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A class of incomplete three level factorial designs useful for estimating the co- 
efficients in a second degree graduating polynomial are described. The designs either 
meet, or approximately meet, the criterion of rotatability and for the most part can 
be orthogonally blocked. A fully worked example is included. 

1.0. INTRODUCTION 

A symmetrical factorial design is an experimental arrangement in which a 
small integral number p of levels is chosen for each of k factors (i.e. variables) 
and all pk combinations of these levels are run. Classes of these designs which 
have proved to be of particular interest are those in which two levels or three 
levels are used for each of the Ic variables. These are called respectively 2” and 
3” factorials. If not all the factorial combinations are employed but merely 
a selected subset, we call the design an incomplete factorial. Any factorial or 
incomplete factorial we call a factorial-type design. 

A class of incomplete factorials of considerable interest are the fractional 
factorials of D. J. Finney [I] [2]. In these arrangements certain finite group 
properties are employed to select a (l/p)’ fraction of the complete design which 
then requires only pk-’ combinations of levels and may be called a pk-’ factorial. 
A useful and different class of incomplete factorials in which the selected subset 
is not restricted to be a (l/p)’ fraction is due to Plackett and Burman [3]. 

An infinite choice exists for the levels of quantitative variables such as tem- 
perature. In developing designs specifically for quantitative variables, there is 
therefore no essential need to restrict experimental conditions to combina- 
tions of a few basic levels of the component factors. Many useful designs have 
indeed been devised for the study of quantitative variables which do not employ 
the factorial principle [4] [5]. In spite of this, cases are not uncommon where 
even though the factors are all quantitative, convenience requires the use of 
only a few levels for each. 

In this paper we discuss a particular class of three-level incomplete factorials 
specifically selected for the study of quantitative variables. The class of designs 
is not included among the types of incomplete factorials already discussed but 
nevertheless appears to be of considerable practical importance. 

2.0. IWOMPLETE FACTORIALS FOR QUANTITATIVE VARIABLES 

When a design involving N runs is employed to separately estimate L con- 
stants we may define the ratio R = N/L as the redundancy factor for the design. 
This factor is necessarily not less than unity. 
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Suppose in what follows that the functional relationship between the response 
of interest and the levels of the k quantitative experimental variables may be 
graduated by a general polynomial of degree d in the levels of the variables. A 
design suitable for separately estimating the (k + d)!/k! d! constants of such 
a polynomial is called a design of order d. The highest degree of polynomial 
that may be fitted to the observations from a p-level factorial is p - 1. Con- 
sequently when regarded as a design for the fitting of a general polynomial the 
pk factorial is a design of order p - 1. The redundancy factor for such a design 
is therefore pkk!(p - l)!/(lc + p - 1) !. When calculated in this way the re- 
dundancy factors for the complete factorials are usually large. For example, 
regarded as a first order design, the two-level factorial in five factors requires 
25 = 32 runs to estimate the 6 constants of the first degree polynomial. It there- 
fore has a redundancy factor of 32/6 = 5.3. Similarly, regarded as a second 
order design the three-level factorial in five factors requires 35 = 243 runs to 
estimate the 21 constants of the second degree polynomial. It therefore has a 
redundancy factor of 243/21 = 11.6. 

In situations in which the experimental error variance is not so large as to 
require large numbers of observations to obtain necessary precision, designs 
having small redundacy factors are desirable. Small redundacy factors may some- 
times be obtained by using incomplete rather than complete factorial designs. 
For example, if k = 3, 7, 11, 15, . . . , 42’ - 1 the two-level arrangements of 
Plackett and Burman provide first order designs requiring respectively only 
4, 8, 12, 16, e-- , 4i runs, where i is a positive integer. They are thus first order 
two-level designs of redundancy unity. Designs having this minimal redun- 
dancy are seldom employed in practice because they provide no residual degrees 
of freedom and so do not allow the possibility of partially checking [S] [7] the 
adequacy of the assumed form of model. Other incomplete two-level factorial 
designs are available however having low redundancy factors of two or less 
which do not suffer from this deficiency. 

For the presently available three-level factorials the situation is less satis- 
factory than for the two-level designs. For example, the various one-ninth 
replicates of the 35 factorials all seem to lead to undesirable correlation or con- 
founding of estimates of the coefficients and although a one-third replicate of 
the 3’ factorial may be employed as a second order design it has a redundancy 
factor of M/21 = 3.9 which is somewhat high. 

