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If one reading is a long way from the rest in a series of replicate determinations, or if 
in a leas&squares analysis one reading is found to have a much greater residual than 
the others, there is temptation to reject it as spurious. Numerous criteria for the rejec- 
tion of outliers have been proposed and discussed during the past 100 years. They seem 
always to have been regarded as something like significance tests, and attention has 
been focussed on rejection rates. It is suggested that rejection rules are not significance 
tests but insurance policies, and attention would be better focussed on error variance. 
A detailed study is made of the effect of routine application of rejection criteria to rep- 
licate determinations of a single value. Determinations in triplicate and quadruplicate 
are especially considered. Complex patterns of observations are also considered, espe- 
cially factorial arrangements with high symmetry, and there is a study of the correla- 
tions between residuals. Attention is focussed mainly on rejection rules appropriate 
when the population variance is known, but some consideration is also given to Stu- 
dentieed rules. 

1. SPURIOUS OBSERVATIONS 

Variability or dispersion in a set of observations can arise from several different 
sources. Suppose that, for some reason we need not go into, it is desired to 
investigate the height (stature) of persons employed at a particular place. 
Three sources of variability in the readings are: 

(i) Inherent variability, the variability of stature that would be observed 
in the population even if all measurements were perfectly accurate. This vari- 
ability cannot be reduced without changing the population itself, the object 
of study. If we are interested in the mean stature of the population, we may 
refer to the variability as “error,” since it gives rise to estimation error. But 
the name is misleading. 

(ii) Measurement error, the error in using the measuring instruments. If all 
readings are made to the nearest centimeter, the measurement error should 
not exceed half a centimeter, but in fact it sometimes does. One may count 
as a measurement error any arithmetical mistake in reducing the original note- 
book entries to the form in which they are quoted as observations. 
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(iii) E~ecuhon error, a name we may use to include any &crepslloy between 
what we intend to do and what is actually done, other than error in the use 
of measuring instruments. To include in the sample of measurements the height 
of some person not belonging to the population, to measure something other 
than height, or to select a biased sample-these would be classed as errors 
of execution. 

No observations are absolutely trustworbhy. In no field of observation can 
we entirely rule out the possibility that an observation is vitiated by a large 
measurement or execution error. If a reading is found to lie a very long way 
from its fellows in a series of replicate observations, there must be a suspicion 
that the deviation is caused by a blunder or gross error of some kind. Several 
possible reasons why a reading might be grossly wrong can usually be thought 
of without difficulty. In such cases, the reading will be checked or repeated 
if that is possible. If not, it may be rejected as spurious because of its big resi- 
dual, even though there is no other known reason for suspecting it. In suffi- 
ciently extreme cases, no one hesitates about such rejections. The question 
is, where should the line be drawn? One sufficiently erroneous reading can 
wreck the whole of a statistical analysis, however many observations there are. 

Statements to the above effect have appeared many times in the literature. 
Even writers who have expressed total disapproval of the rejection of outliers 
may be found to insert a parenthetical remark, “except for obviously incorrect 
readings.” Reasonable argument can occur, not over the permissibility of ever 
rejecting outliers, but over the completeness of the rejection, how far the fact 
of a rejection can be forgotten-as well as over the question of where precisely 
to draw the line. If we could be sure that an outlier was caused by a large measure- 
ment or execution error which could not be rectified (and if we had no interest 
in studying such errors for their own sake), we should be justified in entirely 
discarding the observation and all memory of it. The act of observation would 
have failed; there would be nothing to report. Such an observation could justly 
be described as spurious. If, on the other hand, we could be sure that an outlier 
was caused, not by any large error, but by some peculiarity (nonnormality) 
of the inherent variability of the population under study, then it might still 
make good sense to discard the observation from a statistical analysis based 
on the method of least squares, but the observation should not be forgotten. 
A correct statistical summary of the observations would include a report about 
outliers as well as an analysis of the remaining observations (cf. Kruskal, 1960). 

If a rather pronounced degree of nonnormality is expected, it may be advisable 
to transform the observations; or to work with medians instead of means, or 
some other such device.* A modified least-squares method, with weights depend- 

* The suggestion about medians in this context goes back to Edgeworth (1887). It is not 
always satisfactory in principle to make use of any such device. If the subject of study is the 
output of an agricultural or industrial process, where most of the variability is inherent, the 
mean yield is inescapably what ought to be measured, not the median yield or mean logarithmic 
yield (for instance). Perhaps it should be explicitly stated that in this paper we are concerned 
only with observations whose primary purpose is the estimation of location parameters of some 
sort. Observations made primarily for the measurement of dispersion are not considered. 
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ing on the residuals, has been suggested by Jeffreys, with particular reference 
to seismology and astronomy. Although such a technique is possible as a guard 
against spurious observations, it will not be considered here. We envisage a 
silualion where the intrinsic variability and ordinary measurement errors result 
in a nearly enough normal pattern of variation for simple averages or equal-weighted 
least-squares estimates to be attractive, but where it is feared that occasionally an 
observation will be affected by a gross error. 

An observation with an abnormally large residual will be referred to as an 
outlier. Other terms in English are “wild,” “straggler”, “sport” and LLmaverick”; 
one may also speak of a “discordant, ” LLanomalous” or ((aberrant” observation. 
Spurious will mean: affected by an abnormally large measurement or execution 
error. Usually it is not possible to check directly whether an observation is 
spurious; it is a matter of conjecture. 

The object of this paper is to study the effect of unthinking routine use of 
a specified rejection rule on the estimation of means (or linear combinations 
of means). There are circumstances where the problem of spurious observations 
can appropriately be met by an impartial rejection procedure, which is thought 
of as part of the experimental technique. It is not suggested that the problem 
should always be met this way, but the results of the present study should 
be helpful (though not decisive) to anyone who wishes to judge individual 
outliers ‘(on their merits,” int.elligently. 

The gist of the paper can be had by reading as far as Section 3, skimming 
Sections 4 and 5, and then turning to Section 10. Section 7 on complex designs 
is to some extent a digression, and may have interest apart from the subject 
of outliers. 

2. SKETCH OF THE HISTORY OF REJECTION OF OUTLIERS 

The subject of rejection rules has been held to be important and interesting 
in many sciences-astronomy, geodesy, chemistry, physics, ballistics. Nowa- 
days it may be thought of as lying within the broader subject of “data proces- 
sing,” an essential though perhaps too little considered branch of statistical 
analysis. It has been discussed in countless books on the combination of obser- 
vations by least squares, over a period of nearly a hundred years, as well as 
in many contemporary books on statistics. 

One of the first references to the rejection of outliers seems to have been 
a remark by the leader of the German school of astronomers, Bessel, in a geo- 
detic work published in 1838, to the effect that he had never rejected an obser- 
vation merely because of its large residual; all completed observations, with 
equal weight, ought to be allowed to contribute to the result. “We have believed 
that only through strict observance of this rule could we remove arbitrariness 
from our results.” 

The first attempt at a rejection criterion based on some sort of probability 
reasoning was that of Peirce (1852). Peirce’s argument was reproduced by 
Chauvenet (1863), who then gave a similar rule based on a simpler argument. 
A heated discussion was provoked by these rules, and by some other suggestions 
put forward for disposing of outliers. In due course the topic became standard 
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in books dealing with least squares; lengthy historical surveys were given by 
Cauber (1891) and Wellisch (1909). See also Rider (1933). 

The next significant step after Peirce and Chauvenet was apparently made 
by Wright (1884). After an excellent general discussion of the problems raised 
by the occurrence of outliers among astronomical readings, he suggests that 
the best rule for a computer to follow who is not the observer is to reject any 
observation whose residual exceeds in magnitude five times the probable error 
(i e. 3.37 times the standard deviation). The reason given for this is that if 
the Ga.ussian law of error is truly satisfied, only about one observation in a 
thousand will be rejected, “and therefore little damage will be done in any 
case.” 

