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Abstract

Interest in end-of-year accountability exams has increased dramatically since the passing
of the NCLB law in 2001. This push has impacted educational research in a wide variety of
ways, including a strong desire to be able to model student work in order to make conclu-
sive statements about what students know and how this relates to how they will perform on
end-of-year standardized exams. This thesis will look at using item response theory (IRT)
to estimate student proficiency. This estimated proficiency will then be used to build predic-
tion models for end-of-year exam scores. Next, methods to improve a skills model will be
explored. Models that account for learning over time will then be considered. Finally, I will
compare various different approaches to modeling response data.
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1 Introduction
Since the passing of the United States Public Law 107-110 (the No Child Left Behind Act of 2001, NCLB)
there has been a push within education to raise the standardized test scores of students. As a consequence
many students are being given more benchmark exams or assignments during the year in an attempt to
uncover their knowledge and understanding. This push has impacted educational research in a wide variety
of ways, including a strong desire to be able to model student work in order to make conclusive statements
about what students know and how this relates to how they will perform on end-of-year standardized exams.
However, due to limited classroom time, teachers must choose between time spent assessing students to
answer the above questions and time spent teaching. Educational research can help solve this dilemma by
developing reliable tools to model and estimate student knowledge and predict performance.

In this thesis I will explore methods to better model, estimate, and understand student knowledge and
make predictions about end-of-year exam performance. I will first discuss the areas in which I have already
done work and will give an overview of areas in which I plan to work in the future. I will review current
methodology and consider changes, improvements, and extensions.

The methods within this proposal are demonstrated using data from an on-line Mathematics tutor known
as the Assistment System (Heffernan et al., 2001; Junker, 2006). During the 2004–2005 school year, over 900
eighth-grade students in Massachusetts used the tutor to prepare for the Massachusetts Comprehensive As-
sessment System (MCAS) Exam. The MCAS exam is part of the accountability system that Massachusetts
uses to evaluate schools and satisfy the requirements of the 2001 NCLB law1.

In Section 2, I will describe the work I have done in building prediction models. I will begin with a
discussion of Item Response Theory (IRT; van der Linden and Hambleton, 1997) and the benefits of using it
to estimate student proficiency. I will compare two different models, the Rasch model (Fischer and Molenaar,
1995) and the Linear Logistic Test Model (LLTM; Fischer, 1974). I will then explore the use of an estimated
proficiency in predicting end-of-year exam scores. These prediction models will then be compared to other
models that use a percent correct as an estimate of student understanding to show that the extra time spent
estimating an IRT student proficiency (compared to calculating percent correct) is worthwhile since it leads
to better performing prediction models.

When discussing what students know, educational researchers often refer to the Q-matrix (Embretson,
1984), which tags problems with specific skills or knowledge components. In Section 2 I use a specific
Q-matrix designed by colleagues working on the Assistment Project. However, there is evidence that this
particular Q-matrix is not sufficient. In Section 3, I will examine methods to improve the Q-matrix. I will
present a data-driven approach that evaluates problem difficulty estimates and can automatically suggest
skills that need to be further explored. This section contains the work that I am currently doing.

The last two sections give a brief description of work that I will do in the next year. In Section 4, I will
account for student learning over time. Over the course of the year it is reasonable to assume that a student’s
proficiency is changing, however in the IRT models that I have used so far there is only a single proficiency
estimate. I will explore the use of a multidimensional Rasch model to account for learning over time.

In Section 5, I will compare different modeling approaches including those already mentioned, a multi-
dimensional IRT (MIRT; Embretson, 1991), and the Deterministic Inputs, Noisy “And” Gate (DINA; Junker
and Sijtsma, 2001) model. In MIRT a different ability parameter is estimated for each different ability within

1See more at http://www.doe.mass.edu/mcas.
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a domain. For example, instead of estimating an ability parameter for math, one could estimate separate abil-
ity parameters for algebra, geometry, etc. The DINA model makes different assumptions (than the LLTM)
about the way in which skills interact in predicting student responses.

2 IRT and Prediction Functions
2.1 Motivation
With the increased interest in standardized testing there has been an increased interest in predicting student
performance on end-of-year exams from work done throughout the year (Olson, 2005). When predicting
end-of-year exam performance, one of the most commonly used sources of student work is benchmark
exams. A common measure of student understanding for many researchers is percent or number correct
(e.g., Nuthall and Alton-Lee, 1995; Maccini and Hughes, 2000). Many popular prediction methods use a
simple percent correct or number of correct problems on the exams as a factor in prediction models (Bishop,
1998; Haist et al., 2003). However, one drawback of prediction models of this form is that they do not take
into account the difficulty of the problems. For example, if two students see different sets of 10 problems
and both correctly answer seven, we should be cautious about using percent (or number) correct to compare
the students. If one set of problems is harder than the other, then there is an obvious difference of abilities.

As a solution to this problem, one can use Item Response Theory (IRT; e.g. van der Linden and Hamble-
ton, 1997) which relates student and problem characteristics to item responses. By separating the problem
difficulty from student ability, we can estimate the student’s true underlying ability no matter what set of
problems they may see. One of the simplest IRT models is the Rasch model (Fischer and Molenaar, 1995),
which models student i’s dichotomous response (0 = wrong, 1 = correct) to problem j, X i j, in terms of
student proficiency (θi) and problem difficulty (β j) as

P j(θi) = P(Xi j = 1|θi, β j) =
eθi−β j

1 + eθi−β j
. (1)

When two students take different benchmark tests, the test characteristic functions (the average of the prob-
abilities in Equation 1, P(θ) = 1

J
∑J

j=1 P j(θi)) will be different, depending on the difficulty of the items in
the two tests. Then the MLE θ̂ = P−1(X) will automatically adjust estimated proficiency for the differing
difficulty of the items on the two benchmark tests, even if X is the same for both students. Thus, the IRT
estimate of student proficiency is scaled according to the difficulty of the problems that the student saw.

One could then use this student proficiency estimate (in place of percent correct) to build prediction
models of the form

Zi = λ0 + λ1 · θi +
M∑

m=2
λm · Yim + εi, (2)

where Zi is student i’s score on the end-of-year exam, θi is student i’s estimated IRT proficiency, and Yim
are other variables used in the regression such as subject or school level background variables and other
measures of performance. This approach is similar to the IRT-based errors-in-variables regression model
used by Schofield, Taylor, and Junker (2006) in public policy.