In developing the present class of designs we do not use the group properties 
exploited by Finney; rather we set out directly to select part of the 3k factorial 
which allows efficient estimation of a second degree graduating polynomial. 
Specifically, we have where possible set out to generate second order rotatable 
designs. Arguments in favor of such a choice have been presented elsewhere [5]. 
Suppose we code the levels in standardized units so that the 3 values taken by 
each of the variables x1 , x2 , + . . Z~ are - 1, 0, and 1 and suppose also that the 
second degree graduating polynomial fitted by the method of least squares is 

Q = b0 + g biXi + 2 2 bi$iXj * 
i-l i-i 

A second order rotatable design is such that the variance of 0 is constant for all 
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points equidistant from the center of the design-that is, for all points for which 
p = (xi x:)% is constant. Among the class of rotatable designs we select those 
for which the variance of 9, regarded as a function of p, is reasonably constant 
in the region of the k-space covered by the design. The requirement of rotatability 
is introduced to ensure a symmetric generation of information in the space of 
the variables defined and scaled in a manner currently thought most appropriate 
by the experimenter. For a design to be useful it need not have the property of 
rotatability exactly. For certain values of k, it turns out that within the class of 
designs we consider, rotatability can be achieved exactly; in other cases, exact 
rotatability is not possible and here, as described more fully in Appendix A, we 
relax the requirement to some extent. All the designs we discuss possess a high 
degree of orthogonality; in fact, only the constant term b, and the quadratic 
estimates bii are correlated* one with another. 

The requirement of rotatability or near-rotatability imposes certain restric- 
tions [5] on the moments of the design. In Appendix A it is shown that when 
these restrictions are applied to variables which can take only the values - 1, 0, 
and 1 certain simple combinatorial requirements emerge and that these require- 
ments can be satisfied by combining two-level factorial designs and incomplete 
block designs in a particular manner exemplified in the next section. 

The existence of the class of designs discussed here was suggested by the 
discovery in another connection [8] of a three-level rotatable design in seven 
variablds which required only 56 points plus added points at the origin thus 
providing highly efficient estimates of the 36 constants in the polynomial of 
second degree. Further investigation led to the development of the present class 
of three-level designs utilizing the properties of incomplete blocks. 

3.0. METHOD FOR GENERATING THE DESIGNS 

The designs are formed by combining two-level factorial designs with incom- 
plete block designs in a particular manner. This is best illustrated by an example. 
In Table 1 is shown a balanced incomplete block design for testing k = 4 varieties 
in b = 6 blocks of size s = 2. 

TABLE 1 
A balanced incomplete block design for four varieties in six blocks. 

k = 4 varieties 
Xl x2 xa x4 

i 

b=6 3 * 
blocks 4 

: 

* * 
* * 

* 
* * 

f * 
* * 

* 

* Designs for which there is no correlation between either all or a subset of the quadratic 
coefficients can be obtained but they do not seem to possess any particular advantage [5] eo 
far as estimating the response is concerned. 
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TABLE 2 
A 2= factorial design. 

Xi Xi 
-1 -1 

1 -1 

L 1 
-1 

1 : 

If this design were being used in the usual way, varieties 1 and 2 denoted by 
x1 and xa would be tested in the first block, varieties 3 and 4 in the second, and 
so on. 

A basis for a three-level design in four variables is obtained by combining 
this incomplete block design with the 2’ factorial of Table 2. The two asterisks 
in every row of the incomplete block design are replaced by the s = 2 columns 
of the two-level 22 design. Wherever an asterisk does not appear a column of 
zeros is inserted. The design is completed by the addition of a number of center 
points (0, 0, 0, 0), about three being desirable with this arrangement. The 
resulting design is shown in Table 3. As explained later, this design can in fact 
be run in three orthogonal blocks. These are indicated by dotted lines in the 
table. 

The design obtained is a rotatable second order design suitable for studying 
four variables in 27 trials and is capable of being blocked in three sets of nine 
trials. It is shown in Appendix B that this particular design is in fact a rotation 
of the corresponding central composite rotatable design [5] in four variables. 
It is however not generally true that the present class of designs can be generated 
from the central composite designs by rotation. 

