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Abstract

Neural recordings, such as local field potentials (LFPs), reflect the activity of popula-
tions of neurons in time-varying voltage traces and, due to high temporal resolution, they
are well-suited for identifying networks of interacting brain regions. Typical analyses are
performed on the average across many repetitions of the same task, which eliminates the
variation needed to quantify statistical associations between nonstationary signals. In
this thesis, I extend statistical and machine learning methodology from graphical models,
time series and spatiotemporal models, and Bayesian hierarchical models to develop new
tools appropriate for identifying networks of interacting brain regions from multivariate
neural recordings. I discuss three different methods, each designed to focus on different a
characterization of association. First, we developed dynamic kernel canonical correlation
analysis (DKCCA) to identify time-varying lagged correlations between multi-electrode
LFPs from two brain regions (Rodu, Klein, et al, J. Neurophys., 2018). Second, in work
submitted for publication, we explored a novel undirected graphical model suitable for
identifying lagged synchronization of neural oscillations via phase coupling and provided
inference methods for graphical structure learning. Finally, my current work seeks to infer
neural circuitry during stimulus processing on a finer spatial scale using LFP recordings in
one cortical area. In particular, I propose using a biophysically-motivated spatiotempo-
ral Gaussian process model to solve an ill-posed inverse problem and recover the current
source density (CSD) generating the observed LFPs. In addition, I propose a Bayesian
hierarchical model for variation in nonstationary stimulus responses, where correlated
current source variation across cortical layers may indicate information flow. I plan to
demonstrate these methods in laminar LFP recordings from primary auditory cortex.
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1 Introduction

Electrical signals recorded from electrodes placed in brain tissue reflect time-varying neural
activity. The high-frequency content of the recorded signal indicates spikes of individual
neurons in the vicinity of the electrode, while the lower-frequency content (consisting of
timescales slower than about 500Hz) is termed the local field potential (LFP) and reflects
synaptic processes across a population of nearby neurons [Buzsáki et al. 2012, Einevoll et al.
2013]. However, unlike spiking activity that can typically be attributed to a small collection of
individual cells very close to the electrode, the LFP is an indirect and aggregated measure of
the activity of many neurons and does not only reflect activity in the vicinity of the electrode
[Lindén et al. 2011, Kajikawa and Schroeder 2011, Herreras 2016].

While my previous projects used LFPs directly to investigate information flow between
distant brain regions, in my proposed work, I seek to recover measures of the neural activity
of specific cell populations near each recording electrode. That is, the neural activity of
interest is the aggregate current flow in and out of specific populations of neurons, called
the current source density (CSD). Biophysical models relate the CSD to the measured LFPs
through a forward model ; attempting to invert the forward model to infer the CSD from
measured LFPs is the goal of CSD estimation methods [Pitts 1952, Nicholson and Llinas
1971]. The CSD provides a measure of neural activity that may better represent the activity
of specific neural populations near the electrodes, and thereby help to understand information
flow within a neural circuit. In particular, trial-to-trial variation in responses to a stimulus
[Arieli et al. 1996] are of great interest, and previous work in the auditory system suggests
that trial-to-trial variation in stimulus-evoked responses is better understood using the CSD
than the LFPs [Szymanski et al. 2011].

In my proposed work, I consider the common situation where LFPs are recorded using
electrodes along a linear probe that is oriented perpendicular to the cortical layers to capture
activity in all cortical layers. I develop a Gaussian process spatiotemporal model for the
latent CSD (GPCSD) that gives rise to the measured LFPs; in addition, I model each trial as
the sum of a trial-specific stimulus-evoked response and ongoing activity to make inferences
about trial-to-trial variation. The portion of the GPCSD model that governs how LFPs
arise from the CSD is derived from a biophysical forward model, while the statistical model
provides the inverse solution (that is, predicts the CSD from measured LFPs).

To illustrate the basic idea of GPCSD, I use an example trial of real LFP data recorded
in primary auditory cortex (see details in Section 3.4). The real data is shown in Figure 1.A
with LFP voltage traces overlaid on a heat map depicting the spatiotemporal LFP. In the
model, the latent noiseless LFP (panel B) decomposes into the sum of an evoked response
(middle) and ongoing activity (right). Likewise, the latent CSD (panel C) also decomposes
into a sum of evoked and ongoing activity, and the forward model describes how a given CSD
generates an LFP. As Figure 1 demonstrates, the forward model dictates that LFPs are a
spatially smoothed version of the CSD, so the CSD better reflects neural activity in specific
spatial locations. In particular, the CSD evoked response, consisting of several separate
bumps, more likely reflects stimulus-related activity of individual cell populations which are
difficult to disentangle from the spatially blurred LFP evoked response. As a result, trial-to-
trial variation of the CSD evoked responses should be more informative about relationships
between cell populations than trial-to-trial variation of the LFP evoked responses.

While most of this proposal document focuses on my proposed methodology for recovering
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Figure 1: A) A single trial of real LFP data (detailed in Section 3.4), with LFP voltage traces overlaid on a
heat map describing the variation in LFPs across electrode depth and time. B) Illustration of the model for the
LFP (top row) and the CSD (bottom row), where each is decomposed into an evoked response (middle column)
and ongoing activity (right column). A biophysical forward model describes how a given CSD generates an
LFP, while the proposed GPCSD statistical model provides the inverse solution (recovers CSDs from LFPs).

the CSD from the LFPs, I give a brief overview of my previous projects using LFPs in
Section 2. In Section 3, I outline relevant notation and definitions, describe the biophysical
forward model relating the CSD to LFPs, review existing methods for estimating the CSD
from measured LFPs, and describe the experiment and data used for preliminary results.
Section 4 outlines the GPCSD model and compares it qualitatively to existing CSD methods.
Preliminary results are shown in Section 5 for both simulations and real data, demonstrating
the utility of GPCSD in recovering the CSD and inferring trial-to-trial variation. Finally,
in Section 6, I outline the future work to be completed and give an estimated timeline for
completing the work.

2 Previous projects

My previous projects focused on inferring information flow between separate brain regions
based on LFPs from each region. Section 2.1 briefly describes the first project, dynamic
kernel canonical correlation analysis (DKCCA), which resulted in an estimator of the cross-
correlation between two regions based on multi-electrode LFPs within each area. Section
2.2 outlines the second project, torus graphs for multivariate phase coupling analysis, which
provided a method for estimating undirected graphical models describing interactions between
regions based on trial-to-trial phase relationships in oscillatory LFPs.
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2.1 Dynamic kernel canonical correlation analysis (DKCCA)

Canonical correlation analysis (CCA) considers linear combinations of each of two sets of
variables in which the weights are chosen to maximize the correlation between the linear
combinations of each set of variables; kernel CCA generalizes CCA by mapping the sets of
variables to higher-dimensional feature spaces prior to optimizing over the weights [Hardoon
et al. 2004]. Even if nonlinear feature maps are not used, kernel CCA provides a framework
for computationally-efficient regularized CCA when the number of variables is large relative
to the number of observations. To understand cross-correlation between LFPs in two brain
regions based on multi-electrode recordings within each region, we developed dynamic kernel
CCA (DKCCA) as an extension of kernel CCA to multivariate time series [Rodu et al.
2018]. By estimating the kernel CCA weights in a sliding-window fashion, the weights varied
smoothly over time and provided coherent time-varying linear combinations for each set of
variables. The resulting one-dimensional projections for each region provide an informative
cross-correlation matrix that may indicate lagged correlations between brain regions. We
compared DKCCA to simpler methods based on assuming equal weights for all electrodes
over time (equivalent to averaging across all signals within a brain region before computing
cross-correlation) or on computing all-pairwise cross-correlation matrices and then averaging
the matrices across all pairs. In simulations, we found that DKCCA recovered the correct
lagged structure while the other methods did not. In real LFP data from hippocampus and
prefrontal cortex in an associative learning task [Brincat and Miller 2015], DKCCA suggested
task-relevant lagged correlations during memory retrieval that the other methods did not.