A potentially major source of prediction error in Equation 2 is the measurement error in estimating θ i.
Finding the IRT model that best estimates θi is a matter of finding the trade-off between better fit (which tends
to reduce statistical bias) and the complexity (which tends to increase statistical uncertainty) of the model.
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For example, the many individual problem difficulty parameters in the Rasch model tend to enhance model
fit while adding to the model’s complexity. However, if we know what skills are involved in the problems
we can model problem difficulty in terms of the skills, as in the Linear Logistic Test Model (LLTM; Fischer,
1974). This typically reduces the number of parameters (the complexity) at the expense of decreasing the fit
of the model. By improving the fit-complexity trade-off we can make more accurate predictions (e.g. lower
mean squared error) of end-of-year (accountability) exam scores from benchmark testing.

2.2 Fitting the IRT Models
We know (Massachusetts Dept of Education, 2004) that MCAS multiple choice questions are scaled for
operational use with the 3-Parameter Logistic (3PL) model and short answer questions are scaled using
the 2-Parameter Logistic (2PL) model from IRT (van der Linden and Hambleton, 1997). We know that
Assistment main questions are built to parallel MCAS exam questions and so it might be reasonable to
model Assistment main questions using the same IRT models. However, for simplicity the Rasch model
(the 1-Parameter Logistic), Equation 1, was used. There is evidence that student proficiencies and problem
difficulties have similar estimates under the 3PL and the Rasch model (Wright, 1995) and so we are not
losing much information by starting with the Rasch model.

As briefly mentioned in Section 2.1, the many individual problem difficulty parameters in the Rasch
model tend to enhance model fit while increasing the model’s complexity. At the expense of decreased
model fit, we can reduce the number of parameters in estimating θi by using the LLTM (Fischer, 1974)
which constrains the Rasch problem difficulty parameters accounting to skills in the the Q-matrix. In the
LLTM, it is assumed that skill requirements for each problem combine additively to influence problem
difficulty. Thus, to use the LLTM we need an account of what skills problems do and do not depend upon.
These dependencies can then be assembled into a Q-matrix (Embretson, 1984; Tatsuoka, 1995; cf. Barnes,
2003 for a recent, more-elaborate application in intelligent tutoring). The Q-matrix, also referred to as a
transfer model or skill coding, is a matrix

Q =



q1,1 q1,2 . . . q1,K
...

. . .
...

qJ,1 qJ,2 . . . qJ,K


,

where q jk = 1 if problem j contains skill k and 0 if it does not. Thus, the Q-matrix simply indicates which
skills each problem depends on. Combining this information, we have the LLTM

P j(θi) = P(Xi j = 1|θi, αk) = eθi−
∑K

k=1 q jkαk

1 + eθi−
∑K

k=1 q jkαk
. (3)

The reader may note that we have not included the normalization constant c (Bechger, Verstralen, and
Verhelst, 2002) in our representation of the LLTM. This decision will be explained when estimation is
discussed. In Equation 3, θi is again the proficiency of student i. Here K is the total number of skills in the
Q-matrix being used and the q jk are the entries of that Q-matrix . Thus, β j from Equation 1 is now a linear
combination of the skills that appear in problem j. The αk represents the difficulty of skill k. When there are
fewer skills K than test problems J, the LLTM is a restricted form of the Rasch model: for example, if the
Q-matrix is the J × J identity matrix, we obtain the unrestricted Rasch model again. The LLTM has been
successful in other works such as van de Vijver (1988) and De Boeck and Wilson (2004). In both of these
cases, the correlation between the Rasch model and LLTM problem difficulties was greater than 0.90.

The dichotomous responses Xi j are modeled as Bernoulli trials,

Xi j ∼ Bern(P j(θi)) i = 1, . . . ,N; j = 1, . . . , J,
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Table 1: Rasch vs LLTM fits for Assistment Main Questions
Model −2 · lM = Deviance Parameters BIC
LLTM 56090 79 ∼ 56605
Rasch 47640 356 ∼ 49963

Difference in BIC ∼ 6600

where P j(θi) is given above by Equation 1 or Equation 3. Under the usual IRT assumption of independence
between students and between responses, given the model parameters, the complete data likelihood is

P(X = x) =
N∏

i=1

∏

j:i saw j
P j(θi)xi j [1 − P j(θi)]1−xi j . (4)

Since not all students saw the same set of problems, the second product only includes the set of problems
that student i saw. We estimated the student proficiency (θi) and problem difficulty (β j) parameters in the
Rasch model and the student proficiency (θi) and skill difficulty (αk) parameters in the LLTM, using Markov
Chain Monte Carlo methods with the program WinBUGS2 (Bayesian inference Using Gibbs Sampling;
Spiegelhalter et al., 2003), with the priors θi ∼ N(µθ, σ2

θ
) and β j ∼ N(µβ, σ2

β
). We placed a weak Normal

hyperprior on µβ and an Inverse-Gamma hyperprior on σ2
β
. In item response models, the location and scale of

the latent variable, and hence of problem difficulty parameters, are not fully identified, which can undermine
comparisons between fits on different data sets. We decided to fix the (prior) mean and variance of the student
proficiency (θ) to be 0.69 and 0.758. These values were found by preliminary analysis using hyperpriors on
these parameters. In the LLTM, which constrains the Rasch model as shown by Equation 3, we used the same
Normal(0.69,0.758) prior on the student proficiency (θ) and the prior on α was Normal(µα, σ2

α). Again, a
weak Normal hyperprior was placed on µα and an Inverse-Gamma on σ2

α. These priors differ slightly from
other estimation methods that use a N(0, 1) prior for θi. In our case, one can think of the prior mean on θ
taking the place of the normalization constant c.

Recent work (Gelman, 2006) has brought into question the use of an Inverse-Gamma(ε, ε) hyperprior.
In particular, when ε → 0 this prior leads to an improper posterior density. In addition, when low σ values
are plausible the prior becomes informative as inferences become sensitive to the value of ε. The Inverse-
Gamma priors used above ε = 1, so the first issue may not be problematic. In any event, additional sensitivity
analyses with Gelman’s results in mind will be done to complete this portion of the dissertation work.