TABLE 3 
An incomplete 34 factorial in three blocks of nine experimental runs. 

xa x4 

1 

-“; -y 
-: -1 E 

0‘ 

1 0 8 
:, 1 

: 0 
2 -7 

8 -1 1 -1 

0 0 
0 0 A 

: 
0 

---__-_-_-_-______ 

-1 t, 0” ; : 
-1 -1 

: 
-: 

-1 : 
: 0 

i i 0 i 
----------m_-_-_-_ 

8 -1 0 -1 
-1 

0 -: !J 1 
2 

:, -Y 
1 

1 0 -1 : 

Block 1 

Block 2 

Block 3 
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In Table 4 a number of designs of the class under study are given suitable for 
investigating 3, 4, 5, 6, 7, 9, 10, 11, 12, and 16 variables. In this table unless 
otherwise indicated the symbol (& 1, =t 1, * . . , &l) means that all combinations 
of plus and minus levels are to be run. Whenever a fractional factorial is available 
which does not confound main effects and two factor interactions one with 
another, it may be used instead of the full factorial. For example, in design 
No. 8, s is equal to five and as indicated in the table rather than using a full 25 
factorial we can achieve the desired result with a half-replicate. 

Three members of the class of designs have been generated by other methods 
and have appeared elsewhere. Design No. 1 was first described by DeBaun 
[9], [lo] and design No. 2 by Cardiner, Grandage and Hader [II]. The general 
method of Bose and Draper rederived design No. 2 in [12] and produced the 
points in designs No. 1 and NO. 3 as identifiable subsets of rotatable designs 
in [13] and [la] respectively. 

4.0. BLOCKING THE DESIGNS 

Where insufficient homogeneous experimental material is available for all 
the experimental runs it becomes desirable to run them in blocks. Where possible 
it is desirable to achieve orthogonal blocking, that is to arrange that the block 
constrasts are uncorrelated with all the estimates of the coefficients in the 
polynomial. When this can be achieved the analysis may be carried out almost 
as if block differences did not exist. The only modification necessary is that 
in the analysis of variance table the sum of squares associated with block dif- 
ferences must be substracted from the residual sum of squares. On the assumption 
that the model is adequate, the residual sum of squares so adjusted may then 
be used to estimate the within-block variance and hence the standard errors 
of the coefficients. 

The requirements for orthogonal blocking of second order designs have been 
given elsewhere [j]. Applying these results to the present problem, it is easy 
to see that: 

(1) Where “replicate sets” can be found in the generating incomplete block 
design these provide a basis for orthogonal blocking. These replicate 
sets are subgroups within which each variety is tested the same number 
of times. 

(2) Where the component factorial designs can be divided into blocks which 
only confound interactions of more than two factors these can provide a 
basis for orthogonal blocking. 

An illustration of the first method of blocking has already been given in the 
example of Section 3.0. In Table 4 dotted lines indicate the appropriate divisions 
into replicate sets. Using these divisions design No. 2 can be split into three 
blocks, design No. 3 into two blocks, design No. 6 into five blocks and design 
No. 10 into six blocks. In these and other blocking schemes discussed below, the 
center points must be distributed equally among blocks to retain orthogonality. 

The second method may be illustrated with design No. 4 for which the first 
method cannot be employed. The basis for the design consists of 48 trials gen- 
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erated from six 23 factorial designs. If we were running a single 23 factorial design, 
it could be performed in two sets of four trials, confounding the three-factor 
interaction with blocks. Trials with levels (1, 1, l), (1, -1, -l), (-II -1, l), 

F-1, 1, -1) would be included in one set (called the positive set) and trials 
withlevels (-1, -1, -l), (-1, 1, l), (1, -1, l), (1, 1, -1) in the other (called 
the negative set). The complete group of 48 trials can be split into two orthogonal 
blocks of 24 by allocating one set (either positive or negative) from each of the 
2a factorial designs to one block, and the remainder to the other. 

This method is used where the block size s > 2 and employed for designs 
4, 5, 6, 7, 9, and 10 in Table 4. In designs 7, 9, and 10 the basic factorial is a 
2* design. This is split into two sets in such a way as to confound the four factor 
interaction, that is to say trials with levels whose product is positive are allocated 
to one group, and the remainder to the other. 