2.2 Torus graphs for multivariate phase coupling analysis

The concept of phase coupling is frequently applied to neural recordings with substantial
oscillatory activity, where phase coupling indicates across-trial phase-locked relationships
between oscillations in two different brain regions that are a potential marker of long-range
neural integration [Lachaux et al. 1999, Marek et al. 2018]. However, existing methods for
assessing phase coupling are inherently bivariate in nature, meaning they construct graphs
representing interactions between brain regions based on evaluating phase coupling for each
pair of regions individually. In contrast to bivariate methods, undirected graphical models
provide the very nice interpretation that an edge between a pair of nodes is absent if and only
if the corresponding pair of nodal random variables are independent after conditioning on all
the other nodal variables; in this sense, an edge represents a unique association of two nodal
variables that can not be explained by the other variables. To estimate undirected graphical
models based on phase relationships, we developed a model suitable for multivariate phase
angles, the torus graph model, which generalized previous work in multivariate distributions
for circular random variables [Klein et al. 2018].

In particular, for a vector of multivariate angles y, the torus graph is an exponential family
distribution p(y|θ) ∝ exp

(
T(y)Tθ

)
characterized by sufficient statistics with second-order

interactions between angles yi and yj :

T(yi, yj) = [cos(yi), sin(yi), cos(yi − yj), sin(yi − yj), cos(yi + yj), sin(yi + yj)]
T . (1)

We show that this model generalizes previous work in multivariate circular statistics and that
the full model is necessary for modeling phase angles extracted from neural data. Further-
more, we propose a computationally efficient and statistically consistent estimation method
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based on score matching [Hyvärinen 2005], as an intractable normalization constant compli-
cates the use of more standard techniques such as maximum likelihood. Finally, we detail
asymptotic inference or regularization approaches to determining an undirected graph struc-
ture using the model.

In the context of multivariate phase coupling of neural oscillations, we illustrated using
simulations how torus graphs can overcome drawbacks of bivariate phase coupling measures;
specifically, bivariate measures are sensitive to the marginal distributions of the variables and
are influenced by both direct dependencies and indirect dependencies (mediated by other
nodes). In neural oscillation phase angle data from 24-dimensional LFPs, previously studied
in Brincat and Miller [2015], we demonstrated that torus graphs were able to recover mean-
ingful phase-based functional connectivity structures between prefrontal cortex and three
hippocampal subregions.

3 Background

My proposed work is based on biophysical models of LFPs recorded on a linear probe, though
I plan to extend it to data from other recording devices (Section 6). Notation and definitions
are outlined in Section 3.1, while biophysical models for LFPs are discussed in Section 3.2.
Section 3.3 reviews existing methods for estimating the CSD from LFP recordings. Finally,
the experiment and LFP data set used in the preliminary results is described in Section 3.4.

3.1 Notation and definitions

The local field potentials (LFPs) and current source densities (CSDs) may be conceptualized
as spatiotemporal functions of a single spatial coordinate and a time coordinate, so I will
write the LFPs as a function φ : R2 → R and the CSDs as a function c : R2 → R. The
portion of the activity time-locked to a stimulus is called the evoked response, while all other
activity is called the ongoing activity. A single trial captures the neural activity in a fixed
time epoch around a single stimulus presentation. The average across trials, aligned in time
to the stimulus onset, provides an estimate of the evoked response common to all trials and
is called the average evoked response.

To denote a realization of a function or parameter on the nth trial, I will use the notation
f (n). The scalar output of a function f (n) : R2 → R at input point (z, t) will be denoted
f (n)(z, t), where z is the spatial location (depth along the probe) and t is the temporal
location. If the function is evaluated at a grid of space-time points represented by vectors
z ∈ RD and t ∈ RT , then f (n)(z, t) will be a D × T matrix of function values. By default,
z ∈ RD and t ∈ RT to refer to the measured spatial locations and time points of the observed

LFPs. Often, such matrices will be vectorized; I will use f
(n)
z,t ≡ vec

[
f (n)(z, t)

]
to represent

this DT -vector. I will use φ̃z,t to refer to the observed LFPs to distinguish them from latent
function values representing noiseless LFPs.

When considering Gaussian process models, I will use a trial-specific spatiotemporal mean
function µ(n) : R2 → R and spatiotemporal covariance functions k : R2×R2 → R. The scalar
value of a covariance function at a pair of input points {(z, t), (z′, t′)} is denoted k(z, t; z′, t′).
Separable covariance functions take the form k(z, t; z′, t′) = kz(z, z′)kt(t, t′); evaluating such
a covariance function at vectors of inputs {z ∈ RD, t ∈ RT , z′ ∈ RD′

, t′ ∈ RT ′} then yields a
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covariance matrix Kz,t;z′,t′ ∈ RDT×D′T ′
that decomposes as a Kroencker product,

Kz,t;z′,t′ = Kz
z,z′ ⊗Kt

t,t′ , (2)

where Kz
z,z′ ∈ RD×D′

and Kt
t,t′ ∈ RT×T ′

are matrices formed by evaluating the covariance
functions on pairs of input vectors. The expression Kt will be used as shorthand for Kt,t.

Linear operators will be denoted Az where z is the input acted upon by the operator; that
is, Azf(z) = h(z). When applying operators to functions with more than one input, I will
use the following conventions. By Azf(z, t), I mean to apply the operator to f as a function
of z with the other argument, t, held fixed. To apply a linear operator to both arguments of
a function, I will use the following notation: Azf(z, z′)ATz′ .

3.2 Biophysical models of LFPs

Biophysical models give the relationship between the LFPs and the underlying CSD at any
instant in time. In particular, current flow across a single cell membrane creates a current
source or sink and the resulting field potential can be derived using volume conductor the-
ory. Including the contributions of all such current sources or sinks in space results in a
biophysical forward model relating LFPs to the CSD. Because it is not possible to estimate
the contribution of individual transmembrane currents from measured LFPs, the CSD may
be conceptualized as a continuous function in three-dimensional space that reflects average
transmembrane current in a small area [Einevoll et al. 2013]. In the following discussion, I
first give an overview of the three-dimensional forward model, then detail the use of addi-
tional assumptions, which I call a priori physical models, to adapt the forward model to one-
dimensional LFP measurements; other cases, such as two-dimensional LFP measurements,
can also be treated given appropriate a priori physical models.

Three-dimensional biophysical models Using the quasi-static assumption and as-
suming an isotropic, homogeneous medium with scalar conductivity σ, the relationship be-
tween the CSD c and the LFP φ is governed by the Poisson equation [Pitts 1952]:

σ∇ · (∇φ(x, y, z)) = σ

(
∂2φ(x, y, z)

∂x2
+
∂2φ(x, y, z)

∂y2
+
∂2φ(x, y, z)

∂z2

)
= −c(x, y, z) (3)

While this appears to give a formula for computing the CSD from the LFP, it requires detailed
knowledge of the LFP in three dimensions, without which it fails to accurately recover the
CSD [Nicholson and Freeman 1975].