2.3 Direct Model Comparison
We compared the Rasch model and LLTM using Bayesian Information Criterion (BIC; Raftery, 1995)
scores,

−2 · lM + k · log(n). (5)

Here lM is the log-likelihood of the model, k is the number of free parameters to be estimated, and n is the
sample size (here, the number of students). In this version of BIC scores, lower values indicate better fitting
models and a difference as small as 2 denotes a mentionable difference between models and differences
larger than 10 denote a very strong significant difference between the models. WinBUGS tracks the deviance,
which is defined as −2 · lM (Spiegelhalter, Thomas, and Best, 2003), of the model during estimation. Table 1

2WinBUGS and R code available from the authors on request.
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Figure 1: Assistment Main Question Residuals and ppp-values. Figure (a) is Number Coded by the Number
of Skills in the Problem.

shows the BIC scores for both the Rasch model and LLTM. One can see that the difference in BIC scores is
∼ 6600 and thus the Rasch model is overwhelmingly favored. Although the Rasch model is more complex
(in the number of parameters) than the LLTM, the dramatically better fit of the Rasch model makes up for
the complexity and the Rasch model is strongly favored.

To explore the misfit of the LLTM, we looked at the per problem standardized residuals

r j =
n j − E(n j)√

V̂ar (n j)
. (6)

Here, n j =
∑

i:i saw j Xi j is the number of correct answers to problem j, E[n j] is its expected value estimated
from fitting the model in Equation 1 or 3, and V̂ar (n j) is its variance estimated from the same model. We
also calculated the per problem outfit statistics (van der Linden and Hambleton, 1997, page 113),

T j(x | φ) =
N j∑

i=1

(Xi j − Ei j)2

N jWi j
,

where N j is the number of students that saw problem j, Xi j is student i’s response on problem j, Ei j is the
expected value of Xi j conditional on the parameter vector φ, and Wi j is the variance of Xi j also conditional
on φ. To check the per problem fit of each model, the posterior predictive p-value (ppp-value; Gelman et
al., 2004), the expected value of the classical p-value over the posterior distribution of the parameter vector
given the model and the observed data, was estimated using

pi ≈
#{s : Ti(x | φx) < Ti(x∗ | φx); s = 1, 2, ...M}

M ,

which compares the observed values of the test statistic to values of the test statistic for data simulated from
the model. For this calculation, the simulated data (x∗) was obtained by using the Markov Chain given by
WinBUGS. Similar to classical p-values, there is reason to question the fit of the model to problem i if p i is
small. A weakness of the ppp-value is that it uses the data twice, once to calculate the observed test statistics
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and again to simulate data to calculate the ppp-value. One consequence of this is that ppp-values are not
uniformly distributed and tend to be conservative (Gelman et al, 1996, page 790). However, we can still
expect the ppp-values to aggregate around zero if there is serious misfit for some of the problems.

Figure 1 (a) shows the Rasch versus LLTM residuals, as described in Equation 6. The residuals are num-
ber coded by the number of skills in the problem. For these questions, the Rasch model residuals (vertical
axis) range from −.6 to 1.4, indicating good fit, and the LLTM residuals (horizontal axis) range from −23
to 11.2, indicating bad fit. Figure 1 (b) shows the histograms for the Rasch model and LLTM ppp-values.
We see that the Rasch model ppp-values are roughly uniform, which we would expect if the model fit is ac-
ceptable. For the LLTM, the grouping of ppp-values around 1 shows the weakness of ppp-values to be bias
toward accepting the model. However, there are also many ppp-values concentrated at 0 giving the stronger
impression of misfit of the model.

2.4 Reliability and Predictive Accuracy
To compare prediction models we computed the 10-fold cross-validation mean absolute prediction error or
the mean absolute deviation,

MAD = mean |Zi − predicted Zi| =
1
N

N∑

i=1
|Zi − predicted Zi|. (7)

MAD is used because it is considered to be more interpretable by the Assistment developers. We also report
the cross-validation mean squared error (MSE).

However, before exploring the predictive accuracy of our models using the MAD measure defined in
Equation 7, it is important to ask how well Assistment performance could predict MCAS scores under ideal
circumstances. Let us begin by assuming the MCAS exam and the Assistment System are two parallel tests
of the same underlying construct. Following classical test theory (Lord and Novick, 1968) we have

Xi1 = Ti + εi1

Xi2 = Ti + εi2

where the true score of student i is T i, Xit is student i’s observed score on test t, and εit is the error on test t.
We have followed the usual assumptions that the expected value of the error terms are zero, the error terms
are uncorrelated, and that the error terms and the true score are uncorrelated. The expected mean square
error (MSE) between the tests is then

E[(Xi1 − Xi2)2] = E[(εi1 − εi2)2] = σ2
ε1 + σ

2
ε2 .

Since the reliability of test t (t = 1 or 2) is defined as

rt =
σ2

T
σ2

Xt

=
σ2

T
σ2

T + σ
2
εt

, (8)

some algebra then shows that the root mean square error (RMSE) is

RMS E =
√

E[(Xi1 − Xi2)2] = σT

√(
r1 + r2
r1 · r2

− 2
)
.
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This can be converted into lower and upper bounds on the MAD score. Using the Cauchy-Schwarz inequality
for Euclidean spaces (Protter and Morrey, 1991, page 130) with xi = |MCASi−predicted MCASi| and yi = 1,

N∑

i=1
|MCASi − predicted MCASi| ≤

√
N ·

√√√ N∑

i=1
(MCASi − predicted MCASi)2.

We can then scale both sides by 1
N to achieve

MAD ≤ RMS E.

To bound the MAD from below let xi = MCASi−predicted MCASi and |xmax| denote the absolute maximum
deviation between the true and predicted MCAS scores. Then,

RMS E2 =
1
n

N∑

i=1
x2

i ≤
1
n

N∑

i=1
|xi| · |xmax | = |xmax|

1
n

N∑

i=1
|xi | = |xmax|MAD,

so we have that
1
|xmax|

· RMS E2 ≤ MAD.

