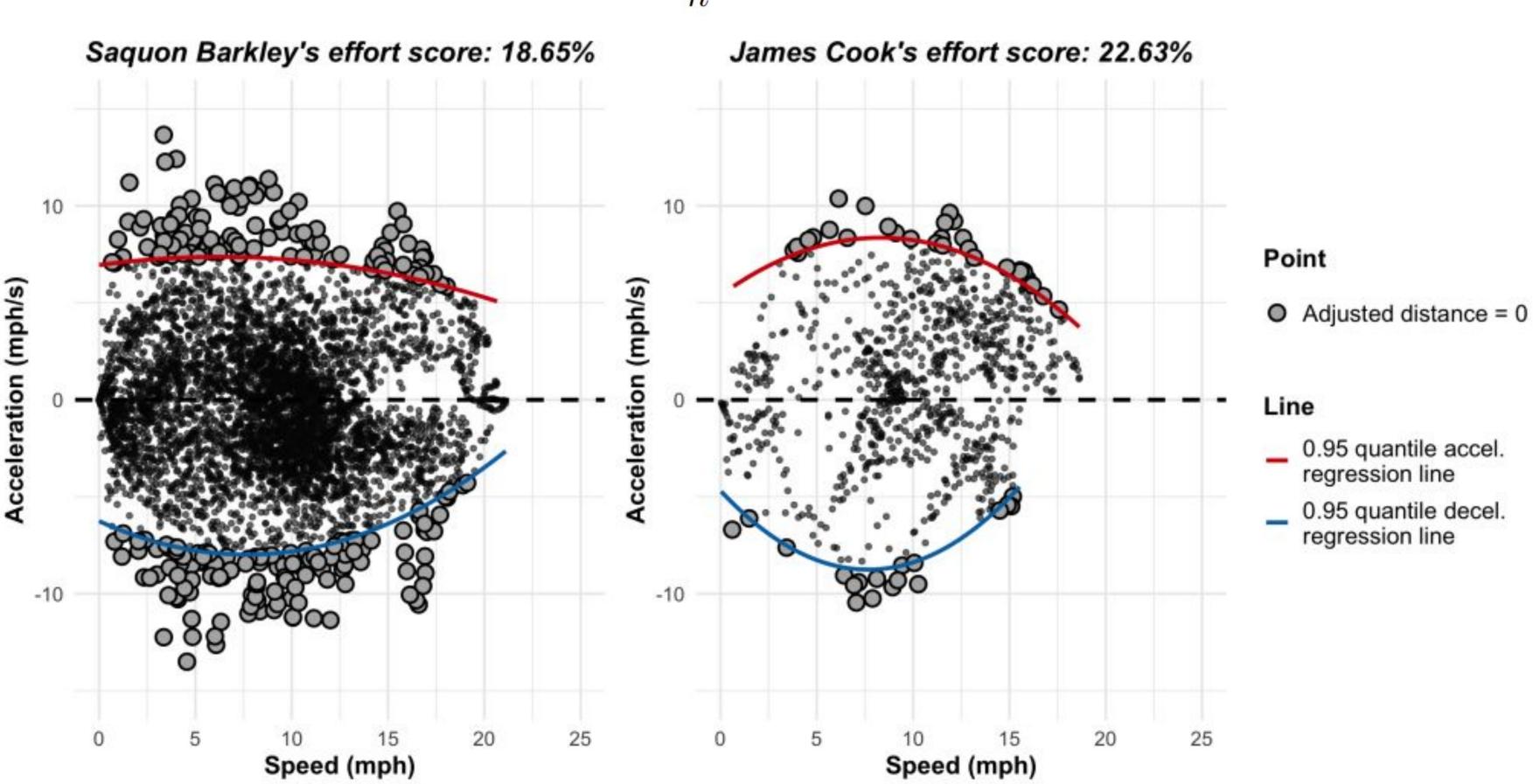
- NFL Big Data Bowl 2025, weeks 1-9 of 2022 NFL season
- Game, play, player data → 136 games
- Player tracking data → each observation is a frame in 10 fps
- Pre-processing
 - Filtered running plays in which a RB is the ball carrier
- Restricted to RBs with at least 20 runs → 69 RBs

Methods

For every RB, examine the joint distribution of frame-level speed and acceleration. We define two approaches to evaluate effort as follows:

Metric #1:

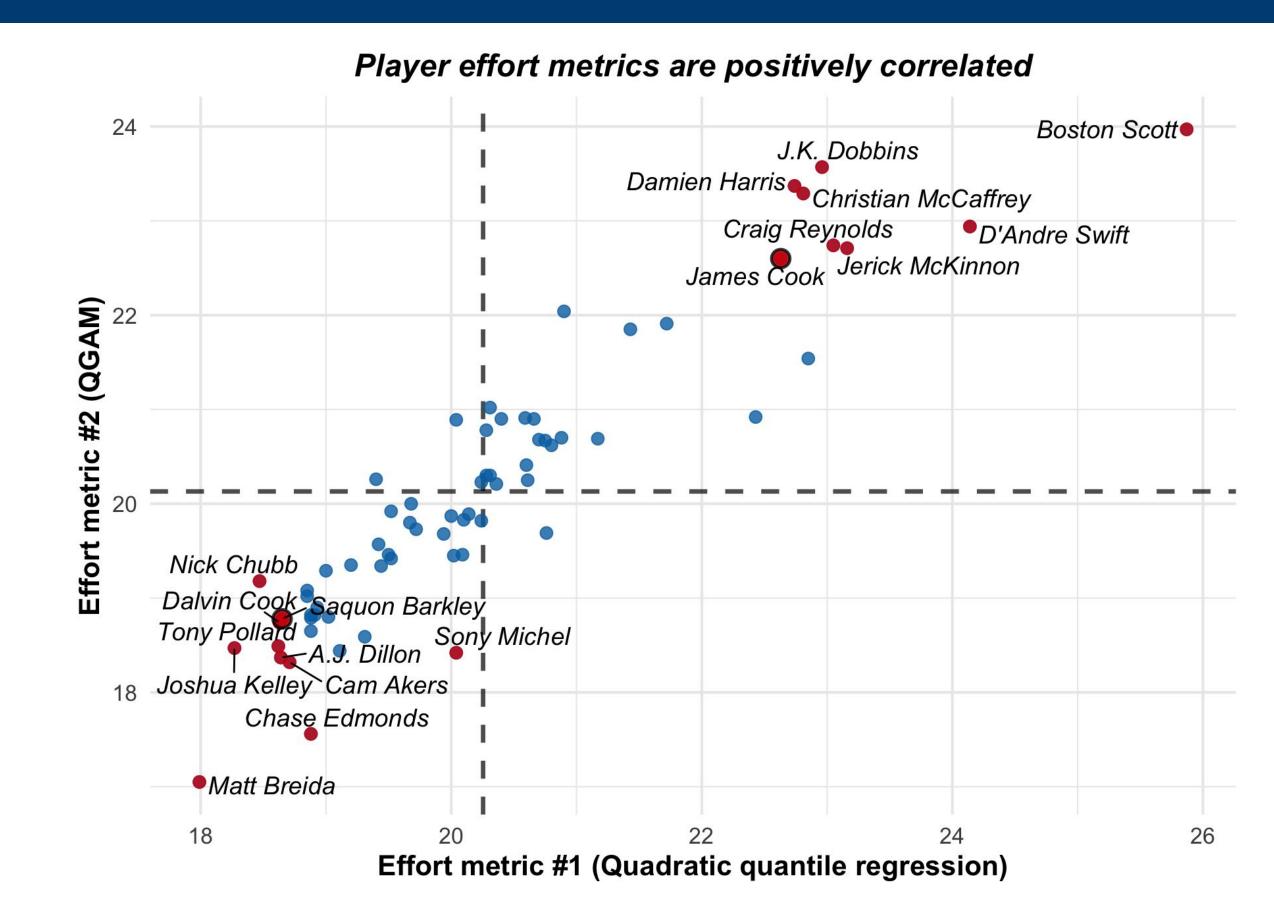
- Fit two quadratic quantile regressions to estimate 0.95 quantiles of acceleration and deceleration, respectively, as functions of speed
- Compute vertical distance d_i from each point to its corresponding regression line, based on the sign of acceleration
- For points outside the regression lines, set $d_i = 0$
- Assign each point a "distance score": $\Psi = \begin{cases} \frac{1}{1+d_i} & \text{accel.} \geq 0 \\ \frac{1}{2} \cdot \frac{1}{1+d_i} & \text{accel.} < 0 \end{cases}$
 - Note: points with negative acceleration are penalized by a factor of 0.5, as deceleration is deemed less effortful than acceleration²
- Compute average frame-level effort: $\sum_{i=1}^{n} \Psi$



<u>Metric #2:</u>

- Fit two quantile generalized additive models (QGAM) with adaptive spline bases to 0.95 quantiles of acceleration and deceleration, respectively, as functions of speed
- Compute average frame-level effort in the same manner as for Metric #1 (see above)

Results



- Back-up RBs consistently lead in both effort metrics
 - Make the most of their limited opportunities
 - Play fewer snaps → less fatigued
 - Starters might simply have more innate talent or ability → do not have to exert as much "effort" on every play

Effort metrics do not show a strong correlation with play outcomes Mean acceleration and speed per play included for reference

Mean acceleration and speed per play included for reference			
EFFORT METRIC TYPE	YARDS GAINED AFTER CONTACT	EXPECTED POINTS ADDED	RUSHING YARDS
QGAM	-0.081	-0.103	-0.079
Quadratic	-0.086	-0.097	-0.083
Mean Acceleration	-0.070	-0.026	-0.049
Mean Speed	0.377	0.446	0.523

Discussion

Conclusion

- A–S-based effort alone does not explain performance
- A RB's ability to consistently reach and exceed their max acceleration frontier does not directly translate into successful play outcomes

Limitations:

- Model does not fully account for in-play context
- Individualized A-S curves hold players to different standards → limits cross-player comparison

Future work:

- Apply effort metric to wide receivers
- Develop effort definition and metric tied to performance

References

[1] Morin, J., Mat, Y. L., Osgnach, C., Barnabò, A., Pilati, A., Samozino, P., & Di Prampero, P. E. (n.d.). Individual acceleration-speed profile in-situ: A proof of concept in professional football players. Journal of Biomechanics, 123, 110524. https://doi.org/10.1016/j.jbiomech.2021.110524

[2] Hader, K., Mendez-Villanueva, A., Palazzi, D., Ahmaidi, S., & Buchheit, M. (2016). Metabolic Power Requirement of Change of Direction Speed in Young Soccer Players: Not All Is What It Seems. PloS one, 11(3), e0149839. https://doi.org/10.1371/journal.pone.0149839

Acknowledgements

Many thanks to Sam Ventura, Quang Nguyen, Dr. Ron Yurko, and the CMSAC teaching staff for their guidance and support throughout the project.