Instead, the differential equation in Equation 3 may be inverted to an integral equation
which gives φ in terms of an integral operator on c. Assuming an infinite volume conductor
with negligible boundary conditions leads to the following integral operator [Nicholson and
Llinas 1971]:

φ(x, y, z) = − 1

4πσ

∫ ∫ ∫
c(x′, y′, z′)√

(x− x′)2 + (y − y′)2 + (z − z′)2
dx′ dy′ dz′. (4)

One advantage of this formulation is that it is easy to incorporate prior beliefs about the
three-dimensional behavior of the CSD when adequate three-dimensional measurements are
not available.
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One-dimensional biophysical models When observations are only available in one
dimension, we must provide some prior beliefs about the behavior of the CSD in the unmea-
sured dimensions through an a priori physical model. As in previous works, I use an a priori
physical model in which the CSD is assumed constant in the dimensions perpendicular to the
linear probe on a cylinder of radius R around the probe and zero elsewhere; previous work has
shown deviations from this shape do not have a large impact on the results [Nicholson 1973,
Potworowski et al. 2012]. Additionally, as linear probes are typically inserted to cover all
layers of cortex, it is reasonable to assume the CSD is nonzero only on an interval a ≤ z ≤ b,
leading to the following a priori physical model that describes the variation of the CSD in
the z direction through g(z):

c(x, y, z) = g(z)1(x2 + y2 ≤ R)1(a ≤ z ≤ b). (5)

Under this a priori physical model, as shown in Appendix A.1, Equation 4 reduces to

φ(z) = Azg(z) ≡ − R
2σ

∫ b

a
g(z′)

[√( r
R

)2
+ 1−

√( r
R

)2]
︸ ︷︷ ︸

b(r;R), where r=z−z′

dz′. (6)

Thus, under this a priori physical model, the one-dimensional LFP is the result of applying
a linear operator Az to g(z), where the weighting function b(r;R) decreases with distance r
but also depends on the radius R; see Figure 2 for an illustration.

3.3 Existing CSD estimation methods

As discussed in Section 3.2, in principle, Equation 3 may be used to infer the CSD if the LFPs
are observed densely in three-dimensional space; in practice, this is generally not the case,
and even if such recordings were available, numerical second derivatives are sensitive to noise.
Nevertheless, the traditional CSD (tCSD) method is based on a direct application of Equation
3 to one-dimensional recordings under the assumption that neural activity is constant in the
directions perpendicular to the probe. In contrast, a second class of techniques, which I will
call inverse CSD methods, uses Equation 4 along with a priori physical models to estimate
the CSD by inverting the resulting linear operator (e.g. inverting Az in Equation 6).

Traditional CSD (tCSD) method Ignoring the x, y directions in Equation 3 yields

σ

(
∂2φ

∂z2

)
= −c(z). (7)

This suggests estimating the CSD by the second spatial derivative of the recorded LFPs,
assuming equal spacing ∆z between electrodes [Nicholson and Llinas 1971]:

ĉ(zi) =
φ̃(zi+1)− 2φ̃(zi) + φ̃(zi−1)

(∆z)2
, ∀ i | i ∈ {2, ..., D − 1}. (8)

However, implicit in this interpretation of Equation 3 is the assumption that the LFPs have
zero curvature in the x and y directions, which has been shown to correspond to assuming
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R → ∞ in the a priori physical model of Equation 5 [Pettersen et al. 2006]. As a result,
tCSD has been shown to work poorly when the CSD is actually confined in a cylinder of
radius R around the recording probe [Nicholson and Freeman 1975, Einevoll et al. 2013].

In addition, the utility of tCSD on single-trial recordings is questionable as tCSD does
not account for measurement noise (and the numerical calculation of second derivatives is
sensitive to noise). While spatial and/or temporal smoothing may be used before or after
tCSD, it is unclear how to choose appropriate smoothing parameters and how to propagate
uncertainty about the smooth function when further analysis is performed on the smoothed
estimate. Perhaps for this reason, tCSD is typically applied to many trials, then averaged
across trials and further smoothed for visualization. Furthermore, tCSD can only provide
estimates of the CSD at the same locations where the LFP is measured (excluding the edge
electrodes), and tCSD must be applied separately on each trial and at each time point.

Inverse CSD methods While ideally Equation 4 can be inverted analytically (result-
ing in Equation 3), once an a priori physical model is incorporated to describe variation
in unmeasured dimensions, this is no longer the case. Additionally, viewing this problem
through the lens of inverse theory suggests that it is an ill-posed inverse problem, meaning
inverse solutions are highly sensitive to noise and may not be unique [Kropf and Shmuel
2016]. For the one-dimensional case with the a priori physical model of Equation 5, Pot-
worowski et al. [2012] developed kernel CSD (kCSD) which models the CSD g(z) as a sum
of finitely many basis functions (and includes so-called iCSD by Pettersen et al. [2006] as a
special case). In particular, the CSD is modeled using M known basis functions b̃j(z):

g(z) =

M∑
j=1

aj b̃j(z). (9)

Then, applying the forward model, one may obtain basis functions for the LFPs, denoted
bj(z). Then minimum-norm inverse solution (see Appendix A.2), in terms of kernel functions

k(z, z′) ≡
∑M

j=1 bj(z)bj(z
′) and k̃(z, z′) ≡

∑M
j=1 b̃j(z)bj(z

′), is

ĉz′ = K̃z′,zK
−1
z,zφ̃z, (10)

where, unlike tCSD, kCSD can provide predictions at new spatial locations z′. Additionally,
the inverse solution may be regularized by replacing K−1z,z with [Kz,z + λI]−1.

Inverse CSD methods are preferable to tCSD because the forward model parameter R is
not implicitly assumed to be infinite and because regularization reduces sensitivity to noise
and ensures a unique inverse solution. However, like tCSD, kCSD must be applied separately
to each trial and each time point. In addition, kCSD requires choosing the functional form
of the basis functions in addition to the placement and number of basis functions, for which
Potworowski et al. [2012] provide only heuristics. While cross-validation is suggested to
choose the regularization parameter λ and the width of the basis functions, no suggestion is
made for selecting R.

3.4 Experiment and LFP data

The data used for preliminary results are comprised of LFP recordings (1 KHz sampling rate)
from a 24-electrode linear probe inserted in primary auditory cortex of a macaque monkey
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with stimuli consistning of short tones at different frequencies (Walter, 5/12/2016). I defined
the duration of a trial as 100 ms before the tone to 450 ms after the stimulus. Trials with
more than one stimulus within this time epoch were excluded, as were trials with LFP ranges
(from minimum to maximum voltage value) over 900 µV; this resulted in 3010 trials. The
experimental manipulation that most clearly impacts the measured neural activity is the
inter-stimulus-interval (ISI), or the time since the last tone was played; trials with longer
ISIs tend to contain larger responses with somewhat different timecourses. The ISIs are
distributed in a right-skewed fashion to attempt to cover the space of different ISIs while
maintaining a reasonable recording session length; as a result, the natural logarithm of the
ISI is used as a covariate. For numerical reasons, the amplitude of all trials was rescaled
by a common factor so that single-trial LFPs have maximum absolute values near 1 (units:
10−4V ). For the preliminary results, I focus on the time period of the trial that captures the
earliest evoked responses to the tone by clipping the time period to 25 ms before the stimulus
to 75 ms after the stimulus. Whie in principle the conductivity scalar σ of Equation 3 should
be measured experimentally, in this work, I focus on recovering the pattern of CSDs and am
not overly concerned about the exact amplitude values, so for now I use σ = 1 and rescale
all CSD estimates to the arbitrary units [−1, 1].