Thus, our lower and upper bounds for the MAD score are
1
|xmax|

· RMS E2 ≤ MAD ≤ RMS E. (9)

From Equation 8, we have that σ2
T = rt ·σ2

X. In the most recent technical report published (Massachusetts
Dept of Education, 2006) the MCAS has listed rt=1 = 0.9190 and σ2

X = 142.39, so that in predicting MCAS
exam scores from Assistment scores we have

RMS E =

√
130.86 ·

(
0.9190 + r2
0.9190 · r2

− 2
)
, (10)

where r2 is the reliability of the Assistment score.

However, since each student completes a unique set of Assistment questions, we could not calculate a
single r2 directly. Instead, we calculated reliability separately for each student. For this purpose we con-
sidered a reduced dataset of 616 students who had 10 or more problems completed for which all pairs of
correlations were available. To estimate the per-student reliability, we used Cronbach’s alpha coefficient
(Cronbach, 1951),

αi =
niri

1 + (ni − 1)ri
. (11)

In Equation 11, ni is the number of problems seen by student i and r i is the average inter-item correlation for
problems seen by student i. Once per-student reliabilities were calculated, the per-student estimated RMSE
values were computed using Equation 10. Figure 2 shows the estimated reliabilities for the students who
met the criteria explained above. It is interesting to note that the estimated RMSE is never lower than 4.44.

In order to have a single approximate set of approximate bounds for the MAD score in Equation 9, we
found the median Assistment reliability, 0.8080, and the corresponding RMSE of 6.529 from Equation 10.
The largest deviation, |xmax|, between the true and predicted MCAS scores among the models in Table 2
below was 40.5. Substituting these values for RMSE and |xmax | into Equation 9 we find the approximate
bounds,

1.053 ≤ MAD ≤ 6.529.
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Figure 2: Histogram of per-student Assistment reliabilities as given by Equation 11

2.5 MCAS Exam Score Prediction
Student proficiency estimated from a successful IRT model is combined with other Assistment performance
metrics to produce an effective prediction function, following the work of Anozie and Junker (2006), using
an errors-in-variables regression approach similar to that of Schofield et al. (2005). The linear model is

MCAS i = λ0 + λ1 · θi +
M∑

m=2
λm · Yim + εi,

where θi is the proficiency of student i as estimated by the IRT model and Yim is performance of student
i on manifest measure m. WinBUGS was again used to find Bayesian estimates of the linear regression
coefficients. When estimating each of the following models, the IRT item parameters were fixed at their
estimates from Section 2.2, but student proficiency was re-estimated. It is logical to not re-estimate item
parameters since this is how MCAS prediction would occur in practice: problems are fixed but student
proficiencies are changing throughout the year and year-to-year.

Table 2 shows results from several prediction models. In view of the results of Section 2.3, the IRT
based prediction models below are based on the Rasch model estimate of student proficiency. Column 2
lists which variables are in the model (for a full list and description of the variables see Table 3). Column 3
simply states the number of variables in the model. Columns 4 and 5 give the CV MAD score and the CV
RMSE respectively. Column 6 offers some important notes about the models. Historically, and in particular
within the Assistment Project, percent correct on questions has been used as a proxy for student ability.
To see if information is gained by using the Rasch estimate of student proficiency, we compared the two
models with only these variables. Model 1 is the simple linear regression using only percent correct and has
a MAD score of 7.18. Model 2 uses only the Rasch student proficiency and gives a MAD score of 5.90.
By simply using IRT to account for problem difficulty in estimating student proficiency, we can drop the
MAD score a full point. Accounting for problem difficulty gives a more efficient estimate of how well a
student is doing and leads to better predictions. Model 3, from Anozie and Junker (2006), uses as predictors
monthly summaries from October to April for percent correct on questions and four other manifest measures
of student performance. Model 4 uses the year-end aggregates of the same variables and substitutes Rasch

9



Table 2: Prediction Models
# of CV CV

Model Variables Vars MAD RMSE Notes
Model 1 Percent Correct on 1 7.18 8.65

main questions

Model 2 Rasch student proficiency 1 5.90 7.18
Model 3 Percent Correct on main uses multiple

(Anozie & questions and 4 other manifest 35 5.46 7.00 monthly
Junker, 2006) performance metrics summaries

Rasch student proficiency uses only
Model 4 and same 4 manifest performance 5 5.39 6.56 year-end

measures as Model 3 aggregates
Rasch student proficiency optimized

Model 5 and 5 manifest performance measures 6 5.24 6.46 for student
(one overlap with models 3 & 4) proficiency

student proficiency for percent correct on questions. We see that Model 4 gives a slightly lower MAD score.
Thus by using Rasch student proficiency (in place of percent correct) we can use fewer, more-aggregated
measures of student performance on Assistments.

Model 5 was optimized (for MAD score) for Rasch student proficiency and year end aggregates of
student performance measures using backwards variable selection implemented in WinBUGS and R3 (R
Development Core Team, 2004). To start we used the same 12 variables as Anozie and Junker (2006),
excluding percent correct on main questions and adding Rasch student proficiency. We ran the full model
and all models excluding one variable, with the caveat that student proficiency was always kept in the model.
For each model, MCAS exam scores were predicted and MAD scores calculated. The model with the lowest
MAD score was then used as the new “full” model. This process was repeated until removing variables from
the “full” model no longer reduced the MAD score. The final model, which contained student proficiency
and five manifest measures of student performance, gives a MAD score of 5.24, a slight improvement from
Model 4. Overall, the ability to use fewer variables makes the effort expended in estimating the IRT models
worth it.