In some cases, both methods may be used simultaneously. Thus in design 6 
the basic incomplete block design contains five “replicates” indicated by the 
dotted lines in the table, providing a basis for generating five blocks of 24 runs. 
Each one of these blocks may now be split into two by allocating the positive 
sets of the component factorials to one block and the negative sets to the other. 
We obtain finally an arrangement for generating ten blocks of twelve runs. A 
similar procedure may be applied in blocking design No. 10. 

While orthogonal blocking is desirable, since it minimizes the variance of 
the estimates of the regression coefficients, non-orthogonal blocking schemes 
may be employed without an excessive loss of precision when smaller block 
sizes than those given above are required. Such schemes will not be discussed 
in the present communication. 

5.0. INCLUSION OF CENTER POINTS 

In addition to the runs generated directly from the 2” factorial design it is 
also necessary to include n, center points in order to avoid singularity in the 
moment matrix. The number of center points affects the variance profile, that 
is, the variance of Q regarded as a function of the distance p = a from 
the center of the design. The exact number of center points is not critical. The 
numbers given in the table are chosen so that the variance profile will be reason- 
ably uniform over the region of the experimental design and so that an even 
number of center points appear in each block. The variance profiles resulting 
from the designs here considered are shown in Figure 1 of Appendix A. 

6.0. ANALYSIS FOR THE DESIGNS 

In Tables 5a, 5b, and 5c, formulae and constants are given which are needed 
for the analysis of the designs of Table 4. The notation is explained below. 

6.1. Calculation of the estimates. 
In order to calculate the estimates b, , b, , bii , b<, , it is first necessary to 

write out the levels for each of the variables in the design and then to add 
further columns corresponding to xt , xi , . - - , x: , x1x2 , x1x3 , . . - , xk-,xk . 
This is done in Table 6 for design No. 2 where a set of typical data is also shown 
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TABLE 5a 

465 

Estimates of the regression coejkiente and their variances. 

bo = go 
bi = A(iyj 

bff = B{q/l + Cl $ (jjyl + c2 l$ IZZYI - (?-lo/s) 

where 2 and 2 refer to summation over first 
2 

and second associates of i. 

bii = D,{ijy] i, j first associates. 

bii = D2{ijy) i, j, second associates. 

Wo) = 2 u* 

V(b,) = AC’ 

V(b,f) = [B + l/s2no]aZ 

V&j) = DlU2 

= Dzd 

i, j first associates. 

i, j second associates. 

COV (bobii) = -& a2 

COV (biibji) = [Cl i &]U’* i, j first associates. 

= [CL + -&--2, i, j second associates. 

NOTE: For BIB designs, all i, j are considered first associates and Ce = DZ = 0. The con- 
stants A, B, etc. for the various designs are given in Table 5c. 

for illustration. The sum of products of the entries in the columns with the 
observations y are next calculated. In addition y. the average value of the 
observations made at the center points is shown. The calculated quantities 
are next substituted in the formulae given in Table 5a to provide the required 
estimates using the constants of Table 5c. 

The following notation is employed: 

FYI = iJ Xf”YS ? IiiYl = g d”Y, , IGYI = g ZfU%“Y” . 

The grand total can be regarded as the sum of products between y and a dummy 
variable x0 which always takes the value 1 so that 
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TABLE 5b 
Formulae for the analysis of variance. 

Correction due to the mean: 

Sum of squares due to linear terms: 

Sum of squares due to second degree terms: 

(a) Due to interaction terms: 

(b) Due to quadratic terms: 

Total sum of squares after 
correction for the mean: 

In the present example the sums of products are: 

Qo = 90.6; ( Oy) = 2319.4; 

1 lY1 = 23.2; { 2y) = - 23.5; ( 3yj = 13.6; { 4y} = - 44.1; 

{lly) = 1033.6; (22~) = 1010.3; (33~) = 1027.0; (44~1 = 1024.3; 

{12yJ = - 6.7; (13~) = - 15.3; {14yJ = 3.8; (23~) = - 6.7; 

(24~1 = - 10.5; {34y] = - 17.0; 

TABLE 5c 
Constants for the designs of Table 4. 