From 1925 onwards statisticians have paid much attention to the subject. 
Student (1927) gave an interesting account of analytic chemical determinations, 
and proposed the use of a range criterion. Thompson (1935) may be said to 
have “Studentized” Wright’s rule. A good survey of this literature has been 
given by Grubbs (1950). A recent development is the Bliss-Cochran-Tukey 
rule (1956), developed for use with several of the bioassays in the U. S. Pharm- 
acopeia. 

Rejection of outliers seems to have been a peculiarly American topic. At 
any rate, Peirce, Chauvenet and Wright were Americans, and most of the 
recent developments have occurred in the U. S. The subject arose in the context 
of least squares, or, as current jargon has it, Model I analysis of variance; and 
it is curious that (apparently) it was not considered by Gauss. 

Chauvenet, after he had reproduced Peirce’s argument, introduced lrik own 
simplified version of the rule by some remarks beginning: “The above irrvesti- 
gation of the criterion involves some principles, derived from the theory of 
probabilities, which may seem obscure to those not familiar with that branch 
of science.” The same may be said of Chsuvenet and of everyone else; and 
familiarity with that branch of science does not remove the obscurity. It is 
easy now to laugh at Peirce and Chauvenet, and at other eminent nineteenth 
century figures such as Glaisher and Bertrand, as they wallow in the probability 
quagmire. But have today’s statisticians been so much clearer headed? All 
published proposals for rejection criteria, based on any kind of mathematical 
reasoning, from Peirce’s onwards, have an unexplained starting point or objec- 
tive, pre,sented as though it were the only obvious one and in fact utterly obscure. 

All writers seem to have thought of the problem as something in the nature 
of significance testing.* They have varied in the significance level judged ap- 
propriate for action, but all have regarded significance levels (or something 
of the sort) as relevant beyond discussion. Peirce and Chauvenet thought in 
terms of something like a 50% significance level per set of data. If applied to 
a simple sample of n observat.ions drawn from a homogeneous normal source, 
either criterion rejects as often as not, very roughly, so the rejection rate is 

* Jeffreys puts this the other way round and suggests that the general use of tail-area prob- 
abilities by statisticians for significance testing goes back to Chauvenet’s criterion (Jeffreys, 
1939, p. 316; 1948, p. 357). 
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something like 1 per 2n observations. Wright’s rule rejects at something like 
the rate of 1 per 1000 observations, almost independently of n. Most modern 
statisticians, bemused by 59$, give rules having rejection rates of about 1 per 
20n observations. No one has explained why this should be so. No one seems 
to have asked. 

3. THE NATURE OF REJECTION RULES 

Rejection rules are not significance tests. In a study of whether, and how 
often, clearly spurious observations occur in a certain field, significance tests 
may be appropriate. Rut when a chemist doing routine analyses, or a surveyor 
making a triangulation, makes routine use of a rejection rule, he is not studying 
whether spurious readings occur (he may already be convinced they do some- 
times), but guarding himself from their adverse effect. The same is often true 
of a statistician when he performs least-squares analyses, especially if he has 
a single very large bulk of data or many similar smaller sets of data to analyze. 
The statistician may feel little temptation to exercise personal judgment in 
“processing” the data, and prefer to follow a rigid rule for treating outliers, 
whose long-term effect he knows. 

A rejection rule is like a householder’s fire insurance policy. Three questions 
to be considered in choosing a policy are 

(I) What is the premium? 
(2) How much protection does the policy give in the event of fire? 
(3) How much danger really is there of a fire? 
Item (3) corresponds to the study of whether spurious readings occur in 

fact-a study that is hardly possible unless plenty of readings are available. 
The householder, satisfied that fires do occur, does not bother much about (3), 
provided the premium seems moderate and the protection good. In what cur- 
rency can we express the premium charged and the protection afforded by a 
rejection rule? That depends on the purpose of the observations; an answer 
can be given as soon as a suitable loss function is specified. 

Often estimation errors are only one among several types of error affecting 
the whole investigation or process. For example, the error made by the manu- 
facturer in assaying a drug is not the only reason why the patient receives an 
incorrect dose. The doctor judges only roughly how much of the drug the patient 
needs, the prescription is filled by the pharmacist with less than infinite pre- 
cision, and the quantity consumed by the patient may bear only a faint re- 
semblance to the instruction of one teaspoonful every four hours. So long as 
the assay errors are on the whole small, there would be no interest in very 
detailed information about their distribution; the bias and variance will suffice. 
In research experiments, the immediate object may be to measure responses 
to certain treatments, but the ultimate object is usually to throw light on some 
broad class of phenomena. Estimation errors are not the only impediment to 
clear perception. If the investigation is in the end abortive, estimation errors 
will most likely not be solely responsible. Again, we do not need to know more 
about the estimation errors than their variance (and bias, if any). 

So variance will be considered here, although in principle any other measure 
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of expected loss could be used. The premium payable may then be taken to 
be the percentage increase in the variance of estimation errors due to using 
the rejection rule, when in fact all the observations come from a homogeneous 
normal source; the protection given is the reduction in variance (or mean 
squared error) when spurious readings are present. Rejection rates are of no 
more than incidental interest. 

With this approach, any suggested rejection rules can be investigated and 
compared. As in all previous published work on outliers, it will be assumed 
here that the following conditions are satisfied (they need not be in practice). 

(i) Whatever circumstance causes an observation to be spurious is not expected 
to affect neighboring observations; all observations are supposed independent 
in this respect. It is also supposed that spuriousness is uncorrelated with the 
reading that would have been obtained had the observation been made without 
abnormal error. 

(ii) Computation costs can be ignored. If that were not so, the “premium” 
would have t’o include the extra computation cost resulting from using the 
rule. 

(iii) No prior knowledge concerning the means or regression coefficients that 
are to be estimated from the data is incorporated in the rejection rule, which 
is therefore “impartial.” For example, suppose the observations consist of just 
two replicate readings, the population mean is to be estimated and the popula- 
tion variance is known. Any impartial rejection rule must lead to rejection if 
the difference between the readings exceeds some critical value, and then since 
there is no way of saying which is the better observation both readings must 
be rejected (or one after flipping a coin, perhaps). In practice, the observer 
may consider one of the readings reasonable and the other unlikely, and so 
he will retain the first and reject the other. He will then be using prior information 
about the population mean. 

This restriction to an impartial rejection rule has an important effect on 
the character of our results. We return to consider it further in Section 7. 

It is natural to consider rejection criteria based on the magnitude of the 
residual. Such a type of criterion seems likely to work better than other relatively 
easy criteria based on order statistics, In the least-squares analysis of complex 
patterns of observabions, the computation of residuals is, or should be, a standard 
procedure, and a rejection criterion based on residuals is therefore particularly 
convenient. To begin with, we consider the simplest possible case, appropriate 
to typical chemical analyses, where only one mean is to be estimated and the 
population variance can be supposed known. We then pass on to complex 
patterns, and also consider “Studentized” criteria for use when the population 
variance is unknown. 

Notation. Throughout, the observations will be denoted by y1 , gn , . . . , yn , 
there being n observations in all. The residuals (before rejection of any outliers) 
will be denoted by z1 , xZ , * . . , x, . v will always denote the number of residual 
degrees of freedom, i.e. v is the rank of the matrix transforming (yi) to (G). 