4 Proposed methodology

In Section 4.1, I give a high-level overview of the proposed Gaussian process CSD (GPCSD)
model for one-dimensional LFP recordings which models the evoked CSD using a trial-specific
mean function and the ongoing CSD using a spatiotemporal covariance function (shared
across trials). To borrow strength across trials, the trial-specific mean functions are encapsu-
lated in a hierarchical model with covariate fixed effects and per-trial random effects. I show
that under the a priori physical model of Equation 5, the CSD and LFP are jointly a Gaus-
sian process, allowing prediction of the latent CSD at arbitrary space-time points (Section
4.2). While GPCSD shares some similarities with the kCSD method discussed in Section 3.3,
I outline specific advantages of my approach in Section 4.3.

4.1 Gaussian process CSD (GPCSD) model

Under the a priori physical model of Equation 5, the time-varying CSD on trial n can be
described as a spatiotemporal function g(n)(z, t). To understand information flow following
the stimulus presentation, I model g as a combination of a trial-specific mean function plus
Gaussian process ongoing activity; as illustrated in Figure 1, application of the forward model
to the CSD model yields the LFP model, while the inverse solution will be obtained through
the statistical model. In particular, let g(n)(z, t) be decomposed as

g(n)(z, t) = µ(n)(z, t) + η(n)(z, t), η(n)(z, t) ∼ GP
(
0, k(z, t; z′, t′)

)
. (11)

Combining this model with Equation 6 and putting iid additive noise on the observed LFPs
then yields a joint Gaussian process model for the CSD and LFPs (Appendix A.4). The
forward model operator Az influences the mean and covariance functions of the joint model,
but as the integral is generally not available in closed form, I use Gauss-Legendre quadrature.
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Covariance functions Because we expect the CSD to reflect the temporal evolution
of neural activity in spatially fixed neural populations, it appears to be reasonable to model
the covariance as separable in space and time:

k(z, t; z′, t′) = kz(z, z′)kt(t, t′). (12)

This allows simpler specification of the spatiotemporal covariance function and also yields
considerable computational advantages (Appendix A.5).

I consider stationary covariance functions under the assumption that ongoing neural ac-
tivity within a single trial can be treated as approximately stationary in time and space. In
general, the spatial and temporal stationary covariance functions may be sums of multiple
covariance functions, each with its own functional form and hyperparameters, allowing pro-
cesses with multiple temporal or spatial scales. In addition, predictions can be made at each
time or spatial scale separately [Duvenaud 2014].

To apply the forward model to the Gaussian process η(n)(z, t), note that the integral
operator is linear and applies only to the spatial part of the covariance function, so that

AzKz,t;z′,t′ATz′ ≡ AzKz
z,z′ATz′ ⊗Kt

t,t′ . (13)

Trial-specific mean models To help disentangle stimulus responses of individual neu-
ral populations, the trial-specific CSD mean model should be able to capture evoked responses
of spatially separated current sources and sinks which are nonstationary in time; I will call
these responses evoked current events (see Figure 5.C for illustration). That is, if am(z, t)
represents the spatiotemporal profile of one of M evoked current events, the overall mean is

µ(n)(z, t) =
∑M

m=1 a
(n)
m (z, t). Then, I propose a hierarchical model for variation in the timing

and strength of the evoked current events across trials:

µ(n)(z, t) =
M∑
m=1

w(n)
m (x) · am

(
z, t+ τ (n)m (x)

)
(14)

The latent variables w
(n)
m (x) and τ

(n)
m (x) represent trial-specific amplitude and timing devia-

tions the mth evoked current event, which in general may depend on covariates x in addition
to trial-specific random effects. To infer across-trial relationships between stimulus responses
of different neural populations, I propose multivariate priors of the form

w(n) ∼ p(w|x,θw), θw ∼ p(θw|γw)

τ (n) ∼ p(τ |x,θτ ), θτ ∼ p(θτ |γτ )
(15)

where w(n) ∈ RM and τ (n) ∈ RM are M -vectors for trial n.

4.2 Predicting the CSD using GPCSD

One of the key goals of the GPCSD model is to provide predictions of the CSD on the single-
trial level and to decompose it into the evoked response and ongoing activity. Suppose that
the trial-specific mean function and the covariance and forward model hyperparameters are
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known. As shown in Appendix A.4, the distribution of the CSD at inputs z′, t′ conditional
on the observed LFP at inputs z, t is given by

g
(n)
z′,t′

∣∣∣φ̃(n)
z,t ∼ N (µ∗,K∗). (16)

In particular, the conditional mean may be used to predict the CSD:

µ∗ = µ
(n)
z′,t′ + Kz′,t′;z,tATz

[
AzKz,tATz + σ2I

]−1 (
φ̃
(n)
z,t − vec

[
Azµ(n)(z, t)

])
. (17)

Similarly, we can use the distribution of the latent LFP φ
(n)
z′,t′ conditional on the observed

LFP φ̃
(n)
z,t to predict the LFP evoked response and smoothed ongoing activity.

4.3 Advantages of GPCSD over existing CSD methods

The drawbacks of tCSD were already discussed in Section 3.3, so here I will mostly focus on
comparing GPCSD to the existing inverse CSD methods such as kCSD. Both GPCSD and
the inverse CSD methods begin with the forward model of Equation 6, propose models for
g, then invert the integral operator Az to estimate the CSD. In addition, Gaussian process
regression and RKHS regression result in similar-looking estimators (see Appendix A.3), so I
expect that under some conditions, GPCSD and kCSD would perform similarly. However, the
specification of the prior Gaussian process through mean and covariance functions appears
more natural than the specification of some number of user-selected basis functions as in
kCSD. In addition, unlike kCSD, GPCSD explicitly models multi-trial data with both evoked
responses and ongoing activity (which may be decomposed into multiple spatial or temporal
scales). Furthermore, unlike existing methods, GPCSD incorporates temporal variation into
the model, which not only provides for smoothing and separation of processes into multiple
time scales, but also improves estimation by sharing information across nearby correlated
time points (sometimes called multi-task or transfer learning [Alvarez et al. 2012]). Also,
unlike existing inverse CSD methods, GPCSD provides principled data-driven inference of
the forward model hyperparameter R.

5 Preliminary results

Preliminary results are provided to demonstrate the utility of the GPCSD method. Section
5.1 involves a simulation study in which a realistic ground-truth CSD is generated from a zero-
mean Gaussian process; Figure 2 demonstrates the impact of the forward model parameter
R on the resulting LFPs, while Figure 3 shows that GPCSD recovers the ground truth CSD
from the generated LFPs across a range of R values while tCSD does not. In Section 5.2, I
show results of applying the GPCSD model to real LFP data. Figures 4 and 5 demonstrate
the predicted CSD ongoing activity (separated into two distinct timescales) and the predicted
CSD evoked response, respectively. Posterior inferences on a version of the hierarchical model
for across-trial variability are shown in Figure 6, indicating reasonable estimates of trial-to-
trial variability along with a covariate fixed effect that appears to be confirmed by exploratory
data analysis (Figure 7).

10



0 20 40
Distance (100 m)

0.0

0.2

0.4

0.6

0.8

1.0
W

ei
gh

t
A

0 50
Time (ms)

0

5

10

15

20
De

pt
h 

(1
00

 
m

)

B

0 50

0

5

10

15

20

C

0 50

0

5

10

15

20

0 50

0

5

10

15

20

0 50

0

5

10

15

20

1

0

1
a.u.