De- 
sign 

Center Redun- Non- 
Points dancy Spheric&y 

A B Cl C2 D1 DZ s no Factor Index I 

1 l/f3 l/4 -l/16 0 l/4 0 2 3 1.2 0.38 
2 l/12 l/8 -l/48 0 l/4 0 2 3 1.6 0 
3 l/16 l/12 -l/96 0 l/4 0 2 6 1.9 0.17 
4 l/24 17/216 -lo/216 -l/216 l/16 l/8 3 6 1.7 0.23 
5 l/24 l/l6 -l/144 0 l/8 0 3 6 1.6 0 
6 l/40 l/30 -l/120 -l/720 l/16 l/8 3 10 2.2 0.25 
7 l/64 17/512 l/512 -7/512 l/16 l/32 4 10 2.4 0.09 
8 l/80 l/48 -l/600 0 l/32 0 5 12 2.3 0.06 
9 l/64 23/1024 -g/1024 -l/1024 l/32 l/16 4 12 2.1 0.16 

10 l/96 41/3072 - 7/3072 -l/3072 l/32 l/16 4 12 2.5 0.18 
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TABLE 6 

Sample calculation for the four-factor design (No. 2). 

x1 x2 x3 x4 4 2; 4 

-1-l 0 0 1 1 0 
1 -1 0 0 1 1 0 

-1 1 0 0 1 1 0 
1 1 0 0 1 1 0 

0 0 -1 -1 0 0 1 
0 0 l-l 0 0 1 
0 O-l 1 0 0 1 
0 0 1 1 0 0 1 

0 0 0 0 0 0 0 
--_-__-_-_~---------- 

-1 0 O-l 1 
1 0 o-1 1 

-1 0 0 1 1 
10011 

0 -1 -1 0 0 
0 l-l 0 0 
O-l 10 0 
0 1 1 0 0 

0 0 0 0 0 
--------------- 

0 -1 O-l 0 
0 1 O-l 0 
o-1 0 1 0 
0 10 1 0 

-1 o-1 0 1 
1 o-1 0 1 

-1 0 1 0 1 
1 0 1 0 1 

0 0 0 0 0 

-- 

0 
0 
0 
0 

1 
1 
1 
1 

0 

1 
1 
1 
1 

0 
0 
0 
0 

0 

-- 

0 
0 
0 
0 

1 
1 
1 
1 

0 

0 
0 
0 
0 

1 
1 
1 
1 

0 

-- 

-- 

X2 

0 
0 
0 
0 

1 
1 
1 
1 

0 
- 

1 
1 
1 
1 

0 
0 
0 
0 

0 

1 
1 
1 
1 

0 
0 
0 
0 

0 

--- 

x1x2 21x3 x1x4 52x3 x2x4 x3x4 

1 0 0 0 0 0 
-1 0 0 0 0 0 
-1 0 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 0 1 
0 0 0 0 0 -1 
0 0 0 0 0 -1 
0 0 0 0 0 1 

0 0 0 0 0 0 
__--------------- 

0 0 1 0 0 
0 o-1 0 0 
0 O-l 0 0 
0 0 1 0 0 

0 0 0 1 0 
0 0 O-l 0 
0 0 O-l 0 
0 0 0 1 0 

0 0 0 0 0 

0 0 0 0 1 
0 0 0 0 -1 
0 0 0 0 -1 
0 0 0 0 1 

0 1 0 0 0 
O-l 0 0 0 
o-1 0 0 0 
0 1 0 0 0 

0 0 0 0 0 

- 

- 

0 
0 
0 
0 

0 
0 
0 
0 

0 
-- 

0 
0 
0 
0 

0 
0 
0 
0 

0 

--- 

--- 

Y 

84.7 
93.3 
84.2 
86.1 

85.7 
96.4 
88.1 
81.8 

93.8 
--- 

89.4 
88.7 
77.8 
80.9 

80.9 
79.8 
86.8 
79.0 

87.3 
--- 

86.1 
87.9 
85.1 
76.4 

79.7 
92.5 
89.4 
86.9 

90.7 

and from Table 5c for design No. 2 we have A = l/12, B = l/8, C1 = -l/48, 
D, = l/4, s = 2, nO = 3 whence, using the formulae of Table 5a, 

b, = 90.6 b, = 1.93 b,, = -1.42 b,, = -1.68 

b, = -1.96 b,, = -4.33 b,s = -3.83 

b, = 1.13 b,, = -2.24 b,, = 0.95 

b, = -3.68 b,, = -2.58 b,, = -1.68 

b,, = -2.63 

ba = -4.25. 
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For example, 

bl = $ (23.2) = 1.930 

b 11 = $ (1033.6) - & (4095.2) - y = -1.416 

b la = i (-6.7) = -1.675 

6.2. The Analysis of Variance. 

The analysis of the variance table is readily calculated using the relations 
of:Table 5b as follows. 