4. FORMULATION OFTHE PROBLEM FOR A SIMPLESAMPLE 

We are given observations y1 , yZ , . . * , yn (n 2 3). It is hoped they are a 
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random sample from a normal population N(I~, c”), where G is known and p 
is to be estimated. But possibly one or more of the yi are spurious, coming 
from a different source, and ought to be rejected. We consider the effect of 
applying a rejection rule routinely to samples of fixed size n. Let 

zi = yi - 8, ngj = C yi (i = 1,2, ... ,n). 

If yi is omitted, the average of the remaining observations is 

c Yj/V = g - .G/v, (4.1) ifi 

where v = n - 1. More generally, if several observations are omitted, say 
Yl , Yz , * ’ * , yr , the average of the rest is 

Q - (zl + z2 + . - - + z,)/(n - r). (4.2) 

Let M be the serial number of the observation having the greatest residual, 
so that 

12~1 > 1Zil for all i # M. (4.3) 

(We suppose that the observations are recorded to sufficient decimal places 
for no two residuals to be equal in magnitude.) 

We propose to reject any observation whose residual is excessively large. 
The following type of rule is unsatisfactory: 

RULE 0. For given C, reject every observation yi such that 

Estimate p by the mean of the retained observations. 

The reason is that a single outlier, if it outlies sufficiently, can cause all the 
jzl’s to exceed Cn, and the whole sample would then be rejected. The following 
rule is more cautious: 

RULE 1. For given C, reject yM if [xMl > Ca; otherwise no rejections. Estimate 
p by the mean of the retained observations, thus 

= g - x&f/v if [Z&f/ > cu. 

Under this rule, not more than one observation can be rejected. The most 
frequent values for n in chemical analysis are 3 and 4, and then Rule 1 is prob- 
ably the best that can be suggested. If more than one observation out of a 
very small sample appeared to be spurious, the observer would most likely 
wish to scrap them all. For large samples, however, the possibility of multiple 
selective rejections needs to be considered, and the following rule is suggested: 

RULE 2. Apply Rule 1. If an observation is rejected, consider the remaining 
observations as a sample of size n - 1 and apply Rule 1 again; and so on. Esti- 
mate p by the mean of the retained observations. 
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It would be possible for the values of C to differ in the successive applications 
of Rule 1, but there is no obvious advantage in this, and, in so far as Rule 2 
is considered below, C will be supposed constant. In fact, it is difficult to study 
Rule 2 exactly, apart from Monte Carlo computation. Rule 1 is easier, and 
sometimes has almost the same effect as Rule 2-namely, when there is not 
more than one spurious observation present in the sample, C is not very small 
and n is not very large. 

5. THEORY FOR RULE 1 (SIMPLE SAMPLE) 

To study the long-run effect of application of Rule 1 to samples of size n, 
we consider the distribution of p, when the yi are interpreted as chance vari- 
ables rather than as a particular realization of chance variables. The xi and ild 
become chance variables too. 

If there are no spurious observations, the joint distribution of (zl , xZ , a . ’ , z,) 
is independent of the distribution of 8, so g and aM are independent. Each Zi 
has variance vu’/n; (n/v)* ai/a has the standard normal distribution N(0, 1). 
Let a random variable T be defined as the following function of x.~ : 

T = 0 if 1.~~1 < Cu, 

= - (n/v)*(zM/u) if IzM 1 > Ca. i 

Then p = g + gT/(nv)%, g and T are independent, E(P) = EL and 

var@) = G(l +q). 

(5.1) 

The rejection rate (proportion of observations rejected in the long run) is 

1 ch (Ix*/ > Cu} = ; ch (T # 0). 
n (5.3) 

If an observation is spurious, it is convenient to think of it as being equal 
to an observation from N(p, n”) plus an extra independent error or bias. If 
there is one spurious observation among a sample of n, and if the bias is large 
enough, the observation is almost certain to be rejected under Rule 1 or Rule 2. 
If there are two spurious observations, and their biases are large and the dif- 
ference of their biases is large, it is almost certain that both will be rejected 
under Rule 2. 

Suppose a particular observation, yfl say, is from N(p + ba, u”), while 
Yl , Y-2 , .** 7 y,,-, are independent from N(P, u”). Then g is distributed 
N(p + b/n, u’/n), independently of (a, , z, , . . * , 2,). Under Rule I, 

p = (g - b/n) + (uT/(nv)’ + bu/nj, (5.4) 

where T is defined as before by (5.1). We have 

0 - p)" = ; (1 + 5 &(T + bd&)‘), 

and the rejection rate is still given by (5.3). It is to be observed that the distri- 
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butiou of z,,, , and t,herefore that of T, depends on b and is different from what 
it was before. In the absence of any rejection rule, (5.5) would be replaced by 

&(fj - p)” = g 1 + ; . 
( > (5.6) 

In principle, (5.2) and (5.5) can be evaluated by quadrature, though if n 
is higher than 4 some skill in classical n-dimensional geometry is called for. 
The joint distribution of the (Zi) is spherical normal in a v-dimensional flat 
space. If there are no spurious observations the distribution is centered at the 
origin; if one (or more than one) observation has an added bias the center 
is away from the origin. No observation is rejected provided that 

-Cu < zi < Cu 

for all i, so that the point (xi) lies inside a region R bounded by n pairs of parallel 
(v - 1)-flats equidistant from the origin. For n = 3, v = 2, R is the interior 
of a regular hexagon; for n = 4, v = 3, R is the interior of a regular octahedron. 
If (xi) lies outside R, which observation is rejected, and what sign its residual 
has, are determined by which one of the 2n faces of R is intersected by the line 
segment joining (zi) to the origin. To evaluate (5.2) or (5.5) an integration 
must be performed over the exterior of R. For (5.2) there is great symmetry, 
and E(T’) can be expressed, after one integration along the radius vector, 
as 2n times an integral over any one face of R. The faces are regular simplexes, 
and the integrand is a function only of distance from the center of the simplex. 
Thus for n = 3, v = 2, each face is a line segment, and we obtain 

For n = 4, v = 3, each face is an equilateral triangle and the integrand is a 
function of distance from its center, rather more cumbersome than the above. 
It is far more difficult to deal with the case of one spurious observation, since 
the center of the distribution no longer coincides with the center of R, and 
much of the symmetry is lost. Only n = 3 has been considered. Numerical 
results obtained are given below in Section 10. For further progress in the 
accurate evaluation of (5.2) and (5.5) it will no doubt be necessary to resort 
to Monte Carlo techniques. 

6. APPROXIMATE FORMULAS 

Fortunately, it seems that we do not have to wait for accurate calculations 
to obtain results good enough for practical use. Asymptotic approximations 
can be found that are easy to use and ought to be tolerably reliable, as a guide 
to action. Just how reliable they are can only be shown convincingly by com- 
paring them with correct values. The comparisons in Section 10 are highly 
encouraging, as far as they go. 

For the case of no spurious observations, the proportion of observations 
such that the residual exceeds Cu in magnitude, which we shall denote by (Y, 
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is given by 

where 
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cy = 2@(-(n/v)‘C), 

If 2, denotes the two-tailed a-point of the standard normal distribution, we 
have 

t, = (n/v)“C. (6.1) 

(Y would be exactly the rejection rate if we used Rule 0. If C is very large, CY 
is very small. Moreover, if C is large, residuals exceeding Cu in magnitude will 
tend to occur singly; it will be relatively unusual for two or more observations 
in the same sample of n to have residuals exceeding Cu in magnitude. This 
is easily proved by noting that the joint distribution of any pair of residuals 
is normal with correlation coefficient different from fl. By taking C large 
enough, we can make the conditional chance that /zil > Ca, given that lZi/ > Cu, 
as small as we please, and hence the conditional chance that any one of Izi I > Cu 
for j = 1, 2, a-. , n, with j # i, given that lxil > Co, as small as we please. 