The regression equation for Model 2 is

MCAS i = 18.289 + 10.425 · (Rasch student proficiency). (12)

From this we see that there is a baseline MCAS exam score prediction of 18 points and for each additional
unit of estimated Rasch student proficiency we add 10.425 to to the exam score prediction. As a student’s
proficiency increases, so does their exam score prediction. The regression equation for Model 5 is

MCAS i = 8.514 + 10.336 · (Rasch student proficiency) + 8.928 · (NumPmAllScaf)
+ 0.004 · (SecCorScaff) + 0.032 · (MedSecIncMain) − 0.001 · (SecIncMain)
− 2.696 · (PctSecIncMain). (13)

3WinBUGS and R code available from the authors on request.
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Table 3: Definitions of Variables used in Prediction Models
Variable Name Model Definition
Student Proficiency 2, 4, 5 IRT estimate of student Proficiency
PctCorMain 1, 3 Percent of correctly answered main questions
PctCorScaf 3, 4 Percent of correctly answered scaffolds
SecIncScaf 3, 4 Number of seconds spent answering

all incorrect scaffolds
NumPmAllScaf 3, 4, 5 Number of scaffolds completed per minute
NumHintsIncMainPerMain 3, 4 number hints + number incorrect main questions

Number of main questions attempted
SecCorScaff 5 Number of seconds spent answering

all correct scaffolds
SecIncMain 5 Number of seconds spent on incorrect main questions
MedSecIncMain 5 Median number of seconds per incorrect main question
PctSecIncMain 5 Percent of time on main q’s spend on incorrect main q’s

In Equation 13 the increase in MCAS score for each unit of increase in Rasch proficiency is about the
same as in Equation 12. However, the baseline of 18.289 has been decomposed into a new baseline of
about 8.5 points, incremented or decremented according to various measures of response efficiency. The
largest increment, 8.928, comes from the rate at which scaffolding questions are completed and the largest
decrement, 2.696, comes from the total amount of time spent on answering main questions incorrectly.

Now that we have compared models to one another, we need to compare the models to the bounds
calculated in Section 2.4. Recall from Section 2.4 that we have a bound of

1.053 ≤ MAD ≤ 6.529.

From Table 2, one can see that Model 5 has a MAD score of 5.24, which is well below the upper bound.

Moreover, the RMSE reported for Model 5, 6.46, is similar to our estimated optimal RMSE of 6.53. It
should also be noted, that with a perfect Assistment reliability in Equation 10, the estimated RMSE would
be 5.576 and the bound would be

0.768 ≤ MAD ≤ 5.576.

Again, the Model 5 MAD score is below this upper bound. Using a split-half reliability on the MCAS exam
itself, Feng et al. (2006) estimated the best-possible MAD for predicting MCAS from Assistments data to
be about 5.94. Since we are already achieving MAD scores less than this and the two previously mentioned
upper bounds, we do not expect to do much better without an increase in the reliability of the MCAS exam.

2.6 Conclusions
In this section I have developed a framework to create prediction functions for end-of-year exam scores using
an IRT estimate of student ability based on work done throughout the school year. Although this framework
was illustrated using data from an online mathematics tutor, other benchmark work, such as homework or
paper and pencil exams, could be used to predict end-of-year exam scores as well.

In addition to developing this general framework, our research generated two additional findings. First,
prediction using IRT scores is more effective than prediction using percent correct scores. For example,
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Figure 3: Problem Difficulties for Single Skill Main Questions

our Rasch model based predictions always produced lower MAD and RMSE prediction errors than the
corresponding predictions based on percent correct. Moreover, the IRT-based predictions were essentially
as good as one could do with parallel tests, even though our Assistment System was not constructed to be
parallel (in the classical test theory sense) to the MCAS exam. Second, in our application, the Rasch model
outperformed the LLTM. This is contrary to some previous experience with the LLTM (van de Vijver, 1988;
De Boeck and Wilson, 2004 ) and this deserves further exploration.

An obvious place to look is possible improvements in the transfer model (Q-matrix) and Section 3
explores this option. Of course, another possible difficulty may be that the LLTM is inappropriate for this
data. Alternative models involving Bayes net style cognitive diagnosis models (Anozie and Junker, 2007;
Pardos et al., 2006) and multidimensional IRT models (based on the 5 MCAS strands: Number Sense and
Operations; Patterns, Relations, and Algebra; Geometry; Measurement; and Data Analysis, Statistics, and
Probability) will be explored in Section 5.

3 Improving the Q-matrix
Until now, the majority of the skill analysis that has been done within the Assistment project has focused
on one Q-matrix known as the WPI-April 2005. This skills model has a total of 107 skills (77 of which
appear in the problems analyzed in Section 2.3) and was developed by a group of educational researchers at
WPI. The skills included in this Q-matrix range from basic skills such as addition or multiplication to more
high-level skills such as Pythagorean theorem and stem-and-leaf plot. While many of the researchers have
teaching experience, up to now there has been little work done to verify the skills in this model.

In the previous section I proposed two different reasons for the misfit of the LLTM. The first is that the
additive assumption of the LLTM is not appropriate and the second is that this Q-matrix does not contain
the proper set of skills. The first issue will be explored further in Section 5 where I will compare several
different models. In the remainder of this section I will assume that the LLTM is the “right” model and
discuss methods to suggest improvements in the Q-matrix. I will first discuss methods that I am using and
developing and then compare them to other methods such as Tatsuoka’s (1983) rule space method.
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Figure 3 shows the Assistment question problem difficulties for single skill problems. The plotted point
is a number (from 1-77) which simply identifies which skill is in the problem. In this plot we see several
vertical lines of dots which indicate problems with the same skill that have the same difficulty estimate
from the LLTM, but different Rasch model estimates. This is an effect of the LLTM since we have forced
problems with the same skill to have the same difficulty. There are several skills with noticeable differences
between the Rasch model and LLTM estimates. The first is skill 50 (probability), which under the LLTM
has a difficulty of 0.25. However,the Rasch model estimates of problems with skill 50 range from −3 to 2.
The next skill, number 67 (subtraction), is given a difficulty estimate of −0.14 by the LLTM. In this case, the
Rasch estimates of problem difficulties range from −5 to 0. Of particular interest are skills 36 (multiplication)
and 1 (addition). The LLTM estimates the difficulty of skill 36 as −0.93. In the Rasch model, problems with
this skill are placed into two separate groups, one between −5 and −3.5 and another between −2 and 1. The
LLTM estimate of skill 1 is −0.5 and the Rasch again gives two different groups.

In previous work (Ayers and Junker, 2007) we explored using a random effects component (Janssen
and De Boeck, 2006) to account for some of this variation. We tried several different priors for the random
effect, but in each case the random effect was so large that skills were no longer playing a significant role
in modeling problem difficulty. The lack of many skills with difficulty estimates significantly different from
zero is an indication of a misalignment between the skills in our model and the difficulty of the problems.