Analysis of Variance Table 

S.S. d.f. m.s. 
Due to linear terms 268.36 4 67.09 
Due to second order terms 294.92 10 29.49 
Residual 126.71 12 10.56 

~ - 
Total after eliminating the mean 689.99 26 

The observations recorded at the center point were 93.8, 87.3, and 90.7. Had 
there been no blocking of the design (that is if the runs had been made entirely 
in random order) these observations at the center point would have provided 
two degrees of freedom for estimating the error variance. Their sum of squares 
for deviations from their mean would have been 21.16 and the residual sum of 
squares could have been split into two parts, as follows 

S.S. d.f. m.s. 

Residual 
1 

Replicated center points 21.16 2 10.58 
Remainder 105.57 10 10.56 

___ - 
126.71 12 

to provide a basis for a possible test of goodness of fit for the model. 
In this particular example, since the error sum of squares would have only 

two degrees of freedom, such a test would of course be very insensitive and 
provide no more than an indication that the remainder sum of squares was or 
was not of the right order of magnitude. Our main object here is to illustrate 
general principles. 

6.3. Elimination of Block Effects. 

The design illustrated was actually carried out in three blocks of nine observa- 
tions. Since the blocking is orthogonal the elimination of blocks will only affect 
the residual sum of squares. The block means g, , g, and & are respectively 
749.1/9, 750.6/g, 774.7/9 and the sum of squares associated with blocks is 

(794.1)2 + (750.6)a + (774.7)’ _ (2319.4)’ = 1o5 53 
9 27 . . 



SOME NEW THREE LEVEL DESIGNS 469 

We cannot now isolate the two degrees of freedom for the differences among 
the center points and the analysis of variance is as follows. 

S.S. d.f. m.s. 
Due to linear terms 268.36 4 67.09 
Due to second order terms 294.92 10 29.492 
Residual 2.118 
Blocks 52.765 

Total after elimination of mean 689.99 

It is seen that in this example a large proportion of the residual variance 
is accounted for by the blocks. On the assumption that our model is adequate, 
the mean square of 2,118 provides an estimate d of u2. This estimate will there- 
fore be employed in calculating the standard errors of the variance coefficients. 
If extra runs at the center point could be made then an equal number of these 
should be allocated to each block. The pooled variances for replications at the 
center point within each block would then provide an estimate of error approp- 
riate for testing the adequacy of the model. 

6.4. Variances, Covariances and Standard Errors. 

The variances and covariances of the various estimates are obtained from 
the formulae in Table 5a with an appropriate estimate d of the experimental 
error variance replacing a2 in those formulae. In the present example we employ 
the estimate b2 = 2.118. Taking square roots of the estimated variances we 
obtain the following values for the standard errors of the estimates: 

S.E.(biJ = ds = .66; 

S.E.(biJ = e = .73. 

6.5. General Comments on the Analysis. 

The simple type of analysis illustrated above is appropriate for designs 1, 2,3, 
5, and 8. The analysis of designs 4, 6, 7, 9, and 10 is slightly more complicated. 
Estimates of b, , the constant term, and the linear terms bi are obtained exactly 
as before. The multiplier D for calculating the interaction effects however 
takes two values for these designs. The multiplier D, is appropriate for these 
combinations of variables listed as first associates in Table 4 and D, for those 
combinations listed as second associates. In Table 4 combinations belonging 
to only one of the associate classes are listed. All others belong to the other 
associate class. For example, in design No. 4 the interactions 1 4; 2 5; and 3 6 
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are between first associates and take the multiplier D, . For design Xo. 7 how- 
ever it is more economical in space to list the second associates which take the 
multiplier D, . In calculating the estimate of bii (Table 5a), C, is the multiplier 
of cy1 (jjy} in which the j’s are first associates of i while C, is the multiplier 
of c;* (11~ ] in which the l’s are second associates of i. 