It follows that, asymptotically as C + ~0, we can ignore the possibility that 
more than one residual in the sample will exceed Cu in magnitude, and we 
obtain 

&(T2) - n 
s 

t”@(t) tit 
111>161 

= n{%4(kY> + aI, (6.2) 

and CL is asymptotically the rejection rate under Rule 1. 
If C is not so large as effectively to rule out the possibility that more than 

one of the IxiI exceeds Cu, but nevertheless we substitute (6.2) into (5.2), it 
may be expected that the result will approximate the effect of Rule 2 rather 
than Rule 1, especially if n is fairly large. We obtain this result for the simple 
sample if we suppose the rejected residuals to be independent and replace the 
divisor n - r in (4.2) by n - 1. 

Table 1 shows 2t,$(t,) + Q and a as functions of t, . The entries were readily 
obtained from the National Bureau of Standards table of probability functions. 
For comparison with the results of Section 11 it may be noted that (6.2) can 
be expressed alternatively in terms of the tail area of a x2 distribution with 3 
degrees of freedom. 

Suppose now that there is just one spurious observation, y,, , drawn from 
N(p + bu, u’), and let us suppose that b is fairly large. Then it is very probable 
that M = n. Let us assume this to be so, for the moment. Then it is easy to 
see that T + (v/n)% hss the following distribution: outside the interval 

I = ((v/n)% - (n/v)“C, (v/n)+b + (n/v)+?) 
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TABLE 1 

Table of 2t&(t,) + CY, with LY shown in brackets 

cl 0 2 4 6 8 

2.9 .03826 .03630 .03442 .03263 .03092 
(.00373) (.00350) (.00328) (.00308) (.OOSSS) 

3.0 .02929 .02773 .02625 .02483 .02348 
(.00270) (.00253) (.00237) (.00221) (.00207) 

3.1 .02219 .02096 .01980 .01869 .01763 
(.00194) (.00181) (.00169) (.00158) (.00147) 

3.2 .01663 .01568 .01478 .01392 .01311 
(.00137) (.00128) (.00120) (.OOlll) (.00104) 

3.3 .01234 
(.00097) 

3.4 .00905 
(.00067) 

3.5 .00657 
(.00047) 

3.6 .00472 
(.00032) 

.01161 
(.00090) 

.00850 
(.00063) 

.00616 
(.00043) 

.00442 
(.00029) 

.01091 
(.00084) 

.00798 
(.00058) 

.00577 
(.00040) 

.00413 
(.00027) 

.01026 
(.00078) 

.00748 
(.00054) 

.00540 
(.00037) 

.00385 
(.00025) 

.00964 
(.00072) 

.00701 
(.00050) 

.00505 
(.00034) 

.00360 
(.00023) 

the distribution is that of a standard normal variable N(0, 1); inside I the 
chance is concentrated at the mid-point (v/n)*b. We therefore have 

&(T + (v/n)*b)” = 1 + / (vb’/n - t”)+(t) dt. 
I 

For b positive and large, we can replace the upper end-point of I by ~0, obtaining 

&(‘I’ + (v/n)*6)” = 1 + (vb2/n - l)@(-X) - X$(X), (6.3) 

where 

x = (v/n)? b - (n/v)%. 

If (6.3) is substituted into the right-hand side of (5.5), the result will be a 
lower bound for &@ - P)~, because we have ignored the possibility that M may 
be different from n. We may hope, however, that the bound will be close enough 
to the true value to indicate how large b needs to be for the rejection rule to 
give good protection. 

7. COMPLEX PATTERNS OF DATA 

Let us turn now to complex patterns of data. We suppose the observations 
Yl , Y/z , *-- , Yn (if none is spurious) to be drawn from independent normal 
distributions having common variance CT’ and means that are given linear 
functions of some unknown parameters. At first we shall suppose c2 known. 
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When all the unknown parameters have beer: rstimated by least squares, the 
residuals (zi] can be calculated. 

We observe first of all that in general t,he residuals do not all have the same 
chance distribution. This is illustrated by simple linear regression: yi is drawn 
from N(P + /3xi , CT’), where the Xi are predetermined, and let us say Zixj = 0. 
Then 

and we find 

zi = yi - g - (zjyixj/zix:)xi ) 

var(zJ = 
( 

1 
“-n-&g2. 

1 1 > 

Thus 0 _< var (zi) 5 (n - l)g’/n, both bounds being attainable for some i 
and some set of (x, 1. If the ( I(^, f are equal-spaced, we have 

(n - 4)02/n <r va: (2,) 5 (n - l)c’/n, 

and if n is not very small we shall not go far wrong if we suppose all the resi- 
duals to have the same variance, say bhe average value over i, which is 
(n - 2)a2/n, or va2/n. All the residuals have exactly this variance if (and only if) 
there are just two different x-values, with n/2 observations at each. 

In order to keep our considerations as simple as possible, we shall restrict 
aMention to cases where (in the absence of spurious readings) all residuals 
have exactly the same variance, namely ,c’/n. All ordinary factorial designs, 
where the dif’fcrent levels of each factor are replicated equally often, have 
this proptr!?:, ,md also Latin squares and balanced incomplete block designs. 
A type ( f design to be excluded is a factorial design where the levels of one 
of the fat tors are not equally replicated, as in an agricultural experiment on 
insecticides, where it would usually be advisable to replicate the “control” 
treatment of no insecticide more heavily than any one of the alternative in- 
secticide treatments under test. It is to be expected that results obtained under 
the assumption of equal variances will be approximately correct if the resi- 
duals have only approximately equal variances, but we shall not examine this 
question. 

We observe next that in general not every pair of residuals has the same 
correlation. For some designs, some of the correlation coefficients are f 1. An 
example is the 3 X 3 Latin square, where the residuals are equal in sets of 3, 
according to the letters of the orthogonal square, and so the correlation coefh- 
cients between the 36 possible pairs of the 9 residuals are 9 of them equal to 1 
and 27 of them equal to -+. Suppose we are given that u = 1 and the lay-out 
and yields are as follows, where 0, 1, 2 denote the three levels of a treatment: 

(0) y, = 13.9 (1) y2 = 5.9 (2) y3 = 6.3 

(2) yh = 6.0 (0) y5 = 5.7 (1) ye = 6.4 

(1) y7 = 6.0 (2) ys = 6.3 (0) yg = 4.9 
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The residuals are 

2 1= 2.04 .z2 = -1.22 z3 = -0.82 

z 4= -1.22 25 = -0.82 26 = 2.04 

z7 = -0.82 zg = 2.04 zg = -1.22 

Since the standard deviation of residuals is (v/n))0 = 0.47, the values 2.04 
may be judged excessively large and indicative of a spurious reading. The 
problem is, which reading? If we reject any one of y, , ye and ys and treat that 
observation as missing, the estimated value to be substituted is equal to the 
observed value minus n/v (= 4.5) times the residual (2.04)) i.e. we subtract 
9.2 from one of y1 , ye , ys , and proceed to estimate row, column and treatment 
effects in the usual way. The new residuals are 

x1= c: z2 = -0.20 23 = 0.20 

2 1= -0.20 25 = 0.20 zg= 0 

2, = 0.20 2s = 0 zg = -0.20 

and these are satisfactorily small. But our estimates of the row, column and 
treatment effects will depend sharply on which one of the three questionable 
observations is rejected. If we insist on an impartial rejection rule, not using 
any prior knowledge concerning the unknown parameters to be estimated, we can- 
not have any preference, and to settle the deadlock we might consider rejecting 
all three observations. We should then scrap the whole experiment, because 
(in the absence of prior knowledge) too few readings are left for the unknown 
parameters to be uniquely estimated. 