In the discussion of skill 36 above, it was noted that there were two different groups of estimates for skill
difficulty. I believe that this suggests a need to split the skill into two different skills. Skills 1 and 67 suggest
something similar. Although skill 50 does not have a split, there is a wide range of skill difficulty estimates
for the Rasch model and this also suggests a problem.

3.1 Testing
In a series of papers Bechger, Verstralen, and Verhelst (2002, 2004) and Fischer (2004) discussed methods
of testing Q-matrix entries. Here I will follow Fischer’s work in which he uses a likelihood ratio test to
compare the fit of two different Q-matrices. Let q jk be the hypothetical value of a single element of our
Q-matrix and σ jk its true value. Our null hypothesis is

Ho : σ jk = q jk . (14)

Under the null, the entire Q-matrix is fixed and the contribution of skill k on item j is q jkαk. Under the
alternative hypothesis (of non-equality), the contribution of skill k may vary independently. This contribution
can be expressed through the Q-matrix by adding a K + 1 column e j (the jth unit vector) so that we have
Qtest = (Q, e j). This expression is equivalent to changing the contribution of skill k to item j from q jkαk to
q jkαk + αK+1. This can be rewritten as

q jkαk + αK+1 = σ jkαk.

In this model, αK+1 and σ jk are free parameters to be estimated. The two LLTMs with matrices Q and
Qtest = (Q, e j) can be compared using a conditional likelihood ratio (CLR) test with d f = 1. If the test
shows poor fit of Q when compared to Qtest , one can estimate σ jk using

σ̂ jk = q jk +
α̂K+1
α̂k
, (15)

where q jk is from either Q or Qtest (as it will be the same in both) and α̂K+1 and α̂k are the skill difficulty
estimates from the model using Qtest .
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Table 4: Fits for Simulated Data
Model −2 · lM = Deviance Parameters BIC
Qmod 23559.28 6 ∼ 23, 600
Qtest 23522.09 7 ∼ 23, 570
Difference in Dev ∼ 37 Difference in BIC ∼ 30
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Figure 4: Simulation Study Estimates

It should be noted that in the Bechger, Verstralen, and Verhelst (2002, 2004) and Fischer (2004) papers,
the entries of the Q-matrix were not restricted to be 0/1. In their framework, one can consider the ( j, k) th

entry of the Q-matrix the number of times that skill k is used is answering question j. In the work that I have
done, I constrained the entries of the Q-matrix to be 0/1 since this follows the format of the Q-matrices used
within the Assistment project. Under this, q j,k only tells us whether or not problem j requires skill k.

Currently I am doing work to investigate modifying the theory explained above to test a Q-matrix with
0/1 entries. In particular, I am exploring the idea that, given a poor fit of Q and an estimation of σ̂ jk using
Equation 15, a value larger than 1 tells us something about Q-matrix. Ideally it would be nice if estimated
values larger than 1 indicated skills that needed to be split. To test this idea, I am doing a simulation study.

In the simulation study, I started with N = 1000 students, J = 20 problems, and K = 5 skills. In this
first simulation the five skill difficulties ranged from −1 to 1.5. I used a simple 20 × 5 Q-matrix with each
problem requiring only one of the five skills with each skill appearing in exactly four problems.4 Once I had
set this “true” Q-matrix, I created a 20 × 4 Qmod-matrix which combined skills 4 and 5. To test the 5 × 4
entry of Qmod I created Qtest = (Qmod, e5) as described above.

Using data generated from the Q-matrix, I estimated the Rasch problem difficulties and LLTM skill dif-
ficulties for the Q-, Qmod−, and Qtest-matrices using ConQuest (Wu, Adams, and Wilson, 1998). ConQuest

4Note that the use of only 20 problems was a constraint of the estimation package that I am using for this part of my work and I
am looking into ways to estimate more problems.
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gives the deviance of the marginal model after integrating out θ and suggests comparing the difference in
deviances between two models to compare the fit of the models. The difference has an asymptotic χ2 distri-
bution where the degrees of freedom is equal to the difference in the number of parameters estimated, in this
case 1. Table 4 shows the deviance and number of parameters for the Qmod and Qtest matrices. From this we
can see that comparing deviances, a marginal likelihood ratio test, shows that Q test gives a better fit. Using
Equation 15, we would estimate

σ̂5,4 = 1 + 1.690
1.180

= 2.43.

Figure 4 shows the Rasch vs. LLTM estimates for the original Q-matrix and Qmod. In the plot for the
Rasch vs. Qmod estimates, one can note the spread of Qmod estimates for the last skill. This skill is the
combined skills 4 and 5 from the original Q-matrix. Noting this large spread, I decided to investigate the use
of a sum of squares between the Rasch model and LLTM estimates in order to decide which skills should be
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Table 5: Partial results from SS Study
True Difficulty Estimated Location Estimated Scale KS-test p-value

−1.0 -2.727 0.235 0.098
1.5 -2.760 0.232 0.705
−2.0 -1.861 0.149 0.963

3.0 -1.781 0.214 0.144

further looked at for misfit.

S S =
∑

problems with same skill(s)
(Rasch estimate − LLTM estimate)2

I have begun to look at the distribution of this SS statistic, under the null hypothesis that the LLTM is
correct, in a pair of pilot simulation studies. In the first study, I considered the same “true” Q-matrix as
in the simulation study above, 20 questions, 1000 examinees, skill difficulties ranging from −1 to 1.5, and
θ ∼ N(0, 1), replicated 100 times. I examined the histogram of the 100 SS for each of the five question groups
implied by the Q-matrix. I considered a Gamma, Weibull, and Log-Normal distribution for the distribution
of the SS. From the QQ-plots and Kolmogorov-Smirnov tests, it appeared as though a Log-Normal was
giving the best fit. The second pilot study was designed and implemented in the same way, except that the
skill difficulties were taken to be twice that of the first study in order to explore the affect of the size of the
skill difficulty on the distribution of the SS. Figures 5 and 6 show the histogram of the 100 SS for the noted
problem difficulty, overlaid with the estimated Log-Normal distribution. Table 5 shows the true difficulties,
the Log-Normal estimated location and scale, and the Kolmogorov-Smirnov test p-values. The first two
rows are from the first study and the last two rows are from the second study. In the Kolmogorov-Smirnov
test the null hypothesis is that the data fit the given distribution. In each of the four cases, we see that we
do not reject this claim. One can note that there are differences in the estimated locations between the two
studies that does not appear to be due to the size of the true difficulty. I am currently designing a larger, more
comprehensive simulation study to better understand the SS distribution when the LLTM is correct.