Figure 2: A) Plot of the weight function b(r;R) of Equation 6 as a function of distance r between current source
and measured LFP; the different lines represent different R values, where smaller R values lead to faster decay
of the weight function with distance. B) Ground truth CSD generated from a zero-mean Gaussian process. C)
LFPs generated from the ground truth CSD with four different R values (increasing from left to right); larger
R leads to increasingly spatially smooth LFPs. (LFP values in arbitrary units since R affects amplitude and
smoothness.)

5.1 Simulation study

The ground truth CSD, generated from a zero-mean Gaussian process, is shown in Figure
2.B. The forward model was applied for R ∈ {10, 50, 100, 500} (µm) to obtain the LFPs
shown in Figure 2.C (with R increasing from left to right) which show that the LFP appears
more spatially blurred as R increases; even for small R (leftmost plot of Figure 2.C), some
of the spatial detail of the CSD is lost in the LFP; the LFPs are rescaled to arbitrary units
to empahsize how R impacts the spatial smoothness (though in general it also affects the
amplitude). The weight functions b(r;R) of Equation 6 for various R are shown in Figure
2.A as a function of distance, r, from current source to measured LFP location, where the
rate of decay with distance is larger for smaller R, demonstrating how larger R results in a
spatially smooth LFP.

As discussed in Section 3.3, one of the major drawbacks of the tCSD method is its implicit
assumption that R → ∞. By applying tCSD to noiseless simulated LFPs with high spatial
resolution, we can obtain much higher resolution tCSD estimates than would be possible on
real LFPs, enabling a more fair comparison between tCSD and GPCSD estimates. Figure
3.A shows the ground truth CSD, while Figure 3.B shows the results of applying tCSD to the
resulting LFPs (generated with increasing R from left to right). For small R, tCSD does not
recover the ground truth CSD and seems to infer spurious spatial variation, coinciding with
earlier results of Nicholson and Freeman [1975]. In contrast, Figure 3.C shows the estimated
CSD by GPCSD for each R (using the true hyperparameters); GPCSD recovers the ground
truth CSD pattern for each R. Note that the CSDs are shown in arbitrary units to compare
the patterns of activity, as tCSD and GPCSD infer CSD activity on different scales (and the
pattern is the main goal of CSD analysis).

5.2 GPCSD applied to real LFP data

GPCSD with the same mean function for all trials First, I used a single mean
function shared across all trials and a covariance function made up of a single spatial covari-
ance and a composite temporal covariance, allowing separation of the predicted CSDs into
slow- and fast-timescale components. Figure 4 shows the predicted ongoing activity for one
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Figure 3: A) Ground truth CSD generated from a zero-mean Gaussian process. B) Across: tCSD estimates
based on LFPs generated with different R (increasing from left to right), showing that for small R, the tCSD
estimates do not match the ground truth pattern, while for larger R, they do. C) Across: GPCSD estimates
for the same LFPs, showing that when the proper R is used as part of the GPCSD model, the ground truth
CSD pattern can be recovered from each LFP. (All values in arbitrary units for comparison between tCSD
and GPCSD.)
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Figure 4: A) The tCSD prediction of the CSD for the ongoing activity in a single trial of real LFP data. B) The
GPCSD prediction of the CSD for the same trial, which decomposes into slow- and fast-timescale components
(middle and right). Notice the GPCSD prediction bears some resemblance to the tCSD prediction, but
the latter has poorer spatial resolution and a lack of temporal smoothness. (CSDs are in arbitrary units
for comparison between tCSD and GPCSD.) C) The observed ongoing LFP for this trial. D) The GPCSD
prediction of the LFP for this trial, which again decomposes into slow- and fast-timescale components (middle
and right). The GPCSD model LFP prediction resembles the real data, and the slow-timescale component
appears to capture a baseline shift effect.

example trial. Specifically, Figure 4.B shows the predicted ongoing CSD for a single trial,
which is split into fast- and slow-timescale components (middle and right columns). For
comparison, the tCSD estimator (computed on the data minus the average evoked response)
is shown in Figure 4.A; arbitrary units are used for the CSD to allow comparison between
tCSD and GPCSD patterns. While there appear to be some similarities between the tCSD
and GPCSD estimates, the tCSD spatial resolution is much lower and the lack of temporal
smoothness is apparent. Figure 4.D shows the GPCSD prediction of the noiseless LFP, again
including separation into two different time scales in panels E and F, while Figure 4.C shows
the observed LFP from this trial for comparison. The GPCSD prediction for the LFP ap-
pears to match the observed LFP, and the slow-timescale contribution appears to capture a
baseline effect as it is nearly constant over time.

The fitted CSD mean function representing the evoked response common to all trials is
shown in Figure 5.C; the left plot is the overall fitted mean surface, while the right plot
is a thresholded version that separates the evoked response into six distinct evoked current
events which are more interpretable as current flow related to specific neural populations (see
Appendix A.6 for discussion of thresholding). The spatially smoothed LFP evoked responses
corresponding to these CSD mean functions are shown in panel B, and they are similar for
both the original and thresholded CSD mean. For comparison, the average evoked response
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Figure 5: A) The observed average evoked LFP across all trials from the real LFP data. B) The fitted GPCSD
model LFP mean function (middle) is similar to a mean function where the CSD mean has been thresholded
to obtain separate evoked current events (right). C) The fitted GPCSD model CSD mean function (middle)
and thresholded version, showing roughly six separate evoked current events.

is shown in panel A.

GPCSD with trial-to-trial mean function variation Holding the covariance hy-
perparameters, forward model hyperparameter, and evoked current event shapes from the
previous model fixed, I applied a simplified version of the hierarchical model for trial-to-trial
variation of evoked responses. In this model, described in detail in Appendix A.6, the entire
evoked response surface varies by a single time shift and scale parameter per trial.

Figure 6.A shows a scatter plot of the posterior mean scale parameters w(n) for each
trial against a rescaled version of the log ISI. Overlaid is a line showing the posterior mean
estimated linear fixed effect of log ISI on the scale parameter; the histograms of posterior
samples for the intercept β0 and slope β1 of the line are shown in Figure 6.B, suggesting
that the amplitude of the evoked response increases as ISI increases. In contrast, Figure 6.C
suggests no relationship between the posterior mean time shift τ (n) and the log ISI. Figure 6.D
shows a histogram of the posterior samples of the time shift SD, στ , which concentrates cleanly
around 1 ms, a reasonable value for early auditory responses. Finally, Figure 6.E shows a
histogram of the posterior samples of the scale parameter SD, σw, which is somewhat difficult
to interpret; however, as shown in Figure 6.A, there is substantial trial-to-trial variation in
the scale of the evoked response.

These results appear to be confirmed by exploratory data analysis. The histogram of
the log ISI covariate is shown in Figure 7.A. As described in Appendix A.6, the possible
relationship between evoked response amplitude and log ISI was explored by binning trials
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Figure 6: A) Scatter plot of the posterior means of the scale parameters w(n) for each trial against the rescaled
log ISI, with a line overlaid representing the posterior mean prediction of the fixed effect of the rescaled log ISI
on the scale. B) Across: histograms of posterior samples for the intercept β0 and slope β1 of the line relating
rescaled log ISI to the scale, which show a non-zero positive slope. C) Scatter plot of the posterior means of
the time shifts τ (n) for each trial against the rescaled log ISI; no fixed effect was included in the model and
the inferred time shifts do not appear to vary systematically with ISI. D) Histogram of posterior samples for
the shift standard deviation στ , which concentrates around 1 ms. E) Histogram of posterior samples for the
scale standard deviation σw.
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Figure 7: Exploratory data analysis on LFPs. A) Histogram of log(ISI). B) Across: average evoked responses
for trials split by log(ISI) quantile (increasing ISI from left to right). The evoked response occurs at about
the same time for each quantile, but increases in magnitude with quantile. C) Boxplot of single-trial evoked
response amplitude estimates split by log(ISI) quantile. Amplitude appears to increase with log(ISI), but with
large, right-skewed trial-to-trial variation. D) Across: four example trials, demonstrating that the evoked
response patterns (panel B) are likely highly variable on the single-trial level.

by the quantiles of the log ISI and examining average evoked responses within each quantile;
in addition, single-trial estimates of evoked response amplitude were extracted. As shown in
Figure 7.B, the average evoked responses appear to increase in strength with log ISI (which
increases from left to right). Boxplots of the single-trial evoked response amplitude estimates,
split by log ISI quantile, are shown in Figure 7.C. Again, there appears to be an increase in
amplitude with log ISI, but also notable is the large variation in amplitudes across trials and
the right-skewed distribution of single-trial amplitudes. Four example trials of real LFP data
are shown in Figure 7.D to demonstrate the large amount of trial-to-trial variation.