In practice the experimenter always has some prior knowledge, which may 
be small compared with good observations having u = 1 but is perhaps ap- 
preciable compared with a gross error, here estimated at 9.2. If he rejects ye 
or ys , the fitted yield will be negative, which he may find disturbing. Apart 
from that, he very likely thinks that rather small row, column and treatment 
effects are more probable than large ones, and therefore the estimates obtained 
after rejecting y, are more plausible than those obtained after rejecting either 
ye or ys . In fact, he may guess that just the initial digit of y1 is spurious, and 
y, should read 3.9. 

One may conclude from this example that it is unwise to try to apply an 
impartial routine rejection rule to data such that some pairs of residuals have 
correlation fl. It may be wise to go further and exclude designs such that 
some pairs of residuals have large correlations , say greater than 4 or 8 in magni- 
tude, because if a spurious reading occurs it is not unlikely that another reading 
will be rejected instead. Thus it is of interest to know, in respect of any proposed 
design, what correlations the residuals will have, and this is a matter not discus- 
sed in books on the design of experiments. 

Let the observations ( yi ] be represented by the n X 1 column vector y, 
let 8 be a (n - V) X 1 vector of nonredundant unknown parameters and let A 
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be the n X (n - ZJ) matrix of known coefficient,s, such that, in the absence of 
spurious readings, 

y has a spherical normal distribution with 8(y) = A& (7.1) 

A is of rank n - v, and V exists such that A’A = V-‘. The n X 1 vector of 
residuals z, after least-squares estimation of 8, is given by 

= = QY, (T.2) 

where Q = I,, - AVA’, I,, being the n X n unit matrix. Q has the following 
properties: 

(i) Q is a n X n symmetric idempotent matrix of rank V. It correctly trans- 
forms y to z, when 0 is estimated by least squares as if (7.1) were true, whether 
or not (7.1) is true in fact. It is invariant to t,ransformations of the parameter 
set 6. 

(ii) The ith row of Q shows how a gross error in yi is distributed among 
the residuals (as we see by replacing y by a vector consisting of 1 in the ith 
place and O’s elsewhere). 

(iii) The variance matrix of the residuals, if (7.1) is true, is given by 

E(ZZ’) = Qcr”. 

Two practical methods of calculating Q are:- 

(7.3) 

(i) Solve the least-squares equations in any convenient manner and express 
the (xi} in terms of the (yi). For sufficiently symmetrical designs, this need 
be done for only one z, say x1 . 

(ii) If it is convenient (it is always possible) to choose 0 so that V is a scalar 
multiple of I,-, , say V = VI,-, , then Q = I, - vAA’, and to find AA’ we 
calculate scalar products of pairs of rows of A. This method is easy for 2& fac- 
torial designs-for which, however, it is almost the same as (i). 

If all residuals have the same variance, all coefficients in the principal diagonal 
of Q are equal to v/n, and from the relation Q” = Q we easily deduce that 
the mean squared correlation coefficient between pairs of residuals is 

-3 n-v 
P = (n - 1)v (7.4) 

Thus the square root of this quantity is a lower bound to the magnitude of 
the largest correlation coefficient between any pair of residuals. Only rarely 
(i.e. for a small proportion of available designs) is this lower bound attained. 

If the observations have a simple two-way classification, in 1~ rows and 1 
columns, with n = kl, and the expectation of each observation y is a row con- 
stant plus a column constant, the possible correlations between residuals are 
easily seen to be 

1 1 1 -- 
K’ 

-;9z9 (7.5) 

where K = I? - 1, X = 1 - 1. If either Ic or I = 2, there are correlations of -1. 
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If the observations have a one-way classification, say k observations in each 
of I columns, so t’hat the expectation of each observation is just a column con- 
stant, the possible correlations between residuals are 

(7.6) 

again lve have correlations of - 1 if k = 2. In particular, there will be cor- 
relations of -1 if the design consists of two replications, in either one block 
or two blocks, of some factorial design and if all interactions between the factors 
are estimated, as well as the general mean and main effects and (for two blocks) 
the block difference. 

Table 2 lists the correlations that occur among the residuals for some designs 
with fairly small n. Designs having correlations of &l have been omitted, 
except for designs (2) and (14), which have been included for comparative 
purposes. The correlations for design (2) are an example of (7.6); those for 
design (3) an example of (7.5). In designs (1) and (2), three two-level factors 
are compared in eight observations. Both designs can be obtained by deleting 
four factors from a %aturated” 27/16 design, as given by Plackett and Burman 
(1946); and it is interesting to note that two essentially different designs can 
be obtained in this way. Design (4) is obtained by deleting any six factors 
from the Plackett-Burman saturated fraction of 211. Designs (7) and (8) are 
half replicates of a 25 factorial. (7) is the obvious choice, and achieves equal- 
magnitude correlations. (8) illustrates the effect of another alias subgroup. 
The design L125/2: ABC,’ has correlations differing from those of (8) in sign 
only. Designs (9), (11) and (14) were given by Brownlee, Kelly and Moraine 
(1948) and have often been quoted since, as the LLoptimum” fractions, such 
that main effects are not confounded with any two-factor interactions. With 
respect to correlat’ions among residuals they are not optim(Tm, and are bettered 
by designs (lo), (13) and (G), which, with (16) and (17), have alias subgroups 
permitting the lowest possible largest correlrltion. Design (12) is of interest, 
because it can be reinterpreted as two replica)tions (in two blocks) of a 2” fac- 
torial, with all two-factor interactions estimated. If the three-factor interaction 
is also estimated, we have at once the correlation pattern of (7.5), with some 
correlations equal to -1. Designs (16) and (18) are essentially the same design; 
like (7), they achieve equal-magnitude correlations. Design (24) can be re- 
interpreted as a 3’ factorial with all two-factor interactions estimated. Of all 
these twenty-four listed designs, (4) alone is unsymmetrical, in the sense that 
all the rows of Q do not contain exactly the same set of coefficients. 

8. FORMULATION FOR COMPLEX PATTERNS 

Restricting attention, then, to designs such that, in the absence of spurious 
observations, all residuals have the same variance and no two residuals have 
correlation coefficient equal, or very close, to fl, we wish to examine the 
effect of routine application of a rejection rule. Two questions to consider first 
are: what sort of rule, and effect on what? 

Let Al be defined as before, by (4.3). Rules 0 and 1 of Section 4 can be adapted 
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TABLE 2 
Correlations between residuals for various designs 

Design 

(1) za 
(2) 23/2 repeated: ABC 
(3) 3* 
(4) Placket+Burman fraction of 25 
(5) Balanced incomplete blocks 

(v = 4, k = 3) 
(‘3) 2’ 
(7) 25/2: ABCDE 
(8) 26/2: ABCD 
(9) 26/4: ABCD, CDEF 

(10) 26/4: ABC, DEF 
(11) 27/8: ABCD, CDEF, ACEG 
(12) 27/8: BCE, CDF, BDG 
(13) 2’18: ABC, CDE, EFG 
(14) 2*/16: ABCD, CDEF, ACEG, EFGH 
(15) 28/16: ABC, CDE, EFG, AGH 
(16) 29/32: ABC, CDE, EFG, AGH, BFI 
(17) 21°/64: ABE, AC%, ADG, BCH, 

BDI, CDJ 
(18) Latin square 
(19) Balanced incomplete blocks 

(v = 7, k = 3) 
(20) Latin square 
(21) Graeco-Latin square 
(22) 33 
(23) 3"/3: ABCD 
(24) 39/729: ABD, AB2E, ACF, APG 