APPENDIX A 

DERIVATION OF THE CLASS OF THREE LEVEL DESIGNS 

The requirements which need to be satisfied in order that a design shall be 
second order rotatable are given elsewhere [5]. It is desirable [5] when possible 
to satisfy the additional condition that biases due to neglectred third order terms 
are zero. The conditions which the design points must then satisfy are as follows: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

= g x;, > 0 all i, j 

= I$ XL > 0 all i, j 

= g xz = g x;, = 0 all i 

N 

= c x;,x:, > 0 i # j, k # 1 
"-1 

= g x~,x,, = g xXxSu = 0 i # i 

= 2 Xl,Xj, = 0 iZj 

= 0 i#j#k 

= 0 i#j#k 

zz 0 i#j#k#l 

= 0 i#j#k#l 

F, xiuxiuxkux1uxmu = 0 iZj#k#l#m 
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Bearing in mind that for our present purpose each x can take only the values 
-1, 0 or 1, we consider what is implied, first for single columns of the design, 
then for pairs of columns and so on. In what follows a coincidence means the 
occurrence of l’s (plus or minus) in the same row of the design matrix. In general 
where we refer to the occurrence of a “1” we mean a + 1 or a - 1. The equation 
numbers refer to the appropriate relations above. 

(a) Single columns. The same number of l’s occur in each column. Half 
of these are + 1 and half - 1 (Equations 1 and 2). 

(b) Two columns. The number of coincident l’s is greater than zero and the 
same for all sets of two columns. For these coincident l’s 

c Xi, = 0 and C xduxiu = 0 

where, here and subsequently, the summation is taken over the relevant 
coincidences (Equations 3, 5 and 6). 

(c) Three columns. For the coincident l’s occurring in any three columns 

c xi, = 0; c Xi”Xj” = 0; c x~,,~j,,x~~ = 0. 

(Equations 7, 8 and 9) 
(d) Four columns. For the coincident l’s occurring in any four columns 

(Equations 10 and 11) 
(e) Five columns. For the coincident l’s occurring in any five columns 

C ~iu~iu~ku~lu~mu = 0. 

(Equation 12) 
Considering the possible designs we see from (b) that we cannot use any 

arrangement for which no coincidences occur. It is on the other hand possible, 
in principle, to generate designs in which l’s are coincident only in pairs of 
columns. In this case requirements (c), (d), and (e) are automatically satisfied. 
To satisfy requirement (b) consider the coincidence of l’s in the ith and jth 
column. For these ones we require c xi, = 0; c x,~ = 0 and c x,,x,, = 0. 
The fewest number of coincidences for which this can be satisfied is four. The 
actual values of the coincident l’s must then be some permutation of the rows 
of the 2’ arrangement: 

: -1 -1 1 -1 -1 1 

1 I 1 

We now need to include these component arrangements so that Equation 
(4) is also satisfied. This requires that the number of coincidences in each 
pair of columns is one third the number of l’s occurring in each column. The 
combinatorial properties required of the coincidences are seen to be exactly 
those of a balanced incomplete block design with T = 3~ (where, in the incom- 
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plete block design, T is the number of times each treatment is replicated and EL 
is the number of times each pair of treatments appear together in the same 
block). Precisely this method of construction is employed in design No. 2. 

Designs may also be obtained in which l’s are coincident only in sets of three 
columns. Requirements (d) and (e) are automatically satisfied and requirement 
(c) can be met by arranging that the actual values of the coincident l’s form 
the elements of a 23 factorial. By arranging once more that the coincidences 
follow those of a balanced incomplete block design with r = 3~ all conditions 
are satisfied. Design No. 5 is an example of this type of arrangement. As has 
been shown [14], exactly similar arguments may be employed for designs with 
higher numbers of coincidences. Where coincidences of more than five columns 
are involved we could satisfy all the requirements with fractional factorials 
instead of full factorials for the basic units provided that the generators of the 
fractional factorials contain not less than six elements. 