6 Future work and timeline

In this section, I discuss some aspects of the proposed work roughly in order of priority; the
action items with a rough timeline are summarized in Table 1.

Hierarchical model for M evoked current events The preliminary results using
the hierarchical model to shift and scale the entire CSD mean on single trials appears to yield
promising results regarding the amount of trial-to-trial variation and the fixed effect of ISI
on the amplitude on a per-trial level. However, I am interested in understanding trial-to-
trial covariation of individual evoked current events in the context of information flow. This
requires (i) some suitable definition of a mean function based on M evoked current events,
which I propose to obtain by thresholding a mean function fitted to all trials (Appendix A.6)
and (ii) the implementation of a larger hierarchical model to capture covariation among each
of M components.
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Tobias suggested that two of the evoked current events (the source/sink pair located
near depth 5 in Figure 5.C) should be highly correlated both in time and amplitude. As a
preliminary step, I will implement the hierarchical model with M = 2 to model covariation
between those two evoked current events. I will test in simulations then on a subset of the
auditory LFP as a proof of concept. Then, I will extend to larger M (likely on the order of
M = 6 for the early evoked response). Possible difficulties include increased computation time
as the hierarchical model grows in size and difficulties with MCMC convergence. However,
as I have a simple M = 1 version of the model working, the extension is conceptually easy.

If I encounter computational speed issues or MCMC convergence issues, I will focus only
on M = 2 and subset the trials/spatiotemporal domain first to simplify the problem. If
M > 1 fails to yield interesting or proof-of-concept results, I think even M = 1 is already
potentially of interest for describing trial-to-trial variation. As an alternative, I could also
extend the model by fitting both the early (∼ 30 ms) and later (∼ 100 ms) evoked responses,
then letting there be separate variation in the early and late parts (instead of across evoked
current events). The potential relation between early and late and the fixed effects of covari-
ates could itself be of interest. Another idea is to try fitting a space-dependent time shift
function without thresholding, and to model these hierarchically across trials. The across-
trial variation in the time shift functions (for instance, examined by functional PCA) could
reveal patterns of information flow.

Develop forward model for Neuropixel and include in GPCSD I have focused so
far on LFPs recorded using a linear probe, which prompted the choice of the a priori physical
model of Equation 5. However, if other types of recordings in two- or three- dimensions were
available, the a priori physical model could be changed and the GPCSD model could easily
incorporate such model. One promising option is Neuropixel data, which will feature about
300 electrodes with two-dimensional coverage. While some previous works have proposed a
priori physical models for two-dimensional Utah array recordings [Potworowski et al. 2012,
Hindriks et al. 2017], I think a different formulation may be needed for Neuropixel data.

I anticipate getting access to some Neuropixel LFP data soon, so I will work to extend
the GPCSD model to this case. This will require a reasonable a priori physical model to
replace Equation 5, then an assessment of whether Equation 4 may be simplified analytically
under this physical model to obtain a forward model with an integral that can be easily
approximated. The Gaussian process would then have two-dimensional spatial coordinates,
which I would start by modeling using a separable covariance function for simplicity, and
the new forward model would apply in the same way as in the one-dimensional case. As the
evoked response model is still up in the air and I am not sure about the task details of the
Neuropixel data, I would focus first on a zero-mean GPCSD implementation which I would
use in a an exploratory manner to examine the Neuropixel data. It would be interesting to see
how variable the inferred CSD is in the horizontal direction (given that our one-dimensional
model assumes constant CSD in the horizontal direction, and I am not aware of any other
work that has tried to validate this experimentally). I will also validate this zero-mean
two-dimensional GPCSD in simulated data.

User-friendly software for zero-mean GPCSD I plan to release user-friendly soft-
ware for zero-mean GPCSD in Python and possibly Matlab. This would come with reasonable
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default settings for the Gaussian process hyperparameters, potentially also allowing the user
to specify some simple constraints on spatial/temporal scales and R. Then it would take
multi-trial LFPs and compute a CSD prediction at desired space/time points for each trial,
after optimizing the marginal likelihood function to set the hyperparameters. This would
allow practitioners to estimate spatiotemporal single-trial CSD profiles and would have some
advantages over existing methods (as described in Section 4.3).

Simulations to compare GPCSD to other CSD methods While GPCSD has
several stated advantages over existing CSD methods (Section 4.3), I want to do a more
thorough comparison on simulated data to demonstrate that GPCSD actually works better
in a predictive sense. While the brief visual comparison of tCSD and GPCSD shown in Figure
3 is a start, more investigation is needed.

In particular, I will start with a ground truth CSD from a zero-mean GPCSD model,
generate noisy LFPs from the CSD, then compare methods in how well they recover the CSD
and/or predict the LFP. I will cross-validate the prediction error both by leaving out single
electrodes and by leaving out single trials; the parameters of GPCSD, kCSD, and tCSD (with
some smoothing to attempt to remedy some of its drawbacks) would be tuned on the training
set and prediction error computed on the held out set.

It also seems in practice that the average of tCSD estimates for a large number of trials
is needed to obtain a reasonable estimate of the average evoked CSD, while GPCSD can fit
the across-trial shared mean function with a small number of trials, so I want to design a
simulation with ground truth across-trial shared mean function and demonstrate that GPCSD
can recover it with fewer trials that tCSD.

More thorough data analysis of all data sources So far, I have been focusing
on a narrow time window around the early evoked response in the auditory LFPs and I
have been testing my methods on a single recording session from a single animal. Once the
other items are completed, I will apply the hierarchical model to the other auditory LFPs
to determine and interpret results with respect to information flow. Another direction that
could be pursued with the auditory LFPs is to look at the learned evoked responses in three
dimensions (from non-simultaneous recordings with the probe at different locations).