BCH, BP1 

- 
-J 

n--v 
n Y (n - 1)~ 

8 4 0.378 
8 4 0.378 
9 4 0.395 

12 6 0.302 

12 5 0.357 
16 11 0.174 
16 10 0.200 
16 10 0.200 
16 9 0.228 
16 9 0.228 
16 8 0.258 
16 8 0.258 
16 8 0.258 
16 7 0.293 
16 7 0.293 
16 6 0.333 

16 
16 

21 
25 
25 
27 
27 

27 

5 0.383 
6 0.333 

8 0.285 
12 0.212 
8 0.298 

20 0.116 
18 0.139 

8 0.302 

Correlations 
between 
residuals 

Most of the designs are factorials. Thus (10) is a quarter replicate of a factorial arrangement 
with 6 factors A, B, C, D, E, F, each at 2 levels; ABC and DEF are generators of the alias 
subgroup. (2) is a half replicate repeated in one block. (4) is given by Plackett and Burman 
(1946). In the balanced incomplete block designs (5) and (19), v is the number of varieties or 
treatment levels, k is the number of units in each block. It is to be understood that no interactions 
are estimated. Several designs can be reinterpreted as fewer-factor designs with two-factor 
interactions estimated, as mentioned in the text. For the incomplete block designs, interblock 
information is supposed not recovered. 

to the present case, by changing the second sentence to read: Estimate the un- 
known parameters from the retained observations by the method of least squares. 
Normally it will be appropriate to perform this estimation by the two-stage 
method known misleadingly as “analysis of covariance,” the rejected observa- 
tions being regarded as missing values to be estimated. 

Suppose a particular observation, y1 say, is missing or (if present) is held 
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to be spurious. Let (zi) be the residuals when some arbitrary value for y1 is 
used in the least squares estimation of the parameters. Then if y1 is replaced 
by y, - 7, the residuals are replaced by (z,!“], where 

z!l’ 1 = zi - rlqi, , (8.1) 

{qii) being the coefficients of Q. The value of 7 which minimizes Zi(x~‘))2 is 

$ = Beziqil/ziqf* * 

Given our assumptions, we have 22:iqf, = q,, = v/n and .Z,ziqiI = Ziiqi,qiiyi = 
Ziqliyi = .zl . Thus 

fj = (n/v)q . (8.2) 

If all observations except y1 are good, the correct least-squares estimates of 
the unknown parameters are found by substituting y, - fi for y, in the expres- 
sions that would have been valid if all observations, including y1 , had been 
good. The residuals are now given by (8.1) with (8.2) substituted, that is 

(1) 
21 = 0, p = zj - pjlzl (i f 11, 

where piI is the correlation between zj and x1 ; and we obtain 

var (xl”) = (1 - p:Jva’/n. (8.3) 

Thus Rule 1 (which is the only rule that we consider in detail) prescribes 
that if 1.~~1 > Ca, yM must be replaced by yM - nzM/v in the parameter estimates. 

How should our former Rule 2 be adapted? We have just seen that only 
for some rare designs are all the correlations pii equal in magnitude. (8.3) shows 
that if one observation is rejected, the new residuals will have unequal variance, 
in general. Provided the correlations are fairly small, it may seem reasonable- 
it is certainly simplest-to take no account of the changes in variance in formu- 
lating the rule, which would run: Apply Rule 1. If an observation is rejected, 
compute revised residuals and apply Rule 1 again; and so on. Finally compute 
the least-squares estimates of the unknown parameters from the retained observations. 

Consider now how to measure the effect of routine application of one of these 
rules. We have argued in Section 3 above that it is appropriate to consider 
the sampling variances of estimates. Which estimates? In a complex design 
we are not necessarily interested in all the parameters that have to be esti- 
mated. The general mean and the block differences (if any) are usually of no 
more than secondary interest; that is, the experiment cannot be said to have 
been performed in order to estimate them. Sometimes the same is true even 
of the responses to some of the treatment factors. Let us therefore divide the 
parameters into two sets, those that are “of interest” and the remainder, and 
propose to study the variance matrix of the estimates of the parameters “of 
interest.” (We shall impose a mild restriction on the choice of parameters for 
the “of interest” set.) Let the number of parameters ‘(of interest” be K. By 
an orthogonal transformation, the covariances of the parameter estimates can 
be made zero, and the product of the variances after transformation is equal 
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to the determinant of the variance matrix before transformation. A possible 
measure of the “premium” charged by a rejection rule is the percentage in- 
crease in the determinant of the variance matrix caused by using the rule, 
when in fact no observations are spurious. We shall see that, for Rule 1 with 
give11 c, this percentage increase is proportional to K. Rejecting an observation 
implies a loss of information concerning each of the parameters (in the absence 
of spurious observations), and in a sense it is true that the greater K is the greater 
is the loss. 

However, to aggregate the losses for each of the K parameters is not altogether 
reasonable as a measure of the premium exacted by the rule-as we see by 
considering the grouping of observations. It is commonly held that to group 
normally distributed observations at a grouping interval not exceeding u/2 
has a negligible effect on the estimation of means, and is therefore to be recom- 
mended for ease of computation, whenever ease matters. Such a grouping 
increases the residual variance by about 2%, and so the sampling variance 
of every estimated parameter by the same percentage. If the reader considers 
that the recommendation about grouping is equally sound however many 
parameters are to be estimated, he will presumably consider the following 
definition of the premium charged by a rejection rule to be reasonable: the 
premium is that proportional increase in r2 which would inflate the determinant 
of the variance matrix of the estimated parameters of interest by as rnllch as the 
rejection rule does, when no observations are spurious. 

9. THEORYFOR RULE 1 (COMPLEXPATTERNS) 

We are supposing that (in the absence of spurious readings and wi-ith no 
rejection rule applied) 

(i) all residuals have the same variance, and 
(ii) no two residuals have correlation coefficient equal or close to fl. 
We shall also suppose that 
(iii) if just the K parameters of interest are estimated, the remainder being 

set equal to 0, the resulting residuals all have equal variance. 

These conditions concern the design-specifically, they condition the linear 
space spanned by the columns of A-and they also concern the choice of the 
K parameters of interest out of the total of r~ - v parameters. Despite references 
to variance and correlations, they are independent of distribution assumptions. 
Condition (iii) implies, for example, that we are not allowed to pick out as the 
“of interest” set a one-degree-of-freedom component, e.g. the linear component, 
from the main effect of a three-level factor. 

Let the parameters of interest be the first K components of 0. We wish to 
find the ratio of determinants of the variance matrices of the estimates 
(81 ) 6, ) . . * , 6,) calculated under the assumptions (a) that Rule 1 is applied, 
(b) that Rule 1 is not applied-or that Rule 1 is applied with C = 00. We observe 
first of all that Rule 1 does not depend on the parameterization. If a nonsingular 
lower-triangular transformation T is applied to 0 and the problem is rephrased 
in terms of B* = T8, no change is made in the residuals or in the operation of 
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the rejection rule, and T transforms the estimates of 8 to the estimates of 8*, 
i.e. 6* = T& In particular, the leading K-rowed minor of T transforms 
(6 ) 6, ) *. . ) 6,) to the corresponding estimates of interest (6: , 6% , . . . , 6;). 
It follows that the ratio of determinants that we seek is the same for the latter 
estimates as for the former. There is no loss of generality in supposing that 
the parameters 8 satisfy the conditions 

(iv) the parameters of interest are the first K components of 8, 

(VI V = 1,-,/n. 

(If (v) is not already satisfied, apply the lower-triangular transformation T 
to 8 defined by nT’T = V-l.) 

From (i) and (v) it easily follows that the sum of squares of the coefficients 
in any row of A is equal to n - v; (v) also implies that the columns of A are 
orthogonal and the sum of squares of coefficients in any column is equal to n. 
If we now introduce condition (iii), it is easy to deduce that the sum of squares 
of the first K coefficients in any row of A is equal to K. In the absence of any 
rejection rule, the least-squares estimates of 8 are 

6 = A/y/n. 