3.1.1 Other Testing Procedures
There are several reasonable alternatives to Fischer’s method and the extension that I am working on. As
an alternative, one could compare the fit of two models by comparing the BIC scores (Raftery, 1995) of the
two models. It should be noted that this is the same score and test described above in Section 2.3. A test
comparing BIC scores is similar to the marginal likelihood ratio test except that it adds a penalization to the
models for increased complexity. In this situation we are testing the addition of a single skill to the Q-matrix
and the number of free parameters to be estimated k will differ by one between the two models. Since the
number of parameters varies by one, it is easy to see the fit-complexity trade-off inherent in the BIC score.

Table 4 also gives the BIC scores for the two models described in Section 3.1. Here the difference in
BIC scores is about 30 and again we see that Qtest has a better fit. Thus all of the procedures discussed to
compare models give the same answer.

3.2 Clustering
Another option for uncovering groups of problems is cluster analysis. Simply stated, clustering is the classi-
fication of problems into subsets where items within a subset share a common trait (in this case mathematical
skills). With the set of Assistment problems being used there are several things that should be noted. Given
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the broad range and uneven coverage of topics within the Assistment problems, we expect to have multiple
clusters of varying sizes. With clustering I would like to be able to group problems that involve similar skills
and be able to develop a meaningful set of skills. In this case meaningful would mean both leading to better
predictions of exam scores and providing teachers with useful information about student knowledge.

An important step in cluster analysis is deciding what distance (i.e., Euclidean distance or Manhattan
distance) to use to determine the similarity of two problems. Different distances will produce different clus-
ters. In addition, one must decide what type of clustering to do. In hierarchical clustering, problems may
belong to only one cluster. On the other hand, there exist clustering algorithms, such as ADCLUS (Shepard
and Arabie, 1979), that allow overlapping of item clusters. In the Q-matrix used in the previous analysis
roughly one-third of the problems are identified as having more than one skill. I think this is a indication
that we need an algorithm in which problems may below to more than one cluster.

Clustering can use either a bottom-up (agglomerative) or top-down (divisive) approach. In a bottom-up
approach single problem clusters are slowly merged into larger clusters. In a top-down cluster analysis all
problems start in one large cluster and are sorted into smaller clusters. Since we already have a clustering
based on the Q-matrix, I forsee starting with that and taking both a bottom-up and top-down approach.
Figure 3 shows several cases where a top-down approach may be useful. In particular, the large cluster of
problems coded with skill 36 appear to be in two smaller clusters. There are also examples where it may
make sense to merge problems. Skills 45 (mean) and 46 (mode) each appear once at just below 2 on the
Rasch problem difficulty scale and just under 0 on the LLTM problem difficulty scale. Since problem diffi-
culty estimates are close under both models, the distinction between mean and mode may not be necessary.

Given the current Q-matrix and set of Assistment problems, I will propose an iterative algorithm to
cluster the problems and skills. As a first step, I will apply biclustering to the given Q-matrix. Biclustering
(Cheng and Church, 2002) allows for simultaneous grouping of problems and skills and also allows over-
lapping clusters. In addition, I will also cluster the response matrix so that items appear together if they have
similar patterns of responses across students. These clusterings will be used in combination to do a stepwise
hierarchical clustering which will alternate between both agglomerative and divisive steps. Since associa-
tion between items caused by the student to student proficiency variation may overtake the clustering, I will
condition out the student proficiency.

4 Accounting For Learning Over Time
In the models presented so far I have estimated a single student proficiency parameter. However, since
students are working on the tutor over the course of several months we should be accounting for learning
over time. During the year students are attending class and learning new topics, it is reasonable to assume
that a student’s proficiency will increase over time. This suggests that the proficiency parameters in the
models should be adjusted to reflect this.

Much of the literature (Anderson, 1985; Embretson, 1991) concerning models with learning over time
discusses multiple instances of the same questions or exams. However, in the case of the Assistment tutor
data, we have few repeated items. In addition, students in the same class are not necessarily seeing the same
problems during each session. One of the first choices we must make is deciding how to break down the
time. For example, we could use each session, each week, or each month as a set time where we think
student proficiency is relatively unchanging. Many students are only using the tutor once a week so the first
two time periods are the same. I plan to start here, using one week’s worth of work as a set of data. If the
total number of problems seen is small, I may have to expand the time frame to obtain more data in order to
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make conclusive statements. In addition, we must decide if we are going to look at individual problems or
problems with the same set of skill(s).

Before we measure change, we must first consider the nature of change when students see problems
(or skills) over multiple occasions. A simplex pattern, which accounts for performance in tasks where in-
creasingly more (or alternatively fewer) abilities are needed, was noted by Corballis (1965) to account for
intercorrelations between occasions. Consider the use of M abilities over K occasions. Assume that on the
first occasion only one ability is used, but that each additional occasion depends on k−1 additional abilities.
We can arrange this notion in a K × M (where K=M) matrix

A =



1 0 0 . . . 0
1 1 0 . . . 0
...
. . .

...

1 1 1 . . . 1


.

Embretson (1991) uses this idea to develop a multidimensional Rasch model for learning and change
(MRMLC). By imposing the simplex structure, we can account for individual differences at each occasion.
This idea is then combine this with the Rasch model to obtain a multidimensional item response model

P(Xi(k) j = 1|θik, β j, ak) = e
∑

m akmθim−β j

1 + e
∑

m akmθim−β j
, (16)

where θim is the mth ability of student i and β j is the difficulty of problem j. Note that the problem difficulty
remains the same over time and we can track student learning by looking at the change in θ over occasions.