In addition, I will look at results from Neuropixel data with the two-dimensional model
and, though I do not have the data yet, I anticipate two key results. First, the behavior
of the predicted CSD in the horizontal direction could be informative on whether the one-
dimensional CSD model (which assumes constant CSD on a cylinder around the probe) is
reasonable. I am not aware of any existing data that would allow this kind of exploration.
Modifications to the cylinder model for 1D could be made if it seemed warranted (such as
tapering away to zero instead of constant then zero). Second, hopefully the Neuropixel data
will have some other interesting results, but I am not sure what they might be yet; at the
least, GPCSD will provide a method for CSD on this type of array for future analyses.
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Action item Target completion date

Finalize proposal document and get committee approval January 25

Hierarchical model for M evoked current events February 22
- Use M = 2 and test in simulations
- Test M = 2 as proof-of-concept on subset of auditory LFPs
- Extend to M > 2 and test in simulations
- Consider space-dependent time shift function (if time)

Develop forward model for Neuropixel and include in GPCSD March 15
- Devise a priori physical model and compute 2D forward model
- Implement zero-mean GPCSD with 2D forward model
- Test on simulated CSD passed through 2D forward model
- Test on subset of Neuropixel data and explore possible results

User-friendly software for zero-mean GPCSD March 29

Simulations to compare GPCSD to other CSD methods April 19
- Leave-one-out LFP predictions: GPCSD vs existing methods
- Compare tCSD to GPCSD on shared across-trial evoked

More thorough data analysis of all data sources May 10
- Information flow in several auditory LFP sessions
- Compare fitted evoked response among different locations
- Neuropixel data: use 2D results to evaluate 1D model assumptions
- Neuropixel data: other results (TBD)

Detailed outline of thesis document May 17

Draft previous work, background, methods sections May 31

Loose ends and writing up CSD methods and results June

Anticipated thesis defense date July

Table 1: Timeline for proposed work. More discussion of some items is given in the text.
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A Appendix

A.1 One-dimensional a priori physical model details

Substituting Equation 5 into Equation 4 yields

φ(x, y, z) = − 1

4πσ

∫ b

a

∫ ∫
x2+y2≤R

g(z′)√
(x− x′)2 + (y − y′)2 + (z − z′)2

dx′ dy′ dz′. (18)

We will assume x and y are inside the cylinder (as typically, we assume we observe φ at the
center of the cylinder). Changing to polar coordinates, we define r2 = (x − x′)2 + (y − y′)2
as the variable radius inside the cylinder and use the substitution dx′ dy′ dz′ = r dθ dr dz′ to
obtain

φ(x, y, z) = − 1

4πσ

∫ b

a

∫ R

0

∫ 2π

0

rg(z′)√
(z − z′)2 + r2

dθ dr dz′ (19)

= − 1

2σ

∫ b

a
g(z′)

∫ R

0

r√
(z − z′)2 + r2

dr dz′ (20)

= − 1

2σ

∫ b

a
g(z′)

[√
(z − z′)2 +R2 −

√
(z − z′)2

]
dz′. (21)

Notice that after integration, this is no longer a function of x or y, so we can simply write

φ(z) = − 1

2σ

∫ b

a
g(z′)

[√
(z − z′)2 +R2 −

√
(z − z′)2

]
dz′. (22)

To better understand how R affects the φ, I factor out R:

φ(z) = − R
2σ

∫ b

a
g(z′)

[√( r
R

)2
+ 1−

√( r
R

)2]
︸ ︷︷ ︸

b(r;R)

dz′ (23)

where r = z − z′ and b(r;R) is a weight function with a maximum value of 1 when r = 0.

A.2 Kernel CSD (kCSD) details

The observed potential corresponding to one source, which we will call bi, is

bi(x, y, z) = AC(x, y, z) ≡ 1

4πσ

∫ ∫ ∫
b̃i(x, y, z)√

(x− x′)2 + (y − y′)2 + (z − z′)2
dx′dy′dz′ (24)

and the overall potential from all sources adds linearly:

V (x, y, z) = AC(x, y, z) =

M∑
i=1

aibi(x, y, z) (25)

Defining x = (x, y, z), the kernel function between LFP basis functions is:

K(x,x′) ≡
M∑
i=1

bi(x)bi(x
′)
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This defines an RKHS where any function can be expressed as

f(x) =
∑̀
j=1

αjK(xj ,x) =
M∑
i=1

aibi(x)

where ai =
∑`

j=1 αjbi(xj). The minimum-norm solution that corresponds to interpolating
the observed LFPs is given by

β = K−1V

where the estimated potentials are V ∗(x) =
∑N

i=1 βiK(xi,x). That is, we know from RKHS

that ai =
∑N

k=1 βkbi(xk) such that

V ∗(x) =

M∑
i=1

aibi(x) =

M∑
i=1

bi(x)

N∑
k=1

βkbi(xk) =

N∑
k=1

βk

M∑
i=1

bi(xk)bi(xk) =

N∑
k=1

βkK(xk,x).

Note that adding Tikhonov regularization simply adds λI inside the inverse and loosens the
requirement that the LFPs are interpolated. Given this set of potentials V ∗ there is now a
unique current distribution:

C∗(x) =
M∑
j=1

aj b̃j(x) =
N∑
i=1

βi

M∑
j=1

bj(xj)b̃j(x) ≡
N∑
i=1

βiK̃(xi,x)

where K̃ is the cross-kernel induced by the operator A. Note that iCSD [Pettersen et al.
2006] is a special case of kCSD with either delta functions, piecewise-constant functions, or
cubic spline functions used as the basis, but no regularization is applied, and that extensive
comparisons of different kernels and regularization schemes was carried out in Kropf and
Shmuel [2016].

A.3 Relating Gaussian process regression to RKHS regression

Under a zero-mean version of GPCSD, the form of the prediction in Equation 30 looks very
similar to the prediction given by kCSD method discussed in Section 3.3, which happens
because the two methods can be seen as two different frameworks for arriving at similar
estimators. In kCSD, one specifies a set of basis functions, along with their centers and
hyperparameters; in Potworowski et al. [2012], M Gaussian bumps with width ` were used,
with a suggestion to use a large enough M to densely cover the electrode recording area,
and to use wide enough ` so that the basis functions overlapped partially. From the basis
functions, a kernel function was calculated in Equation 10 which functions in a similar manner
as the Gaussian process covariance function of GPCSD. So the primary difference is in how
the model is specified: through selection and placement of a number of basis functions or
through direct specification of a suitable covariance function.

In fact, as shown in [Rasmussen and Williams 2006, p. 84], the squared exponential
covariance function is equivalent to using infinitely many densely-spaced Gaussian-shaped
basis functions, and the width of the Gaussian basis functions is proportional to the char-
acteristic lengthscale of the covariance function. This implies that kCSD would give similar
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results to a Gaussian process with squared exponential lengthscale if many densely-spaced
basis functions were used. However, the Gaussian process approach precludes choosing M
or using potentially computationally taxing cross-validation to select the width of the basis
functions. Instead, maximum marginal likelihood can easily be used to select the lengthscale
for the Gaussian process along with other hyperparameters. In addition, it is possible to
specify more complex covariance functions, such as additive or product covariance functions,
for which it may be difficult to directly specify the corresponding basis functions. The Gaus-
sian process approach is also easily extendable to spatiotemporal processes, can incorporate
a random mean function, can include multi-scale covariance functions, and provides a condi-
tional distribution of CSD predictions given the LFP data (while kCSD only provides a point
estimate).