Rule 1 has the effect of replacing yM by Y.,~ + (n/v)%T, where T is defined 
by (5.1). Let us consider distributions conditionally on the value of M. We 
can apply an orthogonal transformation to the parameters of interest, so that 
the transformed A satisfies 

aM2 = aM3 = --- = a,, = 0, 

and then, because the transformation does not disturb the sum of squares of 
the first K coefficients in any row of A, we must have 

a Ml = d/T. 

(The sign is arbitrary; let us take the positive root.) The rejection rule does 
not now affect 6, , 8, , . . . , 6, , but 8, is modified by the rejection rule by the 
addition of the term 

(K/nv)‘uT. 

If in fact no observations are spurious, this added term is independent of 
what it is added to (which has variance 2/n), and so we get the following result. 
We can transform the parameters of interest, by an orthogonal transformation 
depending on M, so that one new parameter has its variance changed to 

b”/n> I1 + (‘d’)&(T2) 1, 

while all the other components have unaltered variances of a’/n. The determi- 
nant of the variance matrix (which is invariant to orthogonal transformation 
of parameters) is thus 

(u2/n)‘{ 1 + (K/v)@“~)). (9-l) 

This result is independent of M and therefore true unconditionally. The factor 
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in curly brackets is the ratio that we are looking for, and is invariant to any 
nonsingular transformation of the parameters. The premium, according to the 
suggested definition at the end of Section 8, is 

{ 1 + (K/V)E(!P) } l“ - 1) (9.2) 

which is less than, but may be closely equal to, 

w+w’>, (9 3 

unless K = 1, when these expressions are exactly equal. 
Now suppose that one observation, say yn , is spurious and has bias bu. It, 

may happen that ib’ = n, or, if not, that the first K coefficients in the Mth row 
of A are the same as those in the nth row. Conditionally on this being so, our 
previous line of reasoning shows that the determinant of the matrix of mean 
squared estimation errors is changed from (9.1) to 

(~~/n>~{l -I- (KIvM” + (v/n)fb)21. (9.4) 

This result does not hold unconditionally, but suffices for application of the 
results of Section 6. If no rejection rule were applied, (9.4) would be replaced by 

(a2/n)K( 1 + (q’n)b’}. (9.5) 

The arguments of Section 6, used to derive (6.2) and (6.3), are still valid 
in this context. We are now in a position to draw some conclusions. 

10. NUMERICAL RESULTS 

Both for the simple sample and for the fairly broad type of complex patterns 
just considered, we see, from (6.2) and (5.2) or (9.3), that t,he premium charged 
by Rule 1 can be roughly reckoned at 

(n/v> ~XG#J(~J + a 1, (10.1) 

where 1, = (n/v)“C, as explained in Section 6. This should be tolerably accurate 
if C is so large that na! is quite small. If C is not so large, there is some reason 
to expect that (10.1) approximates the premium charged by Rule 2 rather 
than Rule 1. 

How much premium we are willing to pay should depend on how greatly 
we fear spurious observations. But, as with domestic insurance, we shall probably 
not care very much provided the premium is small. Let us see what can be had 
for a premium of 2oJ i.e. an effective increase of 2% in the residual variance. 
Setting the expression (10.1) equal to 0.02, we obtain the values of C and LY 
given in the first part of Table 3. The lower part of the table refers to a premium 
of 1%. The value 1 for v/n is not attainable, but a simple sample of large size 
has v/n close to 1. The least value of v/n for the designs given in Table 2 was 
g/27, or about 0.3. Lower values for v/n are no doubt rare, except perhaps 
in some screening experiments. 

The protection given by Rule 1, when one observation is spurious with a 
large bias ba, is given approximately by substituting (6.3) into (5.5) or (9.4) 
and comparing the result with (5.6) or (9.5), respectively. The best the rule 
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could do would be always to reject the spurious observation, and in that case 
we should have 

E(T + (v/n)+b)* = 1. 

This is the limit of (6.3) as b + ~0. To give some idea of how large b must be 
for the rule to work well, values of b are tabulated for which, according to (6.3), 

E(T + (v/n)‘b)” = 1 5 . . 

The chance that the spurious observation will escape rejection is, in the cases 
tabulated, of the order of 0.02. For somewhat smaller b the rejection rule will 
be beneficial, better than no rejection rule, but the mean squared estimation 
error will be substantially greater than if there had been no spurious observation. 
If b = (n/v)C, the chance that the spurious observation will be rejected is 
about 0.5. 

For given n and no spurious observations, as v is reduced the effect of a re- 
jection becomes more serious. Consequently the rejection rate LY must be reduced 
to preserve a fixed premium, and (n/v)%? is increased. On the other hand, 
for a fixed bias b, (v/n)*b is reduced, and so the x in (6.3) is reduced twice over. 
Hence the striking increase in the b’s as one reads across Table 3. If we increase 
the premium a little, the b’s are not greatly reduced. 

Thus for an experiment of fixed size n, as the design is made more ingenious 
and v becomes smaller, a gross error in one of the readings spoils more estimated 
effects and becomes less detectable. Even if we can prevent the correlations 
from blowing up to %l, it takes a bigger error to be seen. 

The above findings indicate that, while the rejection rate CY should depend 
on v/n, it should not otherwise depend upon n. To that extent they support 
Wright against most other authors, who have advocated fixed rejection rates 
per experiment. 

It remains to compare the approximate formulas with exact calculations. Com- 

TABLE 3 

Tabulation of rejection rules, based on approximate formulas 

v/n 1.0 0.8 0.6 0.4 0.2 

2yo premium 
c 3.14 
a 0.00171 
b 5.1 

1 y. premium 
c 3.37 
a 0.00076 
b 5.4 

2.87 2.56 2.18 1.63 
0.00131 0.00094 0.00058 0.00026 
5.8 6.9 8.7 12.8 

3.08 2.73 2.31 1.72 
0.00058 0.00042 0.00026 0.00012 
6.1 7.2 9.1 13.3 

For given premium, values of C and CL are given, and also that value of b such that a bias 
of size ba in one observation inflates the mean squared estimation error only one and a half 
times as much as rejection of one observation at random when all observations are good. 
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TABLE 4 

Tabulation of rejection rules, based on accurate calculations 

Approximate 
Rejection Approximate rejection 

c (n/d var (P) rate (n/6) var (p) rate 

Simple sample, n = 3, Y = 2 
2.46003 1.04 
2.66184 1.02 
2.84623 1.01 
3.01724 1.005 
Simple sample, n = 4, Y = 3 
2.57994 1.04 
2.79541 1.02 
2.99206 1.01 
3.17434 1.005 

0.002433 1.04241 0.002588 
0.001065 1.02058 0.001114 
0.000475 1.01032 0.0004(30 
0.000214 1.00512 0.000220 

1.04134 0.002891 
1.02023 0.001247 
1.01014 0.000550 
1.00504 0.000247 

The table refers to Rule I when there are no spurious observations, and shows values of C 
corresponding to given premiums of 4’%,, 270, l%, and $70, together with the rejection rate. 
The last two columns show for comparison values obtained by the approximate formulas, 
using the C values quoted. 

[Results for n = 3, v = 2, one spurious observation, are to follow.] 

putations for the simple sample with n = 3, Rule 1, were begun by Mr. William 
W. Hardgrave, using a desk machine. Later, one of us (I. G.) used an IBM 650 
to check and extend the calculations. Some results are presented in Table 4. 