Another option would be using a latent class analysis and track a student’s learning by looking at how
they progress through the different classes during the year. One possible measurement model is the mixture
Rasch model (MRM; Rost, 1990) which assumes that a Rasch model holds within each latent class. In this
model, each latent class has a different set of problem difficulties. In addition, members of each latent class
may have different abilities. According to the MRM, the probability of a correct response is

P(Xi j = 1|g, θig) =
G∑

g=1
πg

1
1 + e−(θig−β jg) , (17)

where g = 1, ...,G is an index for the latent class, i = 1, ...,N are the students, j = 1, ...J are the problems,
πg is the proportion of students in each class, θig is the latent ability of student i within class g, and β jg is the
Rasch difficulty parameter of item j in class g.

When we combine the MRM with a latent transition analysis (LTA) model we can explicitly model
student learning over time. Known as the LTA-MRM (Cho, Cohen, Kim, and Bottge, 2007) the probability
of a correct response is now

P(Xi jt = 1|gt , θ
∗
igt) =

G1∑

g1=1
· · ·

GT∑

gT=1
πg1

T∏

t=2
τ

(t−1)
gt |gt−1

1
1 + e−(θ∗itgt−β jtgt )

, (18)

where gt is an index for the latent class at time t, θ∗itgt
is the ability of student i within pattern gt, β jtgt is

the difficulty of item j at time t for pattern gt, πg1 is the proportion of students in latent class g1 at time 1,
and τ(t−1)

gt |gt−1
is the transition probability from latent class gt−1 at time (t-1) to latent class gt at time t. Cho,

Cohen, Kim, and Bottge (2007) suggest using a stationary Markov chain to model the transition probabilities
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between latent classes. Let the class at time t be denoted at yt for t = 2, ...T with G possible classes. The
transition probability is then

p(yt = gt |zt−1 = gt−1) = pgtgt−1(t) = pgtgt−1(t + 1) = pgtgt−1 , (19)

where
∑

gt−1 pgtgt−1 = 1.

5 Compare Modeling Approaches
A third goal, depending on time and the outcome of the previous two, is comparing different modeling
approaches. When modeling exam or tutor response data, there are many assumptions that go into choosing
a model. We need to make decisions about how to model both the latent variables and the skills. Do we
want a single continuous variable for student proficiency or should divide student proficiency into separate
discrete variables according to the skills? Should we model skills additively (as in the LLTM in Section 2.2)
or should we use a conjunctive model? One must keep in mind that while a finer grained skills model may
help us when giving feedback to teachers, it also means that we will lose reliability when making inference
since there will be fewer observations for each skill.

Below I will describe a few of the many models that may be considered when modeling response data.
In each of the following models

Xi j = 1/0 indicating whether student i answer question j correctly

and
q jk =

{
1 if problem j contains skill k
0 else

The first model is the DINA (deterministic inputs, noisy “and” gate; Junker and Sijtsma, 2001) model.
In the DINA model we make a conjunctive assumption about the skills, which is different from the additive
skill assumption in the LLTM. In a conjunctive model, a student must possess all the skills required by a
problem in order to answer correctly. Thus, in the case of the DINA model we look at an individual student’s
skill level knowledge instead of the overall skill difficulty as in the LLTM. First denote

αik = 1/0 indicating whether or not student i possesses skill k.

In the DINA model, we define the latent response variables as

ξi j =
∏

k:q jk=1
αik =

K∏

k=1
α

q jk
ik

We then relate the latent response variables ξi j to the observed responses Xi j through the slip s j (having
all the skills but answering incorrectly) and guess g j (not having all the skills but answering correctly)
parameters:

P(Xi j = 1) =
{

1 − s j if ξi j = 1
g j if ξi j = 0
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Thus, the joint likelihood for all responses under the DINA model is

P(X = x) =
N∏

i=1

∏

j:i saw j

[
s1−Xi j

j (1 − s j)Xi j
]ξi j [(1 − g j)1−Xi jgXi j

j
]1−ξi j

Estimation for the DINA model can be done with MCMC methods (Anozie and Junker, 2007).

The next model, a multi-dimensional item response theory (MIRT) model, is similar to the Rasch model
except that we now have a vector of student proficiency parameters that measure different abilities. In the
case of the MCAS exam we could use the five strands from which problems are drawn: Number Sense and
Operations; Patterns, Relations, and Algebra; Geometry; Measurement; and Data Analysis, Statistics, and
Probability. The MIRT model may simply be represented as

P j(θi) = P(Xi j = 1|θ1, ..., θd, β j) = P(a j1θ1 + a j2θ2 + · · · + a jdθd − β j) (20)

where the probability can be a logistic function or any of several response functions. This can be compared
to Embretson’s (1991) multi-dimensional Rasch model for learning and change (MRMLC), discussed in
Section 4, which allows for different abilities at different times.

When comparing different modeling approaches there are several areas in which I will focus. For the
Assistment data I am interested in whether a single student ability parameter or a multi-dimensional one
does better. While a more general single student ability estimate does not give as much detail, there may
not be enough information or observations to estimate several different abilities. I would like to know if the
extra effort of estimating multiple abilities leads to better prediction models. In addition, I am interested in
finding a model which accurate estimates student skill knowledge. Hopefully this will be a model that both
helps improve predictions but that also yields beneficial information for teachers.

6 Summary of Proposed Work
This proposal discusses three topic areas in which I would like to make improvements to the current educa-
tional research methods. First, I want finish my work on methods to improve the Q-matrix. Second I plan to
look at models which account for learning over time. Third I plan to compare various modeling approaches
to add to the current discussion of the applicability and the pros and cons of each.

The first topic, making improvements to the Q-matrix is the one I will work on first and has the highest
priority in my work. Currently this work involves developing a method and test statistic to decide which
skills to further investigate. I will also look at this task from a clustering perspective. In addition, this area
has a practical application in naming and using the skills. I think that a meaningful and predictive set of
skills is needed to move forward and make comments on the remaining two topics. The correct set of skills
is needed both for feedback to teachers and for modeling student performance.

Although I have decided to work on it second, accounting for learning over time is an almost equally
important task. If I decide to use a latent class analysis, it is likely there will be a separate Q-matrix for each
latent class. In this case the first two areas will be merged. The final tasks of comparing modeling approaches
is last on my list and has a lower priority. It is something I would like to do, but will scale it depending on
time and advances in the first two areas.
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