A.4 Gaussian processes under linear operators

Consider applying a linear operator Ax, such as differentiation or integration to a Gaussian
process f . As discussed in Särkkä [2011], the result of applying a linear operator to f(x) is
still a Gaussian process; that is,

Axf(x) = h(x) (26)

where h(x) is a Gaussian process with covariance function influenced by the linear operator:

h(x) ∼ GP (Axµ(x),Axk(x, x′)ATx ) (27)

Then the joint distribution of vectors of observations fx and hx (for simplicity, at the
same x, though this is not essential) is:[

fx
hx

]
∼ N

([
µx

Axµx

]
,

[
Kx,x AxKx,x

Kx,xATx AxKx,xATx

])
. (28)

Suppose we have observations of h(x) but want to predict values of f(x). Under this frame-
work, is natural to propose mean and covariance functions µ and k for f ; application of the
linear operator induces mean and covariance functions for the observed h. Then predictions
(conditional on the observed values of h) can be made for any x′ for either f or h. To be
more realistic, the model could include additive noise on h which would amend the h-block
of the covariance matrix to be AKx,xAT +σ2I. With noise, due to properties of multivariate
Gaussians, we have the following conditional distribution:

fx|hx ∼ N (µ∗,K∗) (29)

where

µ∗
x = µx +AxKx,x[AKx,xAT + σ2I]−1(hx −Axµx) (30)

K∗x,x = Kx,x −AxKx,x[AxKx,xATx + σ2I]−1Kx,xAx (31)

so that predictions for fx given hx are given by µ∗
x. Similar expressions can be derived for

predictions for different inputs x′ but are omitted for brevity.
In addition, using the maximum marginal likelihood is an attractive way to tune hyper-

parameters because, as discussed in [Rasmussen and Williams 2006, Ch. 5.2], it incorporates
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a trade-off between model complexity and fit and can be interpreted as penalizing the com-
plexity of the underlying function. In particular, suppose we have noisy observations of h
at locations x. Equation 28 shows that the joint distribution of hx and fx′ is multivariate
Gaussian. Then the marginal density for hx,

p(hx) =

∫
p(hx|fx′)p(fx′) dfx′ , (32)

using properties of multivariate Gaussians, is

hx ∼ N (Axµx, AxKxATx + σ2I). (33)

This marginal likelihood can be maximized with respect to hyperparameters of the mean and
covariance functions.

A.5 Gaussian processes with Kronecker-product-plus-noise covariances

Fortunately, the separable covariance formulation also eases the computational burden. In
particular, the covariance matrix evaluated at vectors of space-time points is a Kronecker
product

Kz,t;z′,t′ = Kz
z,z′ ⊗Kt

t,t′ . (34)

If there is no additional additive noise, the inverse may be easily computed on O(T 3 + D3)
time using properties of the Kronecker product [Schacke 2004]. However, if additive noise is
included, other properties of Kronecker products must be used to obtain some computational
speed-ups compared to naively inverting the matrix, as discussed in Saatçi [2012].

A.6 Simulation and data procedures

Exploratory data analysis of real LFPs I began by examining the average evoked
responses to determine whether features of the evoked response appear to modulate with ISI.
Because the ISI is very right-skewed, I used the natural logarithm of the ISI, then partitioned
the trials into groups based on the quantiles of the log ISI and compute average evoked
responses for each log ISI quantile. To explore the trial-to-trial variation in peak absolute
amplitude of the evoked response by log ISI quantile, I first smoothed each trial with a
Gaussian filter of width 1.5 ms in time and 1.5 µm in the spatial direction. Then, I found the
space-time location of peak absolute amplitude on the average evoked response of all trials,
then extracted the absolute amplitude from each trial at this space-time point to represent
the peak absolute amplitude on a single-trial basis.

Simulation study As discussed in Section 3.2, the forward model depends on a param-
eter R which indicates how far the current source and sink activity extends in the directions
perpendicular to the recording probe. In particular, Equation 6 shows that R affects not
only the amplitude of the LFPs, but also the weight function inside the integral operator
controlling the spatial smoothing of the LFPs.

To demonstrate this effect, I sampled a spatiotemporal CSD from a zero-mean Gaussian
process with hyperparameters similar to those fit to real data and with a = 0, b = 24 rep-
resenting the boundaries of the nonzero CSD in the z direction. I then applied the forward
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model with R ∈ {0.1, 0.5, 1, 5, 20} to generate noise-free LFPs corresponding to each R, where
the conductivity scalar was taken to be σ = 1 and the spacing between electrodes was taken
to be 1. The temporal resolution is the same as the original data, but the spatial resolution
is higher than observed LFPs (300 points spaced evenly between a and b).

While these simulated LFPs are much more dense spatially than typical recordings, I
applied tCSD to the LFPs at this high spatial resolution without any additional measurement
noise to see how well tCSD could perform for each R under ideal conditions. I also applied
GPCSD to the LFPs using the true hyperparameters and true R, but for computational
reasons, subsampled the spatial dimension of the LFPs by a factor of 6 before predicting the
latent CSD at the full spatial resolution.

GPCSD model applied to real LFPs with a single across-trial mean First, I
fit the Gaussian process covariance function, the forward model parameter R, and a single
mean function shared across all trials using maximum marginal likelihood. I parameterized
the mean as a mixture of Gaussian components with possibly negative scaling factors αj :

µ(z, t) =
J∑
j=1

αj exp

(
−(z − µz,j)2

2σ2z,j

)
exp

(
−(t− µt,j)2

2σ2t,j

)
. (35)

I chose this formulation because it is straightforward to obtain surfaces that are nonstationary
in time using prior information on the temporal location and duration of the evoked response.
While fitting mixtures of Gaussians can be unstable, sufficiently large J initialized evenly
across space should be able to approximate arbitrary evoked response shapes, and the large
number of trials used to estimate µ(z, t) should make the resulting surface fairly stable to
different initializations. I randomly selected 1000 of the trials and used J = 30 components in
Equation 35 to fit the mean function surface (after checking that a range of J > 20 appeared
to give similar results).

The spatial covariance function was taken to be squared exponential with unit variance,
while the temporal covariance function was a sum of a squared exponential (initialized to bias
it toward slow activity) and a Matérn (initialized to bias it toward fast activity). Letting
the spacing between electrodes be ∆z = 1 and the conductivity scalar be σ = 1, I used the
assumption that all CSD activity is zero at depths of more than 2∆z outside the first and
last electrode.

First, the average evoked response was subtracted to yield zero-mean data, and the
marginal likelihood of Equation 33 was optimized using L-BFGS over the Gaussian process
covariance hyperparameters and R. Then, given the estimated covariance hyperparameters
and R, the marginal likelihood was optimized using L-BFGS over the mean function param-
eters. This process was repeated one more time to ensure the estimates did not change due
to this step-wise process. For visualization of separate evoked current events, I thresholded
the resulting mean function with hµ = 0.25 max(|µ(z, t)|).

Hierarchical model for trial-to-trial variation applied on real LFPs As a proof
of concept, I used a simplified version of the hierarchical model for across-trial variation in
the evoked response which models the trial-specific mean as a shifted (in time) and scaled
version of the fitted across-trial mean from the previous step. I used a modular fitting
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approach, in which I first used maximum marginal likelihood to estimate R, the covariance
hyperparameters, and a single mean function shared across all trials (given in Equation 35).
Then, conditional on these point estimates, inference is performed on the quantities in the
hierarchical model of Equation 15 via MCMC sampling of the posterior.

Because the inter-stimulus-interval (ISI) appears to affect the evoked response amplitude
in binned LFP average evoked responses (Figure 7.D), I include a scalar covariate x(n) as
part of the model for the trial-specific scale:

w(n) = β0 + β1x
(n) + ε(n)w (36)

Specifically, I specify the following priors and hyperpriors and estimate the posterior
distribution using Metropolis-Hastings sampling with Normal proposal distributions using
PyMC with an internal non-centered parameterization [Salvatier et al. 2016]:

β0 ∼ N (0, 25), β1 ∼ N (0, 25)

ε(n)w ∼ N (0, σ2w), σw ∼ HN (0, 0.25)

τ (n) ∼ N (0, σ2τ ), στ ∼ HN (0, 0.25)

(37)

where HN is a half-Normal distribution. For MCMC, two chains were used with 2,000
samples used to tune the proposal distributions then discarded before 5,000 samples were
drawn from each chain, resulting in a total of 10,000 samples.
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