11. u UNKNOWN 

Clearly the above investigation leaves many questions unanswered. Further 
calculations are needed to determine the reliability of the approximate formulas. 
One would like to know the effect of routine application of a rejection rule to 
data such that the component of random variation was homogeneous but not 
normal-for example, having a distribution of the same shape as Student’s 
distribution with 7 degrees of freedom (Pearson’s Type VII with exponent 4), 
as suggested by Jeffreys, or having a “contaminated” distribution of the type 
considered by Tukey (1960). How does the rule function in the presence of 
Tukey’s (1949) removable nonadditivity, or of other systematic departures 
from standard assumptions? 

In view of statistical history during the past fifty years, the question likely 
to be asked first is: what happens if g is unknown? It is not harder in principle 
to investigate Studentized rejection rules than those already considered. Let 
s2 denote the best (quadratic unbiased) estimate of u2 available. If derived 
from the given observations (y,) only, sz has v degrees of freedom. But in general 
we may suppose that there is also some prior information about g2, equivalent 
to a quadratic estimate having v‘ degrees of freedom, so that s2 has v + v,, 
degrees of freedom. The condition /zM[ > Cu in Rule 1 and in the definition 
of T, (5.1), will be replaced by jxM\ > Cs. 
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For the case of no spurious observations, we can obtain an approximate 
expression for the premium, corresponding to (lO.l), as follows. Choosing any 
one of the residuals, x1 say, for consideration, we can make a fixed orthogonal 
change of axes so that (2,) is transformed to (cl , fz , . . . , {. , 0, . . + , 0), where 
where the t’s have independent N(0, c’) distributions, and fl = (n/v)%, . It 
follows that the condition lx11 > Cs is equivalent to 

u(v + V”) 
( __~- - 1 r: > o?x2, 

nc” > 

where x2 stands for a x’ variable with v + v0 - 1 degrees of freedom, inde- 
pendcnt of {, . The chance o( that this condition is satisfied, which is approxi- 
mately the rejection rate under Rule 1, is given by 

nd 
J 

v+vo--I = t(v+ VO-1) 
v v + v. - nC”,~v a ’ (11.2) 

where the right-hand side denotes the two-tailed a-point of Stndcnt’s distri- 
bution with v + v0 - 1 degrees of freedom. This formula corresponds to (61) 
and extends a result given by Thompson. It can be expressed alternatively 
in terms of the incomplete beta function ratio tabulated by Karl Pearson, thus: 

a=l vfvo-1 1 
I ( 2 > >Fj, 

where z = 1 - nC’/v(v + v,,). The premium v-‘&(T’) is given approximately 
by (n/vu’) times the partial expectation of [t , integration being confined to 
the region where (11.1) is satisfied. We obtain the result: 

t &(T”) - z I, vfvo-1 3 
V 2 > 75 > (11.3) 

where z is as above. This may be expressed alternatively in the following rule 
for determining C, given the premium. Multiply the premium by v/n, and 
find the corresponding upper percentage point of the variance ratio (F) distri- 
bution with 3 and v + v0 - 1 degrees of freedom. Calling this F, we have 

nC2 3F 
- - 1 + (3F - l)/(v + ~0)’ V 

For example, suppose that v/n = 0.5, v + v0 = 30 and the premium is to be 
0.02. We find that the upper 1% (= 0.02 X 0.5) point of-F with 3 and 29 degrees 
of freedom is 4.54 and so 

2c* = +$ = 9.59, c = 2.19, 

and from (11.2) we have cy = 0.00092. If v + v0 = 121, the premium and v/n 
remaining the same, we find similarly C = 2.33, a = 0.00079; and for v + v0 = 00 
(U known) we have C = 2.38, O( = 0.00076. For a given premium, C depends 
quite sharply on v + v. , and to a lesser extent a also varies with v + v. . 

For such numerical calculations, Federighi’s table (1959) is useful for (11.2) 
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and Table 16 in the Biometrika Tables (1954) for (11.3). Ingenious interpolation 
is called for. 

It would be possible to investigate the response of the rejection rule to a 
spurious observation, as in Section 6, but I have not done this in general. The 
extreme case is the simple sample with n = 3, v = 2, v. = 0. Rule 1 is now 
the same as Rule 0, because at most one observation in the sample can differ 
from the mean by more than Cs (when C > I); and it follows that formulas 
(11.2) and (11.3) give exact results for Rule 1. For a premium of 2% we find 
we must take C = 1.154638, and then LY = 0.00667. The rejection rule can be 
expressed in the form: reject either extreme observation if its distance from the 
median observation exceeds 82 times the distance of the other extreme obser- 
vation from the median. If one of the three observations has a bias of magnitude 
ba, the other two being good, the chance that the rejection rule will caus-: the 
exclusion of the bad observation is about 4 if b = 79; and b needs to be three 
or four times this size before rejection of the bad observation can be said to 
be virtually certain. For all practical purposes the rejection rule is utterly 
useless and absurd (cf. Lieblein, 1952). One may conjecture that a Studentized 
rejection rule will have low power whenever v + v. is small, say less than 30. 

REFERENCES 

BERTRAND, J. (1888). Calcul des Probabilit&. Paris. $166. 
BESSEL, F. W. and BAEYER, J. J. (1838). Gradmessung in Ostpreussen. Berlin. (Abhandlungen 

van F. W. Bessel, vol. 3, Leipzig, 1876; quoted by Ceuber and Wellisch.) 
BLISS, C. I., COCHRAN, W. G. and TUKEY, J. W. (1956). A rejection criterion based upon the 

range. Biometrika, 43, 418-22. 
BROWNLEE, K. A., KELLY, B. K. and LORAINE, P. K. (1948). Fractional replication arrange- 

ments for factorial experiments with factors at two levels. Biometrika, 35, 268-76. 
CHAUVENET, W. (1863). Manual of Spherical and Practical Astronomy. Philadelphia. Appendix 

on the method of least squares, $8 57-60. (The appendix was reprinted as A Treatise on 
the Method of Least Squares, 1868.) 

CZUBER, E. (1891). Theorie der Beobachtungsfehler. Leipzig. First part, $11. 
EDGEWORTH, F. Y. (1887). The choice of means. Philosophical Magazine (5), 24, 268-71. 
FEDERIGHI, E. T. (1959). Extended tables of the percentage points of Student’s t-distribution. 

Journal of the American Statistical Association, 54, 683-8. 
GLAISHER, J. W. L. (1873). On the rejection of discordant observations. Monthly Notices of the 

Royal Astronomical Society, 33, 391-402. 
GRUBBS, F. E. (1950). Sample criteria for testing outlying observations. AnnaZs of Mathematical 

Statistics, 21, 27-58. 
JEFFREYS, H. (1939). Theory of Probability. Oxford. 554.4, 4.41, 5.77, 7.2. (In the second edition, 

1948, the old 55.77 is recast and numbered $5.7.) 
KRUSKAL, W. H. (1960). Some remarks on wild observations. Technometrics, 2, l-3. 
LIEBLEIN, J. (1952). Properties of certain statistics involving the closest pair in a sample of 

three observations. Journal of Research of the National Bureau of Standards, 48, 255-68. 
PEARSON, E. S. and HARTLEY, H. 0. (eds.) (1954). Biometrika Tables for Ssatisticians, Vol. 1. 

Cambridge. 
PEIRCE, B. (1852). Criterion for the rejection of doubtful observations. Astronomical Journal, 

2, 161-3. 
PLACKETT, R. L. and BURMAN, J. P. (1946). The design of optimum multifactorial experiments. 

Biometrika, 33, 305-25. 
RIDER, P. R. (1933). Criteria for Rejection of Observations (Washington University Studies, 

New Series, Science and Technology, No. 8). St. Louis. 