Among the designs listed in Table 4, the above method of generation accounts 
for arrangement No. 2 for four variables in twenty-four runs and arrangement 
No. 5 for seven variables in fifty-six runs. Other arrangements of this kind are 
available, but only those giving low redundancy factors are listed here. Balanced 
incomplete block designs for which r = 3~ and for which the redundancy factors 
are satisfactory are unfortunately not available for all k. To obtain useful 
designs for other values of k some relaxation in our requirements must be made. 
A natural modification is to employ balanced incomplete block designs for which 
r # 3~. It is easily seen that for such designs all the equations (1) through (12), 
excepting (4), will be satisfied. Instead the design will satisfy 

The ratio r/p may be chosen to be as close to 3 as possible. Designs of this class 
in Table 4 are No. 1 (k = 3, T/CL = 2), No. 3 (k = 5, r/p = 4), No. 8 (k = 11, 
r/p = 2.5). The resulting designs are not quite rotatable but, as has been pointed 
out already, the property of rotatability is desirable rather than critical and 
for the designs discussed the variance of g at points equidistant from the origin 
changes little. This is shown quantitatively in the last column of Table 5c 
which shows the non-sphericity factor “1” for the designs considered [14]. This 
non-sphericity factor measures the range of variance of $j divided by its midrange 
on the unit sphere 

gx: = 1. 

For rotatable designs the factor is zero. 
A further relaxation of the same kind is to allow the use of partially balanced 

incomplete block designs. Again all the conditions will be satisfied except those 
of equations (3) and (4). Instead of this relationship, we will have for these designs 

for i, j first associates 

; g &x~u = g XL , for i, j second associates 
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where p1 is the number of times first associate treatments appear together in 
the same block and pLz is the corresponding parameter for second associates. 
Once more these designs are nearly rotatable and have low redundancy factors. 
The values of I and R for these designs also are shown in Table 5c. Characteristic 
of this classification of designs is that the variances of interaction coefficients 
(bji) are different depending upon whether i and j are first or second associates. 
In practice, as can be determined from the formulae and constants in Table 5a 
these differences in variance are not serious and the resulting designs are per- 
fectly satisfactory. In Table 4 designs No. 4 (for Ic = S), No. 6 (for lc = 9), 
No. 7 (for k = lo), No. 9 (for Ic = 12) and No. 10 (for Ic = 16) are of this type. 

Equation (12) of the moment conditions for three-level designs arises from 
the requirement that biases due to third order terms be made zero. The relaxa- 
tion of this condition would preserve all the properties of the design except 
that if, contrary to assumption, three-factor interaction coefficients were not 
zero, these would cause the two-factor interaction coefficients to be biased. 
Condition (12) is relaxed in design No. 8 in which a half-replicate of the basis 
25 design is employed. 

Figure 1 gives the variance profiles for the designs of Table 4. These graphs 
show the standardized variance function 

plotted as a function of p = (xi XT)’ the distance from the center of the design. 
A number of center points have been added to make the variance at p = 0 
equal to the midrange variance at p = 1 and is close to the number recommended 
in Table 4. The small adjustment to n, required to distribute the center points 
equally among blocks has a negligible effect on these graphs. For non-rotatable 
designs the two curves indicate the maximum and minimum variance obtained 
[14] on a sphere of radius p. They thus represent the envelope of all possible 
variance functions that might be obtained by proceeding from the origin out 
along any arbitrary radius. 

Our object here is merely to present a set of designs whose properties are 
sufficiently desirable to justify immediate application, it is by no means implied 
t#hat the designs we have listed are exhaustive. In particular, as will be reported 
elsewhere, the method of generation here used can provide designs in which the 
number of ones occurring in each row is not constant. Even within the particular 
class of designs which we have considered (in which the number of ones in each 
row is constant), the designs presented are far from exhaustive. A wider but 
by no means complete selection of such designs is given in [14]. 

APPENDIX B 

In Section 3.0 the three-level 24-point arrangement is described which forms 
the basis, with added center points, for a second order rotatable design. As is 
mentioned in the t,ext, this design is in fact a rotation of the four-variable central 
composite rotatable arrange.ment. This may be readily confirmed in the following 
way. 

Upon post-multiplying the matrix (excluding center points) for design No. 2 
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given in Table 3 by the orthogonal matrix 

1 0 0 

-1 0 0 

0 0 l-l 

475 

we obtain, except for the scale factor l/& the design matrix of the rotatable 
central composite arrangement [5] which may in an obvious shorthand notation 
be denoted by 

fl fl fl fl 

f2 0 0 0 

1 1 

Of2 0 0 

0 Of2 0 

0 0 0 zt2. 
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